/usr/share/tcltk/tcllib1.14/math/geometry.tcl is in tcllib 1.14-dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 | # geometry.tcl --
#
# Collection of geometry functions.
#
# Copyright (c) 2001 by Ideogramic ApS and other parties.
# Copyright (c) 2004 Arjen Markus
# Copyright (c) 2010 Andreas Kupries
# Copyright (c) 2010 Kevin Kenny
#
# See the file "license.terms" for information on usage and redistribution
# of this file, and for a DISCLAIMER OF ALL WARRANTIES.
#
# RCS: @(#) $Id: geometry.tcl,v 1.12 2010/05/24 21:44:16 andreas_kupries Exp $
namespace eval ::math::geometry {}
package require math
###
#
# POINTS
#
# A point P consists of an x-coordinate, Px, and a y-coordinate, Py,
# and both coordinates are floating point values.
#
# Points are usually denoted by A, B, C, P, or Q.
#
###
#
# LINES
#
# There are basically three types of lines:
# line A line is defined by two points A and B as the
# _infinite_ line going through these two points.
# Often a line is given as a list of 4 coordinates
# instead of 2 points.
# line segment A line segment is defined by two points A and B
# as the _finite_ that starts in A and ends in B.
# Often a line segment is given as a list of 4
# coordinates instead of 2 points.
# polyline A polyline is a sequence of connected line segments.
#
# Please note that given a point P, the closest point on a line is given
# by the projection of P onto the line. The closest point on a line segment
# may be the projection, but it may also be one of the end points of the
# line segment.
#
###
#
# DISTANCES
#
# The distances in this package are all floating point values.
#
###
# Point constructor
proc ::math::geometry::p {x y} {
return [list $x $y]
}
# Vector addition
proc ::math::geometry::+ {pa pb} {
foreach {ax ay} $pa break
foreach {bx by} $pb break
return [list [expr {$ax + $bx}] [expr {$ay + $by}]]
}
# Vector difference
proc ::math::geometry::- {pa pb} {
foreach {ax ay} $pa break
foreach {bx by} $pb break
return [list [expr {$ax - $bx}] [expr {$ay - $by}]]
}
# Distance between 2 points
proc ::math::geometry::distance {pa pb} {
foreach {ax ay} $pa break
foreach {bx by} $pb break
return [expr {hypot($bx-$ax,$by-$ay)}]
}
# Length of a vector
proc ::math::geometry::length {v} {
foreach {x y} $v break
return [expr {hypot($x,$y)}]
}
# Scaling a vector by a factor
proc ::math::geometry::s* {factor p} {
foreach {x y} $p break
return [list [expr {$x * $factor}] [expr {$y * $factor}]]
}
# Unit vector into specific direction given by angle (degrees)
proc ::math::geometry::direction {angle} {
variable torad
set x [expr { cos($angle * $torad)}]
set y [expr {- sin($angle * $torad)}]
return [list $x $y]
}
# Vertical vector of specified length.
proc ::math::geometry::v {h} {
return [list 0 $h]
}
# Horizontal vector of specified length.
proc ::math::geometry::h {w} {
return [list $w 0]
}
# Find point on a line between 2 points at a distance
# distance 0 => a, distance 1 => b
proc ::math::geometry::between {pa pb s} {
return [+ $pa [s* $s [- $pb $pa]]]
}
# Find direction octant the point (vector) lies in.
proc ::math::geometry::octant {p} {
variable todeg
foreach {x y} $p break
set a [expr {(atan2(-$y,$x)*$todeg)}]
while {$a > 360} {set a [expr {$a - 360}]}
while {$a < -360} {set a [expr {$a + 360}]}
if {$a < 0} {set a [expr {360 + $a}]}
#puts "p ($x, $y) @ angle $a | [expr {atan2($y,$x)}] | [expr {atan2($y,$x)*$todeg}]"
# XXX : Add outer conditions to make a log2 tree of checks.
if {$a <= 157.5} {
if {$a <= 67.5} {
if {$a <= 22.5} { return east }
return northeast
}
if {$a <= 112.5} { return north }
return northwest
} else {
if {$a <= 247.5} {
if {$a <= 202.5} { return west }
return southwest
}
if {$a <= 337.5} {
if {$a <= 292.5} { return south }
return southeast
}
return east ; # a <= 360.0
}
}
# Return the NW and SE corners of the rectangle.
proc ::math::geometry::nwse {rect} {
foreach {xnw ynw xse yse} $rect break
return [list [p $xnw $ynw] [p $xse $yse]]
}
# Construct rectangle from NW and SE corners.
proc ::math::geometry::rect {pa pb} {
foreach {ax ay} $pa break
foreach {bx by} $pb break
return [list $ax $ay $bx $by]
}
proc ::math::geometry::conjx {p} {
foreach {x y} $p break
return [list [expr {- $x}] $y]
}
proc ::math::geometry::conjy {p} {
foreach {x y} $p break
return [list $x [expr {- $y}]]
}
proc ::math::geometry::x {p} {
foreach {x y} $p break
return $x
}
proc ::math::geometry::y {p} {
foreach {x y} $p break
return $y
}
# ::math::geometry::calculateDistanceToLine
#
# Calculate the distance between a point and a line.
#
# Arguments:
# P a point
# line a line
#
# Results:
# dist the smallest distance between P and the line
#
# Examples:
# - calculateDistanceToLine {5 10} {0 0 10 10}
# Result: 3.53553390593
# - calculateDistanceToLine {-10 0} {0 0 10 10}
# Result: 7.07106781187
#
proc ::math::geometry::calculateDistanceToLine {P line} {
# solution based on FAQ 1.02 on comp.graphics.algorithms
# L = sqrt( (Bx-Ax)^2 + (By-Ay)^2 )
# (Ay-Cy)(Bx-Ax)-(Ax-Cx)(By-Ay)
# s = -----------------------------
# L^2
# dist = |s|*L
#
# =>
#
# | (Ay-Cy)(Bx-Ax)-(Ax-Cx)(By-Ay) |
# dist = ---------------------------------
# L
set Ax [lindex $line 0]
set Ay [lindex $line 1]
set Bx [lindex $line 2]
set By [lindex $line 3]
set Cx [lindex $P 0]
set Cy [lindex $P 1]
if {$Ax==$Bx && $Ay==$By} {
return [lengthOfPolyline [concat $P [lrange $line 0 1]]]
} else {
set L [expr {sqrt(pow($Bx-$Ax,2) + pow($By-$Ay,2))}]
return [expr {abs(($Ay-$Cy)*($Bx-$Ax)-($Ax-$Cx)*($By-$Ay)) / $L}]
}
}
# ::math::geometry::findClosestPointOnLine
#
# Return the point on a line which is closest to a given point.
#
# Arguments:
# P a point
# line a line
#
# Results:
# Q the point on the line that has the smallest
# distance to P
#
# Examples:
# - findClosestPointOnLine {5 10} {0 0 10 10}
# Result: 7.5 7.5
# - findClosestPointOnLine {-10 0} {0 0 10 10}
# Result: -5.0 -5.0
#
proc ::math::geometry::findClosestPointOnLine {P line} {
return [lindex [findClosestPointOnLineImpl $P $line] 0]
}
# ::math::geometry::findClosestPointOnLineImpl
#
# PRIVATE FUNCTION USED BY OTHER FUNCTIONS.
# Find the point on a line that is closest to a given point.
#
# Arguments:
# P a point
# line a line defined by points A and B
#
# Results:
# Q the point on the line that has the smallest
# distance to P
# r r has the following meaning:
# r=0 P = A
# r=1 P = B
# r<0 P is on the backward extension of AB
# r>1 P is on the forward extension of AB
# 0<r<1 P is interior to AB
#
proc ::math::geometry::findClosestPointOnLineImpl {P line} {
# solution based on FAQ 1.02 on comp.graphics.algorithms
# L = sqrt( (Bx-Ax)^2 + (By-Ay)^2 )
# (Cx-Ax)(Bx-Ax) + (Cy-Ay)(By-Ay)
# r = -------------------------------
# L^2
# Px = Ax + r(Bx-Ax)
# Py = Ay + r(By-Ay)
set Ax [lindex $line 0]
set Ay [lindex $line 1]
set Bx [lindex $line 2]
set By [lindex $line 3]
set Cx [lindex $P 0]
set Cy [lindex $P 1]
if {$Ax==$Bx && $Ay==$By} {
return [list [list $Ax $Ay] 0]
} else {
set L [expr {sqrt(pow($Bx-$Ax,2) + pow($By-$Ay,2))}]
set r [expr {(($Cx-$Ax)*($Bx-$Ax) + ($Cy-$Ay)*($By-$Ay))/pow($L,2)}]
set Px [expr {$Ax + $r*($Bx-$Ax)}]
set Py [expr {$Ay + $r*($By-$Ay)}]
return [list [list $Px $Py] $r]
}
}
# ::math::geometry::calculateDistanceToLineSegment
#
# Calculate the distance between a point and a line segment.
#
# Arguments:
# P a point
# linesegment a line segment
#
# Results:
# dist the smallest distance between P and any point
# on the line segment
#
# Examples:
# - calculateDistanceToLineSegment {5 10} {0 0 10 10}
# Result: 3.53553390593
# - calculateDistanceToLineSegment {-10 0} {0 0 10 10}
# Result: 10.0
#
proc ::math::geometry::calculateDistanceToLineSegment {P linesegment} {
set result [calculateDistanceToLineSegmentImpl $P $linesegment]
set distToLine [lindex $result 0]
set r [lindex $result 1]
if {$r<0} {
return [lengthOfPolyline [concat $P [lrange $linesegment 0 1]]]
} elseif {$r>1} {
return [lengthOfPolyline [concat $P [lrange $linesegment 2 3]]]
} else {
return $distToLine
}
}
# ::math::geometry::calculateDistanceToLineSegmentImpl
#
# PRIVATE FUNCTION USED BY OTHER FUNCTIONS.
# Find the distance between a point and a line.
#
# Arguments:
# P a point
# linesegment a line segment A->B
#
# Results:
# dist the smallest distance between P and the line
# r r has the following meaning:
# r=0 P = A
# r=1 P = B
# r<0 P is on the backward extension of AB
# r>1 P is on the forward extension of AB
# 0<r<1 P is interior to AB
#
proc ::math::geometry::calculateDistanceToLineSegmentImpl {P linesegment} {
# solution based on FAQ 1.02 on comp.graphics.algorithms
# L = sqrt( (Bx-Ax)^2 + (By-Ay)^2 )
# (Ay-Cy)(Bx-Ax)-(Ax-Cx)(By-Ay)
# s = -----------------------------
# L^2
# (Cx-Ax)(Bx-Ax) + (Cy-Ay)(By-Ay)
# r = -------------------------------
# L^2
# dist = |s|*L
#
# =>
#
# | (Ay-Cy)(Bx-Ax)-(Ax-Cx)(By-Ay) |
# dist = ---------------------------------
# L
set Ax [lindex $linesegment 0]
set Ay [lindex $linesegment 1]
set Bx [lindex $linesegment 2]
set By [lindex $linesegment 3]
set Cx [lindex $P 0]
set Cy [lindex $P 1]
if {$Ax==$Bx && $Ay==$By} {
return [list [lengthOfPolyline [concat $P [lrange $linesegment 0 1]]] 0]
} else {
set L [expr {sqrt(pow($Bx-$Ax,2) + pow($By-$Ay,2))}]
set r [expr {(($Cx-$Ax)*($Bx-$Ax) + ($Cy-$Ay)*($By-$Ay))/pow($L,2)}]
return [list [expr {abs(($Ay-$Cy)*($Bx-$Ax)-($Ax-$Cx)*($By-$Ay)) / $L}] $r]
}
}
# ::math::geometry::findClosestPointOnLineSegment
#
# Return the point on a line segment which is closest to a given point.
#
# Arguments:
# P a point
# linesegment a line segment
#
# Results:
# Q the point on the line segment that has the
# smallest distance to P
#
# Examples:
# - findClosestPointOnLineSegment {5 10} {0 0 10 10}
# Result: 7.5 7.5
# - findClosestPointOnLineSegment {-10 0} {0 0 10 10}
# Result: 0 0
#
proc ::math::geometry::findClosestPointOnLineSegment {P linesegment} {
set result [findClosestPointOnLineImpl $P $linesegment]
set Q [lindex $result 0]
set r [lindex $result 1]
if {$r<0} {
return [lrange $linesegment 0 1]
} elseif {$r>1} {
return [lrange $linesegment 2 3]
} else {
return $Q
}
}
# ::math::geometry::calculateDistanceToPolyline
#
# Calculate the distance between a point and a polyline.
#
# Arguments:
# P a point
# polyline a polyline
#
# Results:
# dist the smallest distance between P and any point
# on the polyline
#
# Examples:
# - calculateDistanceToPolyline {10 10} {0 0 10 5 20 0}
# Result: 5.0
# - calculateDistanceToPolyline {5 10} {0 0 10 5 20 0}
# Result: 6.7082039325
#
proc ::math::geometry::calculateDistanceToPolyline {P polyline} {
set minDist "none"
foreach {Ax Ay} [lrange $polyline 0 end-2] {Bx By} [lrange $polyline 2 end] {
set dist [calculateDistanceToLineSegment $P [list $Ax $Ay $Bx $By]]
if {$minDist=="none" || $dist < $minDist} {
set minDist $dist
}
}
return $minDist
}
# ::math::geometry::findClosestPointOnPolyline
#
# Return the point on a polyline which is closest to a given point.
#
# Arguments:
# P a point
# polyline a polyline
#
# Results:
# Q the point on the polyline that has the smallest
# distance to P
#
# Examples:
# - findClosestPointOnPolyline {10 10} {0 0 10 5 20 0}
# Result: 10 5
# - findClosestPointOnPolyline {5 10} {0 0 10 5 20 0}
# Result: 8.0 4.0
#
proc ::math::geometry::findClosestPointOnPolyline {P polyline} {
set closestPoint "none"
foreach {Ax Ay} [lrange $polyline 0 end-2] {Bx By} [lrange $polyline 2 end] {
set Q [findClosestPointOnLineSegment $P [list $Ax $Ay $Bx $By]]
set dist [lengthOfPolyline [concat $P $Q]]
if {$closestPoint=="none" || $dist<$closestDistance} {
set closestPoint $Q
set closestDistance $dist
}
}
return $closestPoint
}
# ::math::geometry::lengthOfPolyline
#
# Find the length of a polyline, i.e., the sum of the
# lengths of the individual line segments.
#
# Arguments:
# polyline a polyline
#
# Results:
# length the length of the polyline
#
# Examples:
# - lengthOfPolyline {0 0 5 0 5 10}
# Result: 15.0
#
proc ::math::geometry::lengthOfPolyline {polyline} {
set length 0
foreach {x1 y1} [lrange $polyline 0 end-2] {x2 y2} [lrange $polyline 2 end] {
set length [expr {$length + sqrt(pow($x1-$x2,2) + pow($y1-$y2,2))}]
#set length [expr {$length + sqrt(($x1-$x2)*($x1-$x2) + ($y1-$y2)*($y1-$y2))}]
}
return $length
}
# ::math::geometry::movePointInDirection
#
# Move a point in a given direction.
#
# Arguments:
# P the starting point
# direction the direction from P
# The direction is in 360-degrees going counter-clockwise,
# with "straight right" being 0 degrees
# dist the distance from P
#
# Results:
# Q the point which is found by starting in P and going
# in the given direction, until the distance between
# P and Q is dist
#
# Examples:
# - movePointInDirection {0 0} 45.0 10
# Result: 7.07106781187 7.07106781187
#
proc ::math::geometry::movePointInDirection {P direction dist} {
set x [lindex $P 0]
set y [lindex $P 1]
set pi [expr {4*atan(1)}]
set xt [expr {$x + $dist*cos(($direction*$pi)/180)}]
set yt [expr {$y + $dist*sin(($direction*$pi)/180)}]
return [list $xt $yt]
}
# ::math::geometry::angle
#
# Calculates angle from the horizon (0,0)->(1,0) to a line.
#
# Arguments:
# line a line defined by two points A and B
#
# Results:
# angle the angle between the line (0,0)->(1,0) and (Ax,Ay)->(Bx,By).
# Angle is in 360-degrees going counter-clockwise
#
# Examples:
# - angle {10 10 15 13}
# Result: 30.9637565321
#
proc ::math::geometry::angle {line} {
set x1 [lindex $line 0]
set y1 [lindex $line 1]
set x2 [lindex $line 2]
set y2 [lindex $line 3]
# - handle vertical lines
if {$x1==$x2} {if {$y1<$y2} {return 90} else {return 270}}
# - handle other lines
set a [expr {atan(abs((1.0*$y1-$y2)/(1.0*$x1-$x2)))}] ; # a is between 0 and pi/2
set pi [expr {4*atan(1)}]
if {$y1<=$y2} {
# line is going upwards
if {$x1<$x2} {set b $a} else {set b [expr {$pi-$a}]}
} else {
# line is going downwards
if {$x1<$x2} {set b [expr {2*$pi-$a}]} else {set b [expr {$pi+$a}]}
}
return [expr {$b/$pi*180}] ; # convert b to degrees
}
###
#
# Intersection procedures
#
###
# ::math::geometry::lineSegmentsIntersect
#
# Checks whether two line segments intersect.
#
# Arguments:
# linesegment1 the first line segment
# linesegment2 the second line segment
#
# Results:
# dointersect a boolean saying whether the line segments intersect
# (i.e., have any points in common)
#
# Examples:
# - lineSegmentsIntersect {0 0 10 10} {0 10 10 0}
# Result: 1
# - lineSegmentsIntersect {0 0 10 10} {20 20 20 30}
# Result: 0
# - lineSegmentsIntersect {0 0 10 10} {10 10 15 15}
# Result: 1
#
proc ::math::geometry::lineSegmentsIntersect {linesegment1 linesegment2} {
# Algorithm based on Sedgewick.
set l1x1 [lindex $linesegment1 0]
set l1y1 [lindex $linesegment1 1]
set l1x2 [lindex $linesegment1 2]
set l1y2 [lindex $linesegment1 3]
set l2x1 [lindex $linesegment2 0]
set l2y1 [lindex $linesegment2 1]
set l2x2 [lindex $linesegment2 2]
set l2y2 [lindex $linesegment2 3]
return [expr {([ccw [list $l1x1 $l1y1] [list $l1x2 $l1y2] [list $l2x1 $l2y1]]\
*[ccw [list $l1x1 $l1y1] [list $l1x2 $l1y2] [list $l2x2 $l2y2]] <= 0) \
&& ([ccw [list $l2x1 $l2y1] [list $l2x2 $l2y2] [list $l1x1 $l1y1]]\
*[ccw [list $l2x1 $l2y1] [list $l2x2 $l2y2] [list $l1x2 $l1y2]] <= 0)}]
}
# ::math::geometry::findLineSegmentIntersection
#
# Returns the intersection point of two line segments.
# Note: may also return "coincident" and "none".
#
# Arguments:
# linesegment1 the first line segment
# linesegment2 the second line segment
#
# Results:
# P the intersection point of linesegment1 and linesegment2.
# If linesegment1 and linesegment2 have an infinite number
# of points in common, the procedure returns "coincident".
# If there are no intersection points, the procedure
# returns "none".
#
# Examples:
# - findLineSegmentIntersection {0 0 10 10} {0 10 10 0}
# Result: 5.0 5.0
# - findLineSegmentIntersection {0 0 10 10} {20 20 20 30}
# Result: none
# - findLineSegmentIntersection {0 0 10 10} {10 10 15 15}
# Result: 10.0 10.0
# - findLineSegmentIntersection {0 0 10 10} {5 5 15 15}
# Result: coincident
#
proc ::math::geometry::findLineSegmentIntersection {linesegment1 linesegment2} {
if {[lineSegmentsIntersect $linesegment1 $linesegment2]} {
set lineintersect [findLineIntersection $linesegment1 $linesegment2]
switch -- $lineintersect {
"coincident" {
# lines are coincident
set l1x1 [lindex $linesegment1 0]
set l1y1 [lindex $linesegment1 1]
set l1x2 [lindex $linesegment1 2]
set l1y2 [lindex $linesegment1 3]
set l2x1 [lindex $linesegment2 0]
set l2y1 [lindex $linesegment2 1]
set l2x2 [lindex $linesegment2 2]
set l2y2 [lindex $linesegment2 3]
# check if the line SEGMENTS overlap
# (NOT enough to check if the x-intervals overlap (vertical lines!))
set overlapx [intervalsOverlap $l1x1 $l1x2 $l2x1 $l2x2 0]
set overlapy [intervalsOverlap $l1y1 $l1y2 $l2y1 $l2y2 0]
if {$overlapx && $overlapy} {
return "coincident"
} else {
return "none"
}
}
"none" {
# should never happen, because we call "lineSegmentsIntersect" first
puts stderr "::math::geometry::findLineSegmentIntersection: suddenly no intersection?"
return "none"
}
default {
# lineintersect = the intersection point
return $lineintersect
}
}
} else {
return "none"
}
}
# ::math::geometry::findLineIntersection {line1 line2}
#
# Returns the intersection point of two lines.
# Note: may also return "coincident" and "none".
#
# Arguments:
# line1 the first line
# line2 the second line
#
# Results:
# P the intersection point of line1 and line2.
# If line1 and line2 have an infinite number of points
# in common, the procedure returns "coincident".
# If there are no intersection points, the procedure
# returns "none".
#
# Examples:
# - findLineIntersection {0 0 10 10} {0 10 10 0}
# Result: 5.0 5.0
# - findLineIntersection {0 0 10 10} {20 20 20 30}
# Result: 20.0 20.0
# - findLineIntersection {0 0 10 10} {10 10 15 15}
# Result: coincident
# - findLineIntersection {0 0 10 10} {5 5 15 15}
# Result: coincident
# - findLineIntersection {0 0 10 10} {0 1 10 11}
# Result: none
#
proc ::math::geometry::findLineIntersection {line1 line2} {
# References:
# http://wiki.tcl.tk/12070 (Kevin Kenny)
# http://local.wasp.uwa.edu.au/~pbourke/geometry/lineline2d/
set l1x1 [lindex $line1 0]
set l1y1 [lindex $line1 1]
set l1x2 [lindex $line1 2]
set l1y2 [lindex $line1 3]
set l2x1 [lindex $line2 0]
set l2y1 [lindex $line2 1]
set l2x2 [lindex $line2 2]
set l2y2 [lindex $line2 3]
set d [expr {($l2y2 - $l2y1) * ($l1x2 - $l1x1) -
($l2x2 - $l2x1) * ($l1y2 - $l1y1)}]
set na [expr {($l2x2 - $l2x1) * ($l1y1 - $l2y1) -
($l2y2 - $l2y1) * ($l1x1 - $l2x1)}]
# http://local.wasp.uwa.edu.au/~pbourke/geometry/lineline2d/
if {$d == 0} {
if {$na == 0} {
return "coincident"
} else {
return "none"
}
}
set r [list \
[expr {$l1x1 + $na * ($l1x2 - $l1x1) / $d}] \
[expr {$l1y1 + $na * ($l1y2 - $l1y1) / $d}]]
return $r
}
# ::math::geometry::polylinesIntersect
#
# Checks whether two polylines intersect.
#
# Arguments;
# polyline1 the first polyline
# polyline2 the second polyline
#
# Results:
# dointersect a boolean saying whether the polylines intersect
#
# Examples:
# - polylinesIntersect {0 0 10 10 10 20} {0 10 10 0}
# Result: 1
# - polylinesIntersect {0 0 10 10 10 20} {5 4 10 4}
# Result: 0
#
proc ::math::geometry::polylinesIntersect {polyline1 polyline2} {
return [polylinesBoundingIntersect $polyline1 $polyline2 0]
}
# ::math::geometry::polylinesBoundingIntersect
#
# Check whether two polylines intersect, but reduce
# the correctness of the result to the given granularity.
# Use this for faster, but weaker, intersection checking.
#
# How it works:
# Each polyline is split into a number of smaller polylines,
# consisting of granularity points each. If a pair of those smaller
# lines' bounding boxes intersect, then this procedure returns 1,
# otherwise it returns 0.
#
# Arguments:
# polyline1 the first polyline
# polyline2 the second polyline
# granularity the number of points in each part-polyline
# granularity<=1 means full correctness
#
# Results:
# dointersect a boolean saying whether the polylines intersect
#
# Examples:
# - polylinesBoundingIntersect {0 0 10 10 10 20} {0 10 10 0} 2
# Result: 1
# - polylinesBoundingIntersect {0 0 10 10 10 20} {5 4 10 4} 2
# Result: 1
#
proc ::math::geometry::polylinesBoundingIntersect {polyline1 polyline2 granularity} {
if {$granularity<=1} {
# Use perfect intersect
# => first pin down where an intersection point may be, and then
# call MultilinesIntersectPerfect on those parts
set granularity 10 ; # optimal search granularity?
set perfectmatch 1
} else {
set perfectmatch 0
}
# split the lines into parts consisting of $granularity points
set polyline1parts {}
for {set i 0} {$i<[llength $polyline1]} {incr i [expr {2*$granularity-2}]} {
lappend polyline1parts [lrange $polyline1 $i [expr {$i+2*$granularity-1}]]
}
set polyline2parts {}
for {set i 0} {$i<[llength $polyline2]} {incr i [expr {2*$granularity-2}]} {
lappend polyline2parts [lrange $polyline2 $i [expr {$i+2*$granularity-1}]]
}
# do any of the parts overlap?
foreach part1 $polyline1parts {
foreach part2 $polyline2parts {
set part1bbox [bbox $part1]
set part2bbox [bbox $part2]
if {[rectanglesOverlap [lrange $part1bbox 0 1] [lrange $part1bbox 2 3] \
[lrange $part2bbox 0 1] [lrange $part2bbox 2 3] 0]} {
# the lines' bounding boxes intersect
if {$perfectmatch} {
foreach {l1x1 l1y1} [lrange $part1 0 end-2] {l1x2 l1y2} [lrange $part1 2 end] {
foreach {l2x1 l2y1} [lrange $part2 0 end-2] {l2x2 l2y2} [lrange $part2 2 end] {
if {[lineSegmentsIntersect [list $l1x1 $l1y1 $l1x2 $l1y2] \
[list $l2x1 $l2y1 $l2x2 $l2y2]]} {
# two line segments overlap
return 1
}
}
}
return 0
} else {
return 1
}
}
}
}
return 0
}
# ::math::geometry::ccw
#
# PRIVATE FUNCTION USED BY OTHER FUNCTIONS.
# Returns whether traversing from A to B to C is CounterClockWise
# Algorithm by Sedgewick.
#
# Arguments:
# A first point
# B second point
# C third point
#
# Reeults:
# ccw a boolean saying whether traversing from A to B to C
# is CounterClockWise
#
proc ::math::geometry::ccw {A B C} {
set Ax [lindex $A 0]
set Ay [lindex $A 1]
set Bx [lindex $B 0]
set By [lindex $B 1]
set Cx [lindex $C 0]
set Cy [lindex $C 1]
set dx1 [expr {$Bx - $Ax}]
set dy1 [expr {$By - $Ay}]
set dx2 [expr {$Cx - $Ax}]
set dy2 [expr {$Cy - $Ay}]
if {$dx1*$dy2 > $dy1*$dx2} {return 1}
if {$dx1*$dy2 < $dy1*$dx2} {return -1}
if {($dx1*$dx2 < 0) || ($dy1*$dy2 < 0)} {return -1}
if {($dx1*$dx1 + $dy1*$dy1) < ($dx2*$dx2+$dy2*$dy2)} {return 1}
return 0
}
###
#
# Overlap procedures
#
###
# ::math::geometry::intervalsOverlap
#
# Check whether two intervals overlap.
# Examples:
# - (2,4) and (5,3) overlap with strict=0 and strict=1
# - (2,4) and (1,2) overlap with strict=0 but not with strict=1
#
# Arguments:
# y1,y2 the first interval
# y3,y4 the second interval
# strict choosing strict or non-strict interpretation
#
# Results:
# dooverlap a boolean saying whether the intervals overlap
#
# Examples:
# - intervalsOverlap 2 4 4 6 1
# Result: 0
# - intervalsOverlap 2 4 4 6 0
# Result: 1
# - intervalsOverlap 4 2 3 5 0
# Result: 1
#
proc ::math::geometry::intervalsOverlap {y1 y2 y3 y4 strict} {
if {$y1>$y2} {
set temp $y1
set y1 $y2
set y2 $temp
}
if {$y3>$y4} {
set temp $y3
set y3 $y4
set y4 $temp
}
if {$strict} {
return [expr {$y2>$y3 && $y4>$y1}]
} else {
return [expr {$y2>=$y3 && $y4>=$y1}]
}
}
# ::math::geometry::rectanglesOverlap
#
# Check whether two rectangles overlap (see also intervalsOverlap).
#
# Arguments:
# P1 upper-left corner of the first rectangle
# P2 lower-right corner of the first rectangle
# Q1 upper-left corner of the second rectangle
# Q2 lower-right corner of the second rectangle
# strict choosing strict or non-strict interpretation
#
# Results:
# dooverlap a boolean saying whether the rectangles overlap
#
# Examples:
# - rectanglesOverlap {0 10} {10 0} {10 10} {20 0} 1
# Result: 0
# - rectanglesOverlap {0 10} {10 0} {10 10} {20 0} 0
# Result: 1
#
proc ::math::geometry::rectanglesOverlap {P1 P2 Q1 Q2 strict} {
set b1x1 [lindex $P1 0]
set b1y1 [lindex $P1 1]
set b1x2 [lindex $P2 0]
set b1y2 [lindex $P2 1]
set b2x1 [lindex $Q1 0]
set b2y1 [lindex $Q1 1]
set b2x2 [lindex $Q2 0]
set b2y2 [lindex $Q2 1]
# ensure b1x1<=b1x2 etc.
if {$b1x1 > $b1x2} {
set temp $b1x1
set b1x1 $b1x2
set b1x2 $temp
}
if {$b1y1 > $b1y2} {
set temp $b1y1
set b1y1 $b1y2
set b1y2 $temp
}
if {$b2x1 > $b2x2} {
set temp $b2x1
set b2x1 $b2x2
set b2x2 $temp
}
if {$b2y1 > $b2y2} {
set temp $b2y1
set b2y1 $b2y2
set b2y2 $temp
}
# Check if the boxes intersect
# (From: Cormen, Leiserson, and Rivests' "Algorithms", page 889)
if {$strict} {
return [expr {($b1x2>$b2x1) && ($b2x2>$b1x1) \
&& ($b1y2>$b2y1) && ($b2y2>$b1y1)}]
} else {
return [expr {($b1x2>=$b2x1) && ($b2x2>=$b1x1) \
&& ($b1y2>=$b2y1) && ($b2y2>=$b1y1)}]
}
}
# ::math::geometry::bbox
#
# Calculate the bounding box of a polyline.
#
# Arguments:
# polyline a polyline
#
# Results:
# x1,y1,x2,y2 four coordinates where (x1,y1) is the upper-left corner
# of the bounding box, and (x2,y2) is the lower-right corner
#
# Examples:
# - bbox {0 10 4 1 6 23 -12 5}
# Result: -12 1 6 23
#
proc ::math::geometry::bbox {polyline} {
set minX [lindex $polyline 0]
set maxX $minX
set minY [lindex $polyline 1]
set maxY $minY
foreach {x y} $polyline {
if {$x < $minX} {set minX $x}
if {$x > $maxX} {set maxX $x}
if {$y < $minY} {set minY $y}
if {$y > $maxY} {set maxY $y}
}
return [list $minX $minY $maxX $maxY]
}
# ::math::geometry::ClosedPolygon
#
# Return a closed polygon - used internally
#
# Arguments:
# polygon a polygon
#
# Results:
# closedpolygon a polygon whose first and last vertices
# coincide
#
proc ::math::geometry::ClosedPolygon {polygon} {
if { [lindex $polygon 0] != [lindex $polygon end-1] ||
[lindex $polygon 1] != [lindex $polygon end] } {
return [concat $polygon [lrange $polygon 0 1]]
} else {
return $polygon
}
}
# ::math::geometry::pointInsidePolygon
#
# Determine if a point is completely inside a polygon. If the point
# touches the polygon, then the point is not complete inside the
# polygon.
#
# Arguments:
# P a point
# polygon a polygon
#
# Results:
# isinside a boolean saying whether the point is
# completely inside the polygon or not
#
# Examples:
# - pointInsidePolygon {5 5} {4 4 4 6 6 6 6 4}
# Result: 1
# - pointInsidePolygon {5 5} {6 6 6 7 7 7}
# Result: 0
#
proc ::math::geometry::pointInsidePolygon {P polygon} {
# check if P is on one of the polygon's sides (if so, P is not
# inside the polygon)
set closedPolygon [ClosedPolygon $polygon]
foreach {x1 y1} [lrange $closedPolygon 0 end-2] {x2 y2} [lrange $closedPolygon 2 end] {
if {[calculateDistanceToLineSegment $P [list $x1 $y1 $x2 $y2]]<0.0000001} {
return 0
}
}
# Algorithm
#
# Consider a straight line going from P to a point far away from both
# P and the polygon (in particular outside the polygon).
# - If the line intersects with 0 of the polygon's sides, then
# P must be outside the polygon.
# - If the line intersects with 1 of the polygon's sides, then
# P must be inside the polygon (since the other end of the line
# is outside the polygon).
# - If the line intersects with 2 of the polygon's sides, then
# the line must pass into one polygon area and out of it again,
# and hence P is outside the polygon.
# - In general: if the line intersects with the polygon's sides an odd
# number of times, then P is inside the polygon. Note: we also have
# to check whether the line crosses one of the polygon's
# bend points for the same reason.
# get point far away and define the line
set polygonBbox [bbox $polygon]
set pointFarAway [list \
[expr {[lindex $polygonBbox 0]-[lindex $polygonBbox 2]}] \
[expr {[lindex $polygonBbox 1]-0.1*[lindex $polygonBbox 3]}]]
set infinityLine [concat $pointFarAway $P]
# calculate number of intersections
set noOfIntersections 0
# 1. count intersections between the line and the polygon's sides
foreach {x1 y1} [lrange $closedPolygon 0 end-2] {x2 y2} [lrange $closedPolygon 2 end] {
if {[lineSegmentsIntersect $infinityLine [list $x1 $y1 $x2 $y2]]} {
incr noOfIntersections
}
}
# 2. count intersections between the line and the polygon's points
foreach {x1 y1} $closedPolygon {
if {[calculateDistanceToLineSegment [list $x1 $y1] $infinityLine]<0.0000001} {
incr noOfIntersections
}
}
return [expr {$noOfIntersections % 2}]
}
# ::math::geometry::rectangleInsidePolygon
#
# Determine if a rectangle is completely inside a polygon. If polygon
# touches the rectangle, then the rectangle is not complete inside the
# polygon.
#
# Arguments:
# P1 upper-left corner of the rectangle
# P2 lower-right corner of the rectangle
# polygon a polygon
#
# Results:
# isinside a boolean saying whether the rectangle is
# completely inside the polygon or not
#
# Examples:
# - rectangleInsidePolygon {0 10} {10 0} {-10 -10 0 11 11 11 11 0}
# Result: 1
# - rectangleInsidePolygon {0 0} {0 0} {-16 14 5 -16 -16 -25 -21 16 -19 24}
# Result: 1
# - rectangleInsidePolygon {0 0} {0 0} {2 2 2 4 4 4 4 2}
# Result: 0
#
proc ::math::geometry::rectangleInsidePolygon {P1 P2 polygon} {
# get coordinates of rectangle
set bx1 [lindex $P1 0]
set by1 [lindex $P1 1]
set bx2 [lindex $P2 0]
set by2 [lindex $P2 1]
# if rectangle does not overlap with the bbox of polygon, then the
# rectangle cannot be inside the polygon (this is a quick way to
# get an answer in many cases)
set polygonBbox [bbox $polygon]
set polygonP1x [lindex $polygonBbox 0]
set polygonP1y [lindex $polygonBbox 1]
set polygonP2x [lindex $polygonBbox 2]
set polygonP2y [lindex $polygonBbox 3]
if {![rectanglesOverlap [list $bx1 $by1] [list $bx2 $by2] \
[list $polygonP1x $polygonP1y] [list $polygonP2x $polygonP2y] 0]} {
return 0
}
# 1. if one of the points of the polygon is inside the rectangle,
# then the rectangle cannot be inside the polygon
foreach {x y} $polygon {
if {$bx1<$x && $x<$bx2 && $by1<$y && $y<$by2} {
return 0
}
}
# 2. if one of the line segments of the polygon intersect with the
# rectangle, then the rectangle cannot be inside the polygon
set rectanglePolyline [list $bx1 $by1 $bx2 $by1 $bx2 $by2 $bx1 $by2 $bx1 $by1]
set closedPolygon [ClosedPolygon $polygon]
if {[polylinesIntersect $closedPolygon $rectanglePolyline]} {
return 0
}
# at this point we know that:
# 1. the polygon has no points inside the rectangle
# 2. the polygon's sides don't intersect with the rectangle
# therefore:
# either the rectangle is (completely) inside the polygon, or
# the rectangle is (completely) outside the polygon
# final test: if one of the points on the rectangle is inside the
# polygon, then the whole rectangle must be inside the rectangle
return [pointInsidePolygon [list $bx1 $by1] $polygon]
}
# ::math::geometry::areaPolygon
#
# Determine the area enclosed by a (non-complex) polygon
#
# Arguments:
# polygon a polygon
#
# Results:
# area the area enclosed by the polygon
#
# Examples:
# - areaPolygon {-10 -10 10 -10 10 10 -10 10}
# Result: 400
#
proc ::math::geometry::areaPolygon {polygon} {
foreach {a1 a2 b1 b2} $polygon {break}
set area 0.0
foreach {c1 c2} [lrange $polygon 4 end] {
set area [expr {$area + $b1*$c2 - $b2*$c1}]
set b1 $c1
set b2 $c2
}
expr {0.5*abs($area)}
}
# # ## ### ##### #############
namespace eval ::math::geometry {
variable pi [expr { 4 * atan(1) }]
variable torad [expr { (4 * atan(1)) / 180.0 }]
variable todeg [expr { 180.0 / (4 * atan(1)) }]
namespace export \
+ - s* direction v h p between distance length \
nwse rect octant findLineSegmentIntersection \
findLineIntersection bbox x y conjx conjy
}
package provide math::geometry 1.1.2
|