This file is indexed.

/usr/share/tcltk/tcllib1.14/math/symdiff.tcl is in tcllib 1.14-dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
# symdiff.tcl --
#
#       Symbolic differentiation package for Tcl
#
# This package implements a command, "math::calculus::symdiff::symdiff",
# which accepts a Tcl expression and a variable name, and if the expression
# is readily differentiable, returns a Tcl expression that evaluates the
# derivative.
#
# Copyright (c) 2005, 2010 by Kevin B. Kenny.  All rights reserved.
#
# See the file "license.terms" for information on usage and redistribution
# of this file, and for a DISCLAIMER OF ALL WARRANTIES.
#
# RCS: @(#) $Id: symdiff.tcl,v 1.2 2011/01/13 02:49:53 andreas_kupries Exp $


# This package requires the 'tclparser' from http://tclpro.sf.net/
# to analyze the expressions presented to it.

package require Tcl 8.4
package require grammar::aycock 1.0
package provide math::calculus::symdiff 1.0

namespace eval math {}
namespace eval math::calculus {}
namespace eval math::calculus::symdiff {
    namespace export jacobian symdiff
    namespace eval differentiate {}
}

# math::calculus::symdiff::jacobian --
#
#	Differentiate a set of expressions with respect to a set of
#	model variables
#
# Parameters:
#	model -- A list of alternating {variable name} {expr}
#
# Results:
#	Returns a list of lists.  The ith sublist is the gradient vector
#	of the ith expr in the model; that is, the jth element of
#	the ith sublist is the derivative of the ith expr with respect
#	to the jth variable.
#
#	Returns an error if any expression cannot be differentiated with
#	respect to any of the elements of the list, or if the list has
#	no elements or an odd number of elements.

proc math::calculus::symdiff::jacobian {list} {
    set l [llength $list]
    if {$l == 0 || $l%2 != 0} {
	return -code error "list of variables and expressions must have an odd number of elements"
    }
    set J {}
    foreach {- expr} $list {
	set gradient {}
	foreach {var -} $list {
	    lappend gradient [symdiff $expr $var]
	}
	lappend J $gradient
    }
    return $J
}

# math::calculus::symdiff::symdiff --
#
#       Differentiate an expression with respect to a variable.
#
# Parameters:
#       expr -- expression to differentiate (Must be a Tcl expression,
#               without command substitution.)
#       var -- Name of the variable to differentiate the expression
#              with respect to.
#
# Results:
#       Returns a Tcl expression that evaluates the derivative.

proc math::calculus::symdiff::symdiff {expr var} {
    variable parser
    set parsetree [$parser parse {*}[Lexer $expr] [namespace current]]
    return [ToInfix [differentiate::MakeDeriv $parsetree $var]]
}

# math::calculus::symdiff::Parser --
#
#	Parser for the mathematical expressions that this package can
#	differentiate.

namespace eval math::calculus::symdiff {
    variable parser [grammar::aycock::parser {
	expression ::= expression addop term {
	    set result [${clientData}::MakeOperator [lindex $_ 1]]
	    lappend result [lindex $_ 0] [lindex $_ 2]
	}
	expression ::= term {
	    lindex $_ 0
	}
	
	addop ::= + {
	    lindex $_ 0
	}
	addop ::= - {
	    lindex $_ 0
	}
	
	term ::= term mulop factor {
	    set result [${clientData}::MakeOperator [lindex $_ 1]]
	    lappend result [lindex $_ 0] [lindex $_ 2]
	}
	term ::= factor {
	    lindex $_ 0
	}
	mulop ::= * {
	    lindex $_ 0
	}
	mulop ::= / {
	    lindex $_ 0
	}
	
	factor ::= addop factor {
	    set result [${clientData}::MakeOperator [lindex $_ 0]]
	    lappend result [lindex $_ 1]
	}
	factor ::= expon {
	    lindex $_ 0
	}
	
	expon ::= primary ** expon {
	    set result [${clientData}::MakeOperator [lindex $_ 1]]
	    lappend result [lindex $_ 0] [lindex $_ 2]
	}
	expon ::= primary {
	    lindex $_ 0
	}
	
	primary ::= {$} bareword {
	    ${clientData}::MakeVariable [lindex $_ 1]
	}
	primary ::= number {
	    ${clientData}::MakeConstant [lindex $_ 0]
	}
	primary ::= bareword ( arglist ) {
	    set result [${clientData}::MakeOperator [lindex $_ 0]]
	    lappend result {*}[lindex $_ 2]
	}
	primary ::= ( expression ) {
	    lindex $_ 1
	}
	
	arglist ::= expression {
	    set _
	}
	arglist ::= arglist , expression {
	    linsert [lindex $_ 0] end [lindex $_ 2]
	}
    }]
}

# math::calculus::symdiff::Lexer --
#
#	Lexer for the arithmetic expressions that the 'symdiff' package
#	can differentiate.
#
# Results:
#	Returns a two element list. The first element is a list of the
#	lexical values of the tokens that were found in the expression;
#	the second is a list of the semantic values of the tokens. The
#	two sublists are the same length.

proc math::calculus::symdiff::Lexer {expression} {
    set start 0
    set tokens {}
    set values {}
    while {$expression ne {}} {
	if {[regexp {^\*\*(.*)} $expression -> rest]} {

	    # Exponentiation

	    lappend tokens **
	    lappend values **
	} elseif {[regexp {^([-+/*$(),])(.*)} $expression -> token rest]} {

	    # Single-character operators

	    lappend tokens $token
	    lappend values $token
	} elseif {[regexp {^([[:alpha:]][[:alnum:]_]*)(.*)} \
		       $expression -> token rest]} {

	    # Variable and function names

	    lappend tokens bareword
	    lappend values $token
	} elseif {[regexp -nocase -expanded {
	    ^((?:
	       (?: [[:digit:]]+ (?:[.][[:digit:]]*)? )
	       | (?: [.][[:digit:]]+ ) )
	      (?: e [-+]? [[:digit:]]+ )? )
	    (.*)
	}\
		       $expression -> token rest]} {

	    # Numbers

	    lappend tokens number
	    lappend values $token
	} elseif {[regexp {[[:space:]]+(.*)} $expression -> rest]} {

	    # Whitespace

	} else {

	    # Anything else is an error

	    return -code error \
		-errorcode [list MATH SYMDIFF INVCHAR \
				[string index $expression 0]] \
		[list invalid character [string index $expression 0]] \
	}
	set expression $rest
    }
    return [list $tokens $values]
}

# math::calculus::symdiff::ToInfix --
#
#       Converts a parse tree to infix notation.
#
# Parameters:
#       tree - Parse tree to convert
#
# Results:
#       Returns the parse tree as a Tcl expression.

proc math::calculus::symdiff::ToInfix {tree} {
    set a [lindex $tree 0]
    set kind [lindex $a 0]
    switch -exact $kind {
        constant -
        text {
            set result [lindex $tree 1]
        }
        var {
            set result \$[lindex $tree 1]
        }
        operator {
            set name [lindex $a 1]
            if {([string is alnum $name] && $name ne {eq} && $name ne {ne})
                || [llength $tree] == 2} {
                set result $name
                append result \(
                set sep ""
                foreach arg [lrange $tree 1 end] {
                    append result $sep [ToInfix $arg]
                    set sep ", "
                }
                append result \)
            } elseif {[llength $tree] == 3} {
                set result \(
                append result [ToInfix [lindex $tree 1]]
                append result " " $name " "
                append result [ToInfix [lindex $tree 2]]
                append result \)
            } else {
                error "symdiff encountered a malformed parse, can't happen"
            }
        }
        default {
            error "symdiff can't synthesize a $kind expression"
        }
    }
    return $result
}

# math::calculus::symdiff::differentiate::MakeDeriv --
#
#       Differentiates a Tcl expression represented as a parse tree.
#
# Parameters:
#       tree -- Parse tree from MakeParseTreeForExpr
#       var -- Variable to differentiate with respect to
#
# Results:
#       Returns the parse tree of the derivative.

proc math::calculus::symdiff::differentiate::MakeDeriv {tree var} {
    return [eval [linsert $tree 1 $var]]
}

# math::calculus::symdiff::differentiate::ChainRule --
#
#       Applies the Chain Rule to evaluate the derivative of a unary 
#       function.
#
# Parameters:
#       var -- Variable to differentiate with respect to.
#       derivMaker -- Command prefix for differentiating the function.
#       u -- Function argument.
#
# Results:
#       Returns a parse tree representing the derivative of f($u).
#
# ChainRule differentiates $u with respect to $var by calling MakeDeriv,
# makes the derivative of f($u) with respect to $u by calling derivMaker
# passing $u as a parameter, and then returns a parse tree representing
# the product of the results.

proc math::calculus::symdiff::differentiate::ChainRule {var derivMaker u} {
    lappend derivMaker $u
    set result [MakeProd [MakeDeriv $u $var] [eval $derivMaker]]
}

# math::calculus::symdiff::differentiate::constant --
#
#       Differentiate a constant.
#
# Parameters:
#       var -- Variable to differentiate with respect to - unused
#       constant -- Constant expression to differentiate - ignored
#
# Results:
#       Returns a parse tree of the derivative, which is, of course, the
#       constant zero.

proc math::calculus::symdiff::differentiate::constant {var constant} {
    return [MakeConstant 0.0]
}

# math::calculus::symdiff::differentiate::var --
#
#       Differentiate a variable expression.
#
# Parameters:
#       var - Variable with which to differentiate.
#       exprVar - Expression being differentiated, which is a single
#                 variable.
#
# Results:
#       Returns a parse tree of the derivative.
#
# The derivative is the constant unity if the variables are the same
# and the constant zero if they are different.

proc math::calculus::symdiff::differentiate::var {var exprVar} {
    if {$exprVar eq $var} {
        return [MakeConstant 1.0]
    } else {
        return [MakeConstant 0.0]
    }
}

# math::calculus::symdiff::differentiate::operator + --
#
#       Forms the derivative of a sum.
#
# Parameters:
#       var -- Variable to differentiate with respect to.
#       args -- One or two arguments giving augend and addend. If only
#               one argument is supplied, this is unary +.
#
# Results:
#       Returns a parse tree representing the derivative.
#
# Of course, the derivative of a sum is the sum of the derivatives.

proc {math::calculus::symdiff::differentiate::operator +} {var args} {
    if {[llength $args] == 1} {
        set u [lindex $args 0]
        set result [eval [linsert $u 1 $var]]
    } elseif {[llength $args] == 2} {
        foreach {u v} $args break
        set du [eval [linsert $u 1 $var]]
        set dv [eval [linsert $v 1 $var]]
        set result [MakeSum $du $dv]
    } else {
        error "symdiff encountered a malformed parse, can't happen"
    }
    return $result
}

# math::calculus::symdiff::differentiate::operator - --
#
#       Forms the derivative of a difference.
#
# Parameters:
#       var -- Variable to differentiate with respect to.
#       args -- One or two arguments giving minuend and subtrahend. If only
#               one argument is supplied, this is unary -.
#
# Results:
#       Returns a parse tree representing the derivative.
#
# Of course, the derivative of a sum is the sum of the derivatives.

proc {math::calculus::symdiff::differentiate::operator -} {var args} {
    if {[llength $args] == 1} {
        set u [lindex $args 0]
        set du [eval [linsert $u 1 $var]]
        set result [MakeUnaryMinus $du]
    } elseif {[llength $args] == 2} {
        foreach {u v} $args break
        set du [eval [linsert $u 1 $var]]
        set dv [eval [linsert $v 1 $var]]
        set result [MakeDifference $du $dv]
    } else {
        error "symdiff encounered a malformed parse, can't happen"
    }
    return $result
}

# math::calculus::symdiff::differentiate::operator * --
#
#       Forms the derivative of a product.
#
# Parameters:
#       var -- Variable to differentiate with respect to.
#       u, v -- Multiplicand and multiplier. 
#
# Results:
#       Returns a parse tree representing the derivative.
#
# The familiar freshman calculus product rule.

proc {math::calculus::symdiff::differentiate::operator *} {var u v} {
    set du [eval [linsert $u 1 $var]]
    set dv [eval [linsert $v 1 $var]]
    set result [MakeSum [MakeProd $dv $u] [MakeProd $du $v]]
    return $result
}

# math::calculus::symdiff::differentiate::operator / --
#
#       Forms the derivative of a quotient.
#
# Parameters:
#       var -- Variable to differentiate with respect to.
#       u, v -- Dividend and divisor. 
#
# Results:
#       Returns a parse tree representing the derivative.
#
# The familiar freshman calculus quotient rule.

proc {math::calculus::symdiff::differentiate::operator /} {var u v} {
    set du [eval [linsert $u 1 $var]]
    set dv [eval [linsert $v 1 $var]]
    set result [MakeQuotient \
                    [MakeDifference \
                         $du \
                         [MakeQuotient \
                              [MakeProd $dv $u] \
                              $v]] \
                    $v]
    return $result
}

# math::calculus::symdiff::differentiate::operator acos --
#
#       Differentiates the 'acos' function.
#
# Parameters:
#       var -- Variable to differentiate with respect to.
#       u -- Argument to the acos() function.
#
# Results:
#       Returns a parse tree of the derivative.
#
# Applies the Chain Rule: D(acos(u))=-D(u)/sqrt(1 - u*u)
# (Might it be better to factor 1-u*u into (1+u)(1-u)? Less likely to be
# catastrophic cancellation if u is near 1?)

proc {math::calculus::symdiff::differentiate::operator acos} {var u} {
    set du [eval [linsert $u 1 $var]]
    set result [MakeQuotient [MakeUnaryMinus $du] \
                    [MakeFunCall sqrt \
                         [MakeDifference [MakeConstant 1.0] \
                              [MakeProd $u $u]]]]
    return $result
}

# math::calculus::symdiff::differentiate::operator asin --
#
#       Differentiates the 'asin' function.
#
# Parameters:
#       var -- Variable to differentiate with respect to.
#       u -- Argument to the asin() function.
#
# Results:
#       Returns a parse tree of the derivative.
#
# Applies the Chain Rule: D(asin(u))=D(u)/sqrt(1 - u*u)
# (Might it be better to factor 1-u*u into (1+u)(1-u)? Less likely to be
# catastrophic cancellation if u is near 1?)

proc {math::calculus::symdiff::differentiate::operator asin} {var u} {
    set du [eval [linsert $u 1 $var]]
    set result [MakeQuotient $du \
                    [MakeFunCall sqrt \
                         [MakeDifference [MakeConstant 1.0] \
                              [MakeProd $u $u]]]]
    return $result
}

# math::calculus::symdiff::differentiate::operator atan --
#
#       Differentiates the 'atan' function.
#
# Parameters:
#       var -- Variable to differentiate with respect to.
#       u -- Argument to the atan() function.
#
# Results:
#       Returns a parse tree of the derivative.
#
# Applies the Chain Rule: D(atan(u))=D(u)/(1 + $u*$u)

proc {math::calculus::symdiff::differentiate::operator atan} {var u} {
    set du [eval [linsert $u 1 $var]]
    set result [MakeQuotient $du \
                    [MakeSum [MakeConstant 1.0] \
                         [MakeProd $u $u]]]
}

# math::calculus::symdiff::differentiate::operator atan2 --
#
#       Differentiates the 'atan2' function.
#
# Parameters:
#       var -- Variable to differentiate with respect to.
#       f, g -- Arguments to the atan() function.
#
# Results:
#       Returns a parse tree of the derivative.
#
# Applies the Chain and Quotient Rules: 
#       D(atan2(f, g)) = (D(f)*g - D(g)*f)/(f*f + g*g)

proc {math::calculus::symdiff::differentiate::operator atan2} {var f g} {
    set df [eval [linsert $f 1 $var]]
    set dg [eval [linsert $g 1 $var]]
    return [MakeQuotient \
                [MakeDifference \
                     [MakeProd $df $g] \
                     [MakeProd $f $dg]] \
                [MakeSum \
                     [MakeProd $f $f] \
                     [MakeProd $g $g]]]
}

# math::calculus::symdiff::differentiate::operator cos --
#
#       Differentiates the 'cos' function.
#
# Parameters:
#       var -- Variable to differentiate with respect to.
#       u -- Argument to the cos() function.
#
# Results:
#       Returns a parse tree of the derivative.
#
# Applies the Chain Rule: D(cos(u))=-sin(u)*D(u)

proc {math::calculus::symdiff::differentiate::operator cos} {var u} {
    return [ChainRule $var MakeMinusSin $u]
}
proc math::calculus::symdiff::differentiate::MakeMinusSin {operand} {
    return [MakeUnaryMinus [MakeFunCall sin $operand]]
}

# math::calculus::symdiff::differentiate::operator cosh --
#
#       Differentiates the 'cosh' function.
#
# Parameters:
#       var -- Variable to differentiate with respect to.
#       u -- Argument to the cosh() function.
#
# Results:
#       Returns a parse tree of the derivative.
#
# Applies the Chain Rule: D(cosh(u))=sinh(u)*D(u)

proc {math::calculus::symdiff::differentiate::operator cosh} {var u} {
    set result [ChainRule $var [list MakeFunCall sinh] $u]
    return $result
}

# math::calculus::symdiff::differentiate::operator exp --
#
#       Differentiate the exponential function
#
# Parameters:
#       var -- Variable to differentiate with respect to.
#       u -- Argument of the exponential function.
#
# Results:
#       Returns a parse tree of the derivative.
#
# Uses the Chain Rule D(exp(u)) = exp(u)*D(u).

proc {math::calculus::symdiff::differentiate::operator exp} {var u} {
    set result [ChainRule $var [list MakeFunCall exp] $u]
    return $result
}

# math::calculus::symdiff::differentiate::operator hypot --
#
#       Differentiate the 'hypot' function
#
# Parameters:
#       var - Variable to differentiate with respect to.
#       f, g - Arguments to the 'hypot' function
#
# Results:
#       Returns a parse tree of the derivative
#
# Uses a number of algebraic simplifications to arrive at:
#       D(hypot(f,g)) = (f*D(f)+g*D(g))/hypot(f,g)

proc {math::calculus::symdiff::differentiate::operator hypot} {var f g} {
    set df [eval [linsert $f 1 $var]]
    set dg [eval [linsert $g 1 $var]]
    return [MakeQuotient \
                [MakeSum \
                     [MakeProd $df $f] \
                     [MakeProd $dg $g]] \
                [MakeFunCall hypot $f $g]]
}

# math::calculus::symdiff::differentiate::operator log --
#
#       Differentiates a logarithm.
#
# Parameters:
#       var -- Variable to differentiate with respect to.
#       u -- Argument to the log() function.
#
# Results:
#       Returns a parse tree of the derivative.
#
# D(log(u))==D(u)/u

proc {math::calculus::symdiff::differentiate::operator log} {var u} {
    set du [eval [linsert $u 1 $var]]
    set result [MakeQuotient $du $u]
    return $result
}

# math::calculus::symdiff::differentiate::operator log10 --
#
#       Differentiates a common logarithm.
#
# Parameters:
#       var -- Variable to differentiate with respect to.
#       u -- Argument to the log10() function.
#
# Results:
#       Returns a parse tree of the derivative.
#
# D(log(u))==D(u)/(u * log(10))

proc {math::calculus::symdiff::differentiate::operator log10} {var u} {
    set du [eval [linsert $u 1 $var]]
    set result [MakeQuotient $du \
                    [MakeProd [MakeConstant [expr log(10.)]] $u]]
    return $result
}

# math::calculus::symdiff::differentiate::operator ** --
#
#       Differentiate an exponential.
#
# Parameters:
#       var -- Variable to differentiate with respect to
#       f, g -- Base and exponent
#
# Results:
#       Returns the parse tree of the derivative.
#
# Handles the special case where g is constant as
#    D(f**g) == g*f**(g-1)*D(f)
# Otherwise, uses the general power formula
#    D(f**g) == (f**g) * (((D(f)*g)/f) + (D(g)*log(f)))

proc {math::calculus::symdiff::differentiate::operator **} {var f g} {
    set df [eval [linsert $f 1 $var]]
    if {[IsConstant $g]} {
        set gm1 [MakeConstant [expr {[ConstantValue $g] - 1}]]
        set result [MakeProd $df [MakeProd $g [MakePower $f $gm1]]]
        
    } else {
        set dg [eval [linsert $g 1 $var]]
        set result [MakeProd [MakePower $f $g] \
                        [MakeSum \
                             [MakeQuotient [MakeProd $df $g] $f] \
                             [MakeProd $dg [MakeFunCall log $f]]]]
    }
    return $result
}
interp alias {} {math::calculus::symdiff::differentiate::operator pow} \
    {} {math::calculus::symdiff::differentiate::operator **}

# math::calculus::symdiff::differentiate::operator sin --
#
#       Differentiates the 'sin' function.
#
# Parameters:
#       var -- Variable to differentiate with respect to.
#       u -- Argument to the sin() function.
#
# Results:
#       Returns a parse tree of the derivative.
#
# Applies the Chain Rule: D(sin(u))=cos(u)*D(u)

proc {math::calculus::symdiff::differentiate::operator sin} {var u} {
    set result [ChainRule $var [list MakeFunCall cos] $u]
    return $result
}

# math::calculus::symdiff::differentiate::operator sinh --
#
#       Differentiates the 'sinh' function.
#
# Parameters:
#       var -- Variable to differentiate with respect to.
#       u -- Argument to the sinh() function.
#
# Results:
#       Returns a parse tree of the derivative.
#
# Applies the Chain Rule: D(sin(u))=cosh(u)*D(u)

proc {math::calculus::symdiff::differentiate::operator sinh} {var u} {
    set result [ChainRule $var [list MakeFunCall cosh] $u]
    return $result
}

# math::calculus::symdiff::differentiate::operator sqrt --
#
#       Differentiate the 'sqrt' function.
#
# Parameters:
#       var -- Variable to differentiate with respect to
#       u -- Parameter of 'sqrt' as a parse tree.
#
# Results:
#       Returns a parse tree representing the derivative.
#
# D(sqrt(u))==D(u)/(2*sqrt(u))

proc {math::calculus::symdiff::differentiate::operator sqrt} {var u} {
    set du [eval [linsert $u 1 $var]]
    set result [MakeQuotient $du [MakeProd [MakeConstant 2.0] \
                                      [MakeFunCall sqrt $u]]]
    return $result
}

# math::calculus::symdiff::differentiate::operator tan --
#
#       Differentiates the 'tan' function.
#
# Parameters:
#       var -- Variable to differentiate with respect to.
#       u -- Argument to the tan() function.
#
# Results:
#       Returns a parse tree of the derivative.
#
# Applies the Chain Rule: D(tan(u))=D(u)/(cos(u)*cos(u))

proc {math::calculus::symdiff::differentiate::operator tan} {var u} {
    set du [eval [linsert $u 1 $var]]
    set cosu [MakeFunCall cos $u]
    return [MakeQuotient $du [MakeProd $cosu $cosu]]
}

# math::calculus::symdiff::differentiate::operator tanh --
#
#       Differentiates the 'tanh' function.
#
# Parameters:
#       var -- Variable to differentiate with respect to.
#       u -- Argument to the tanh() function.
#
# Results:
#       Returns a parse tree of the derivative.
#
# Applies the Chain Rule: D(tanh(u))=D(u)/(cosh(u)*cosh(u))

proc {math::calculus::symdiff::differentiate::operator tanh} {var u} {
    set du [eval [linsert $u 1 $var]]
    set coshu [MakeFunCall cosh $u]
    return [MakeQuotient $du [MakeProd $coshu $coshu]]
}

# math::calculus::symdiff::MakeFunCall --
#
#       Makes a parse tree for a function call
#
# Parameters:
#       fun -- Name of the function to call
#       args -- Arguments to the function, expressed as parse trees
#
# Results:
#       Returns a parse tree for the result of calling the function.
#
# Performs the peephole optimization of replacing a function with
# constant parameters with its value.

proc math::calculus::symdiff::MakeFunCall {fun args} {
    set constant 1
    set exp $fun
    append exp \(
    set sep ""
    foreach a $args {
        if {[IsConstant $a]} {
            append exp $sep [ConstantValue $a]
            set sep ","
        } else {
            set constant 0
            break
        }
    }
    if {$constant} {
        append exp \)
        return [MakeConstant [expr $exp]]
    }
    set result [MakeOperator $fun]
    foreach arg $args {
        lappend result $arg
    }
    return $result
}

# math::calculus::symdiff::MakeSum --
#
#       Makes the parse tree for a sum.
#
# Parameters:
#       left, right -- Parse trees for augend and addend
#
# Results:
#       Returns the parse tree for the sum.
#
# Performs the following peephole optimizations:
# (1) a + (-b) = a - b
# (2) (-a) + b = b - a
# (3) 0 + a = a
# (4) a + 0 = a
# (5) The sum of two constants may be reduced to a constant

proc math::calculus::symdiff::MakeSum {left right} {
    if {[IsUnaryMinus $right]} {
        return [MakeDifference $left [UnaryMinusArg $right]]
    }
    if {[IsUnaryMinus $left]} {
        return [MakeDifference $right [UnaryMinusArg $left]]
    }
    if {[IsConstant $left]} {
        set v [ConstantValue $left]
        if {$v == 0} {
            return $right
        } elseif {[IsConstant $right]} {
            return [MakeConstant [expr {[ConstantValue $left]
                                        + [ConstantValue $right]}]]
        }
    } elseif {[IsConstant $right]} {
        set v [ConstantValue $right]
        if {$v == 0} {
            return $left
        }
    }
    set result [MakeOperator +]
    lappend result $left $right
    return $result
}

# math::calculus::symdiff::MakeDifference --
#
#       Makes the parse tree for a difference
#
# Parameters:
#       left, right -- Minuend and subtrahend, expressed as parse trees
#
# Results:
#       Returns a parse tree expressing the difference
#
# Performs the following peephole optimizations:
# (1) a - (-b) = a + b
# (2) -a - b = -(a + b)
# (3) 0 - b = -b
# (4) a - 0 = a
# (5) The difference of any two constants can be reduced to a constant.

proc math::calculus::symdiff::MakeDifference {left right} {
    if {[IsUnaryMinus $right]} {
        return [MakeSum $left [UnaryMinusArg $right]]
    }
    if {[IsUnaryMinus $left]} {
        return [MakeUnaryMinus [MakeSum [UnaryMinusArg $left] $right]]
    }
    if {[IsConstant $left]} {
        set v [ConstantValue $left]
        if {$v == 0} {
            return [MakeUnaryMinus $right]
        } elseif {[IsConstant $right]} {
            return [MakeConstant [expr {[ConstantValue $left]
                                        - [ConstantValue $right]}]]
        }
    } elseif {[IsConstant $right]} {
        set v [ConstantValue $right]
        if {$v == 0} {
            return $left
        }
    }
    set result [MakeOperator -]
    lappend result $left $right
    return $result
}

# math::calculus::symdiff::MakeProd --
#
#       Constructs the parse tree for a product, left*right.
#
# Parameters:
#       left, right - Multiplicand and multiplier
#
# Results:
#       Returns the parse tree for the result.
#
# Performs the following peephole optimizations.
# (1) If either operand is a unary minus, it is hoisted out of the
#     expression.
# (2) If either operand is the constant 0, the result is the constant 0
# (3) If either operand is the constant 1, the result is the other operand.
# (4) If either operand is the constant -1, the result is unary minus
#     applied to the other operand
# (5) If both operands are constant, the result is a constant containing
#     their product.

proc math::calculus::symdiff::MakeProd {left right} {
    if {[IsUnaryMinus $left]} {
        return [MakeUnaryMinus [MakeProd [UnaryMinusArg $left] $right]]
    }
    if {[IsUnaryMinus $right]} {
        return [MakeUnaryMinus [MakeProd $left [UnaryMinusArg $right]]]
    }
    if {[IsConstant $left]} {
        set v [ConstantValue $left]
        if {$v == 0} {
            return [MakeConstant 0.0]
        } elseif {$v == 1} {
            return $right
        } elseif {$v == -1} {
            return [MakeUnaryMinus $right]
        } elseif {[IsConstant $right]} {
            return [MakeConstant [expr {[ConstantValue $left]
                                        * [ConstantValue $right]}]]
        }
    } elseif {[IsConstant $right]} {
        set v [ConstantValue $right]
        if {$v == 0} {
            return [MakeConstant 0.0]
        } elseif {$v == 1} {
            return $left
        } elseif {$v == -1} {
            return [MakeUnaryMinus $left]
        }
    }
    set result [MakeOperator *]
    lappend result $left $right
    return $result
}

# math::calculus::symdiff::MakeQuotient --
#
#       Makes a parse tree for a quotient, n/d
#
# Parameters:
#       n, d - Parse trees for numerator and denominator
#
# Results:
#       Returns the parse tree for the quotient.
#
# Performs peephole optimizations:
# (1) If either operand is a unary minus, it is hoisted out.
# (2) If the numerator is the constant 0, the result is the constant 0.
# (3) If the demominator is the constant 1, the result is the numerator
# (4) If the denominator is the constant -1, the result is the unary
#     negation of the numerator.
# (5) If both numerator and denominator are constant, the result is
#     a constant representing their quotient.

proc math::calculus::symdiff::MakeQuotient {n d} {
    if {[IsUnaryMinus $n]} {
        return [MakeUnaryMinus [MakeQuotient [UnaryMinusArg $n] $d]]
    }
    if {[IsUnaryMinus $d]} {
        return [MakeUnaryMinus [MakeQuotient $n [UnaryMinusArg $d]]]
    }
    if {[IsConstant $n]} {
        set v [ConstantValue $n]
        if {$v == 0} {
            return [MakeConstant 0.0]
        } elseif {[IsConstant $d]} {
            return [MakeConstant [expr {[ConstantValue $n]
                                        * [ConstantValue $d]}]]
        }
    } elseif {[IsConstant $d]} {
        set v [ConstantValue $d]
        if {$v == 0} {
            return -code error "requested expression will result in division by zero at run time"
        } elseif {$v == 1} {
            return $n
        } elseif {$v == -1} {
            return [MakeUnaryMinus $n]
        }
    }
    set result [MakeOperator /]
    lappend result $n $d
    return $result
}

# math::calculus::symdiff::MakePower --
#
#       Make a parse tree for an exponentiation operation
#
# Parameters:
#       a -- Base, expressed as a parse tree
#       b -- Exponent, expressed as a parse tree
#
# Results:
#       Returns a parse tree for the expression
#
# Performs peephole optimizations:
# (1) The constant zero raised to any non-zero power is 0
# (2) The constant 1 raised to any power is 1
# (3) Any non-zero quantity raised to the zero power is 1
# (4) Any non-zero quantity raised to the first power is the base itself.
# (5) MakeFunCall will optimize any other case of a constant raised
#     to a constant power.

proc math::calculus::symdiff::MakePower {a b} {
    if {[IsConstant $a]} {
        if {[ConstantValue $a] == 0} {
            if {[IsConstant $b] && [ConstantValue $b] == 0} {
                error "requested expression will result in zero to zero power at run time"
            }
            return [MakeConstant 0.0]
        } elseif {[ConstantValue $a] == 1} {
            return [MakeConstant 1.0]
        }
    }
    if {[IsConstant $b]} {
        if {[ConstantValue $b] == 0} {
            return [MakeConstant 1.0]
        } elseif {[ConstantValue $b] == 1} {
            return $a
        }
    }
    return [MakeFunCall pow $a $b]
}

# math::calculus::symdiff::MakeUnaryMinus --
#
#       Makes the parse tree for a unary negation.
#
# Parameters:
#       operand -- Parse tree for the operand
#
# Results:
#       Returns the parse tree for the expression
#
# Performs the following peephole optimizations:
# (1) -(-$a) = $a
# (2) The unary negation of a constant is another constant

proc math::calculus::symdiff::MakeUnaryMinus {operand} {
    if {[IsUnaryMinus $operand]} {
        return [UnaryMinusArg $operand]
    }
    if {[IsConstant $operand]} {
        return [MakeConstant [expr {-[ConstantValue $operand]}]]
    } else {
        return [list [list operator -] $operand]
    }
}

# math::calculus::symdiff::IsUnaryMinus --
#
#       Determines whether a parse tree represents a unary negation
#
# Parameters:
#       x - Parse tree to examine
#
# Results:
#       Returns 1 if the parse tree represents a unary minus, 0 otherwise

proc math::calculus::symdiff::IsUnaryMinus {x} {
    return [expr {[llength $x] == 2
                  && [lindex $x 0] eq [list operator -]}]
}

# math::calculus::symdiff::UnaryMinusArg --
#
#       Extracts the argument from a unary negation.
#
# Parameters:
#       x - Parse tree to examine, known to represent a unary negation
#
# Results:
#       Returns a parse tree representing the operand.

proc math::calculus::symdiff::UnaryMinusArg {x} {
    return [lindex $x 1]
}

# math::calculus::symdiff::MakeOperator --
#
#       Makes a partial parse tree for an operator
#
# Parameters:
#       op -- Name of the operator
#
# Results:
#       Returns the resulting parse tree.
#
# The caller may use [lappend] to place any needed operands

proc math::calculus::symdiff::MakeOperator {op} {
    if {$op eq {?}} {
        return -code error "symdiff can't differentiate the ternary ?: operator"
    } elseif {[namespace which [list differentiate::operator $op]] ne {}} {
        return [list [list operator $op]]
    } elseif {[string is alnum $op] && ($op ni {eq ne in ni})} {
        return -code error "symdiff can't differentiate the \"$op\" function"
    } else {
        return -code error "symdiff can't differentiate the \"$op\" operator"
    }
}

# math::calculus::symdiff::MakeVariable --
#
#       Makes a partial parse tree for a single variable
#
# Parameters:
#       name -- Name of the variable
#
# Results:
#       Returns a partial parse tree giving the variable

proc math::calculus::symdiff::MakeVariable {name} {
    return [list var $name]
}

# math::calculus::symdiff::MakeConstant --
#
#       Make the parse tree for a constant.
#
# Parameters:
#       value -- The constant's value
#
# Results:
#       Returns a parse tree.

proc math::calculus::symdiff::MakeConstant {value} {
    return [list constant $value]
}

# math::calculus::symdiff::IsConstant --
#
#       Test if an expression represented by a parse tree is a constant.
#
# Parameters:
#       Item - Parse tree to test
#
# Results:
#       Returns 1 for a constant, 0 for anything else

proc math::calculus::symdiff::IsConstant {item} {
    return [expr {[lindex $item 0] eq {constant}}]
}

# math::calculus::symdiff::ConstantValue --
#
#       Recovers a constant value from the parse tree representing a constant
#       expression.
#
# Parameters:
#       item -- Parse tree known to be a constant.
#
# Results:
#       Returns the constant value.

proc math::calculus::symdiff::ConstantValue {item} {
    return [lindex $item 1]
}

# Define the parse tree fabrication routines in the 'differentiate'
# namespace as well as the 'symdiff' namespace, without exporting them
# from the package.

interp alias {} math::calculus::symdiff::differentiate::IsConstant \
    {} math::calculus::symdiff::IsConstant
interp alias {} math::calculus::symdiff::differentiate::ConstantValue \
    {} math::calculus::symdiff::ConstantValue
interp alias {} math::calculus::symdiff::differentiate::MakeConstant \
    {} math::calculus::symdiff::MakeConstant
interp alias {} math::calculus::symdiff::differentiate::MakeDifference \
    {} math::calculus::symdiff::MakeDifference
interp alias {} math::calculus::symdiff::differentiate::MakeFunCall \
    {} math::calculus::symdiff::MakeFunCall
interp alias {} math::calculus::symdiff::differentiate::MakePower \
    {} math::calculus::symdiff::MakePower
interp alias {} math::calculus::symdiff::differentiate::MakeProd \
    {} math::calculus::symdiff::MakeProd
interp alias {} math::calculus::symdiff::differentiate::MakeQuotient \
    {} math::calculus::symdiff::MakeQuotient
interp alias {} math::calculus::symdiff::differentiate::MakeSum \
    {} math::calculus::symdiff::MakeSum
interp alias {} math::calculus::symdiff::differentiate::MakeUnaryMinus \
    {} math::calculus::symdiff::MakeUnaryMinus
interp alias {} math::calculus::symdiff::differentiate::MakeVariable \
    {} math::calculus::symdiff::MakeVariable
interp alias {} math::calculus::symdiff::differentiate::ExtractExpression \
    {} math::calculus::symdiff::ExtractExpression