This file is indexed.

/usr/share/tcltk/tcllib1.14/math/machineparameters.tcl is in tcllib 1.14-dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
# machineparameters.tcl --
#   Compute double precision machine parameters.
#
# Description
#   This the Tcl equivalent of the DLAMCH LAPCK function.
#   In floating point systems, a floating point number is represented
#   by
#   x = +/- d1 d2 ... dt basis^e
#   where digits satisfy
#   0 <= di <= basis - 1, i = 1, t
#   with the convention :
#   - t is the size of the mantissa
#   - basis is the basis (the "radix")
#
# References
#
#   "Algorithms to Reveal Properties of Floating-Point Arithmetic"
#   Michael A. Malcolm
#   Stanford University
#   Communications of the ACM
#   Volume 15 ,  Issue 11  (November 1972)
#   Pages: 949 - 951
#
#   "More on Algorithms that Reveal Properties of Floating
#   Point Arithmetic Units"
#   W. Morven Gentleman, University of Waterloo
#   Scott B. Marovich, Purdue University
#   Communications of the ACM
#   Volume 17 ,  Issue 5  (May 1974)
#   Pages: 276 - 277
#
# Example
#
#   In the following example, one compute the parameters of a desktop
#   under Linux with the following Tcl 8.4.19 properties :
#
#% parray tcl_platform
#tcl_platform(byteOrder) = littleEndian
#tcl_platform(machine)   = i686
#tcl_platform(os)        = Linux
#tcl_platform(osVersion) = 2.6.24-19-generic
#tcl_platform(platform)  = unix
#tcl_platform(tip,268)   = 1
#tcl_platform(tip,280)   = 1
#tcl_platform(user)      = <username>
#tcl_platform(wordSize)  = 4
#
#   The following example creates a machineparameters object,
#   computes the properties and displays it.
#
#     set pp [machineparameters create %AUTO%]
#     $pp compute
#     $pp print
#     $pp destroy
#
#   This prints out :
#
#     Machine parameters
#     Epsilon : 1.11022302463e-16
#     Beta : 2
#     Rounding : proper
#     Mantissa : 53
#     Maximum exponent : 1024
#     Minimum exponent : -1021
#     Overflow threshold : 8.98846567431e+307
#     Underflow threshold : 2.22507385851e-308
#
#   That compares well with the results produced by Lapack 3.1.1 :
#
#     Epsilon                      =   1.11022302462515654E-016
#     Safe minimum                 =   2.22507385850720138E-308
#     Base                         =    2.0000000000000000
#     Precision                    =   2.22044604925031308E-016
#     Number of digits in mantissa =    53.000000000000000
#     Rounding mode                =   1.00000000000000000
#     Minimum exponent             =   -1021.0000000000000
#     Underflow threshold          =   2.22507385850720138E-308
#     Largest exponent             =    1024.0000000000000
#     Overflow threshold           =   1.79769313486231571E+308
#     Reciprocal of safe minimum   =   4.49423283715578977E+307
#
# Copyright 2008 Michael Baudin
#
package require snit
package provide math::machineparameters 0.1

snit::type machineparameters {
  # Epsilon is the smallest value so that 1+epsilon>1 is false
  variable epsilon 0
  # basis is the basis of the floating-point representation.
  # basis is usually 2, i.e. binary representation (for example IEEE 754 machines),
  # but some machines (like HP calculators for example) uses 10, or 16, etc...
  variable basis 0
  # The rounding mode used on the machine.
  # The rounding occurs when more than t digits would be required to
  # represent the number.
  # Two modes can be determined with the current system :
  # "chop" means than only t digits are kept, no matter the value of the number
  # "proper" means that another rounding mode is used, be it "round to nearest",
  #   "round up", "round down".
  variable rounding ""
  # the size of the mantissa
  variable mantissa 0
  # The first non-integer is A = 2^m with m is the
  # smallest positive integer so that fl(A+1)=A
  variable firstnoninteger 0
  # Maximum number of iterations in loops
  option -maxiteration 10000
  # Set to 1 to enable verbose logging
  option -verbose -default 0
  # The largest positive exponent before overflow occurs
  variable exponentmax 0
  # The largest negative exponent before (gradual) underflow occurs
  variable exponentmin 0
  # Largest positive value before overflow occurs
  variable vmax
  # Largest negative value before (gradual) underflow occurs
  variable vmin
  #
  # compute --
  #   Computes the machine parameters.
  #
  method compute {} {
    $self log "compute"
    $self computeepsilon
    $self computefirstnoninteger
    $self computebasis
    $self computerounding
    $self computemantissa
    $self computeemax
    $self computeemin
    return ""
  }
  #
  # computeepsilon --
  #   Find epsilon the minimum value for which 1.0 + epsilon > 1.0
  #
  method computeepsilon {} {
    $self log "computeepsilon"
    set factor 2.
    set epsilon 0.5
    for {set i 0} {$i<$options(-maxiteration)} {incr i} {
      $self log "$i/$options(-maxiteration) : $epsilon"
      set epsilon [expr {$epsilon / $factor}]
      set inequality [expr {1.0+$epsilon>1.0}]
      if {$inequality==0} then {
        break
      }
    }
    $self log "epsilon : $epsilon (after $i loops)"
    return ""
  }
  #
  # computefirstnoninteger --
  #   Compute the first positive non-integer real.
  #   It is the smallest a such that (a+1)-a is different from 1
  #
  method computefirstnoninteger {} {
    $self log "computefirstnoninteger"
    set firstnoninteger 2.
    for {set i 0} {$i < $options(-maxiteration)} {incr i} {
      $self log "$i/$options(-maxiteration) : $firstnoninteger"
      set firstnoninteger [expr {2.*$firstnoninteger}]
      set one [expr {($firstnoninteger+1.)-$firstnoninteger}]
      if {$one!=1.} then {
        break
      }
    }
    $self log "Found firstnoninteger : $firstnoninteger"
    return ""
  }
  #
  # computebasis --
  #   Compute the basis (basis)
  #
  method computebasis {} {
    $self log "computebasis"
    #
    # Compute b where b is the smallest real so that fl(a+b)> a,
    # where a is the first non integer.
    # Note :
    #  With floating point numbers, a+1==a !
    #  b is denoted by "B" in Malcolm's algorithm
    #
    set b 1
    for {set i 0} {$i < $options(-maxiteration)} {incr i} {
      $self log "$i/$options(-maxiteration) : $b"
      set basis [expr {int(($firstnoninteger+$b)-$firstnoninteger)}]
      if {$basis!=0.} then {
        break
      }
      incr b
    }
    $self log "Found basis : $basis"
    return ""
  }
  #
  # computerounding --
  #   Compute the rounding mode.
  # Note:
  #   This corresponds to DLAMCH implementation (DLAMC1 exactly).
  #
  method computerounding {} {
    $self log "computerounding"
    # Now determine whether rounding or chopping occurs,  by adding a
    # bit  less  than  beta/2  and a  bit  more  than  beta/2  to  a (=firstnoninteger).
    set F [expr {$basis/2.0 - $basis/100.0}]
    set C [expr {$F + $firstnoninteger}]
    if {$C==$firstnoninteger} then {
      set rounding "proper"
    } else {
      set rounding "chop"
    }
    set F [expr {$basis/2.0 + $basis/100.0}]
    set C [expr {$F + $firstnoninteger}]
    if {$rounding=="proper" && $C==$firstnoninteger} then {
      set rounding "chop"
    }
    $self log "Found rounding : $rounding"
    return ""
  }
  #
  # computemantissa --
  #   Compute the mantissa size
  #
  method computemantissa {} {
    $self log "computemantissa"
    set a 1.
    set mantissa 0
    for {set i 0} {$i < $options(-maxiteration)} {incr i} {
      incr mantissa
      $self log "$i/$options(-maxiteration) : $mantissa"
      set a [expr {$a * double($basis)}]
      set one [expr {($a+1)-$a}]
      if {$one!=1.} then {
        break
      }
    }
    $self log "Found mantissa : $mantissa"
    return ""
  }
  #
  # computeemax --
  #   Compute the maximum exponent before overflow
  #
  method computeemax {} {
    $self log "computeemax"
    set vmax 1.
    set exponentmax 1
    for {set i 0} {$i < $options(-maxiteration)} {incr i} {
      $self log "Iteration #$i , exponentmax = $exponentmax, vmax = $vmax"
      incr exponentmax
      # Condition #1 : no exception is generated
      set errflag [catch {
        set new [expr {$vmax * $basis}]
      }]
      if {$errflag!=0} then {
        break
      }
      # Condition #2 : one can recover the original number
      if {$new / $basis != $vmax} then {
        break
      }
      set vmax $new
    }
    incr exponentmax -1
    $self log "Exponent maximum : $exponentmax"
    $self log "Value maximum : $vmax"
    return ""
  }
  #
  # computeemin --
  #   Compute the minimum exponent before underflow
  #
  method computeemin {} {
    $self log "computeemin"
    set vmin 1.
    set exponentmin 1
    for {set i 0} {$i < $options(-maxiteration)} {incr i} {
      $self log "Iteration #$i , exponentmin = $exponentmin, vmin = $vmin"
      incr exponentmin -1
      # Condition #1 : no exception is generated
      set errflag [catch {
        set new [expr {$vmin / $basis}]
      }]
      if {$errflag!=0} then {
        break
      }
      # Condition #2 : one can recover the original number
      if {$new * $basis != $vmin} then {
        break
      }
      set vmin $new
    }
    incr exponentmin +1
    # See in DMALCH.f, DLAMC2 relative to IEEE machines.
    # TODO : what happens on non-IEEE machine ?
    set exponentmin [expr {$exponentmin - 1 + $mantissa}]
    set vmin [expr {$vmin * pow($basis,$mantissa-1)}]
    $self log "Exponent minimum : $exponentmin"
    $self log "Value minimum : $vmin"
    return ""
  }
  #
  # log --
  #   Puts the given message on standard output.
  #
  method log {msg} {
    if {$options(-verbose)==1} then {
      puts "(mp) $msg"
    }
    return ""
  }
  #
  # get --
  #   Return value for key
  #
  method get {key} {
    $self log "get $key"
    switch -- $key {
      -epsilon {
        set result $epsilon
      }
      -rounding {
        set result $rounding
      }
      -basis {
        set result $basis
      }
      -mantissa {
        set result $mantissa
      }
      -exponentmax {
        set result $exponentmax
      }
      -exponentmin {
        set result $exponentmin
      }
      -vmax {
        set result $vmax
      }
      -vmin {
        set result $vmin
      }
      default {
        error "Unknown key $key"
      }
    }
    return $result
  }
  #
  # print --
  #   Print machine parameters on standard output
  #
  method print {} {
    set str [$self tostring]
    puts "$str"
    return ""
  }
  #
  # tostring --
  #   Return a report for machine parameters
  #
  method tostring {} {
    set str ""
    append str "Machine parameters\n"
    append str  "Epsilon : $epsilon\n"
    append str "Basis : $basis\n"
    append str "Rounding : $rounding\n"
    append str "Mantissa : $mantissa\n"
    append str "Maximum exponent before overflow : $exponentmax\n"
    append str "Minimum exponent before underflow : $exponentmin\n"
    append str "Overflow threshold : $vmax\n"
    append str "Underflow threshold : $vmin\n"
    return $str
  }
}