/usr/share/texmf-texlive/metapost/cmarrows/sgbx0015.mp is in texlive-metapost 2009-15.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 | %% sgbx0015.mp
%% Copyright 2006 Tommy Ekola <tek@kth.se>
%
% This work may be distributed and/or modified under the conditions of
% the LaTeX Project Public License, either version 1.3 of this license
% or (at your option) any later version. The latest version of this
% license is in http://www.latex-project.org/lppl.txt
%
% This work has the LPPL maintenance status `maintained'. The Current
% Maintainer of this work is Tommy Ekola. The Base Interpreter is
% MetaPost.
vardef setup_lefthalfarrow (expr source_file, cmdname) =
scantokens ("input tgbx0000");
scantokens ("input " & source_file);
expandafter def scantokens cmdname expr p =
scantokens (cmdname & "__sgbxww")(p)
enddef;
expandafter vardef scantokens (cmdname & "__sgbxww " & "(expr apth) " &
"text text_ = " &
"save math_spread, x_height, u, rule_thickness, bar, math_axis," &
" asc_height, eps, monospace, fudge, crisp, hair;" &
"boolean monospace;" &
"math_spread :=" & decimal math_spread & ";" &
"x_height# :=" & decimal x_height# & ";" &
"u# :=" & decimal u# & ";" &
"rule_thickness# :=" & decimal rule_thickness# & ";" &
"bar# :=" & decimal bar# & ";" &
"math_axis# :=" & decimal math_axis# & ";" &
"asc_height# :=" & decimal asc_height# & ";" &
"eps :=" & decimal eps & ";" &
"monospace :=" & if monospace: "true" else: "false" fi & ";" &
"fudge :=" & decimal fudge & ";" &
"crisp# :=" & decimal crisp# & ";" &
"hair# :=" & decimal hair# & ";")
save prevpen;
prevpen:=savepen;
save x,y;
numeric x[], x[]', x[]l, x[]'l, x[]r, x[]'r,
y[], y[]', y[]l, y[]'l, y[]r, y[]'r;
save spread, w;
numeric spread, w;
if crisp#>fudge*hair#:
crisp#:=fudge*hair#;
fi
pickup if crisp#=0: nullpen else: pencircle scaled crisp# fi;
spread = math_spread[.45x_height#, .55x_height#];
w = 18u#;
penpos1(rule_thickness#, 90); penpos2(rule_thickness#, 90);
penpos3(rule_thickness#, 0); penpos4(rule_thickness#, 0);
y0=y1=y2=math_axis#; x1-.5rule_thickness#=u#; rt x0=w-u#;
y3-y0=y0-y4=.36asc_height#+eps;
x3=x4=x0-4u#-eps;
penpos5(rule_thickness#, angle(z4-z0)); z5l=z0;
penpos6(rule_thickness#, angle(z3-z0)); z6l=z0;
save t; numeric t;
save pq; path pq; pq = z4l..{2(x0-x4),y0-y4}z6r;
t=xpart(pq intersectiontimes ((0,y2l)--(w,y2l))); x2=xpart point t of pq;
z9=.2[.5[z3,z4],z0];
save mapto, n;
vardef mapto(text t) =
hide(numeric n; n:=0;
numeric x,x_[],y,y_[];
for z=t: z_[incr n]:=z; endfor;
transform T;
z_2 = z_1 transformed T;
z_4 = z_3 transformed T;
z_6 = z_5 transformed T;)
T
enddef;
save T; transform T;
save tt; numeric tt; tt = arctime(arclength apth - (x0-x9)) of apth;
save ttt; numeric ttt; ttt = arctime(arclength apth - (x0-x2)) of apth;
% Draw the arrow head
save pp; path pp; pp := (z3l..{2(x0-x3),y0-y3}z5r);
save pq; path pq; pq := (z3r..{2(x0-x3),y0-y3}z5l);
save halfarrowhead, pa;
vardef halfarrowhead(expr T, s) =
(z0--(x0,y2l)--z2l--z2r
..subpath(t,s) of pp
--subpath(xpart( pq intersectiontimes
(point s of pp -- point s of pp +(2rule_thickness#,0))),
length (z3r..{2(x0-x3),y0-y3}z5l)) of pq --cycle)
transformed T
enddef;
if arclength apth = 0:
T:=identity shifted (point (length apth) of apth - z0);
elseif arclength apth < x0-x3l:
T:=identity rotatedaround(z0,angle (direction (length apth) of apth))
shifted (point (length apth) of apth -z0);
else:
T:=mapto(z0,
point (length apth) of apth,
z2,
point ttt of apth,
z9+(0,3rule_thickness#),
point tt of apth + 3rule_thickness#*
(unitvector (direction tt of apth) rotated 90));
fi
save f,s;
vardef f(expr s) =
length(point s of (pp transformed T) - point tt of apth)
< length(point 0 of pp - z9)
enddef;
if f(0) or (arclength apth < x0-x3l): s := 0;
else: s := solve f(length pp, 0);
fi
filldraw halfarrowhead(T,s) text_;
% Draw the path
if arclength apth > x0-x2: draw subpath(0,ttt) of apth
withpen pencircle scaled rule_thickness# text_;
fi
pickup prevpen;
enddef;
enddef;
|