This file is indexed.

/usr/share/tcltk/tcllib1.14/math/exponential.tcl is in tcllib 1.14-dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
# exponential.tcl --
#    Compute exponential integrals (E1, En, Ei, li, Shi, Chi, Si, Ci)
#

namespace eval ::math::special {
    variable pi 3.1415926
    variable gamma 0.57721566490153286
    variable halfpi [expr {$pi/2.0}]

# Euler's digamma function for small integer arguments

    variable psi {
        NaN
        -0.57721566490153286 0.42278433509846713 0.92278433509846713
        1.2561176684318005 1.5061176684318005 1.7061176684318005
        1.8727843350984672 2.0156414779556102 2.1406414779556102
        2.2517525890667214 2.3517525890667215 2.4426616799758123
        2.5259950133091458 2.6029180902322229 2.6743466616607945
        2.7410133283274614 2.8035133283274614 2.8623368577392259
        2.9178924132947812 2.9705239922421498 3.0205239922421496
        3.0681430398611971 3.1135975853157425 3.1570758461853079
        3.1987425128519744 3.2387425128519745 3.2772040513135128
        3.31424108835055 3.3499553740648356 3.3844381326855251
        3.4177714660188583 3.4500295305349873 3.4812795305349873
        3.5115825608380176 3.5409943255438998 3.5695657541153283
        3.597343531893106 3.6243705589201332 3.6506863483938172
        3.6763273740348428
    }
}

# ComputeExponFG --
#    Compute the auxiliary functions f and g
#
# Arguments:
#    x            Parameter of the integral (x>=0)
# Result:
#    Approximate values for f and g
# Note:
#    See Abramowitz and Stegun
#
proc ::math::special::ComputeExponFG {x} {
    set x2 [expr {$x*$x}]
    set fx [expr {($x2*$x2+7.241163*$x2+2.463936)/
                  ($x2*$x2+9.068580*$x2+7.157433)/$x}]
    set gx [expr {($x2*$x2+7.547478*$x2+1.564072)/
                  ($x2*$x2+12.723684*$x2+15.723606)/$x2}]
    list $fx $gx
}


# exponential_Ei --
#    Compute the exponential integral of the second kind, to relative
#    error eps
# Arguments:
#    x       Value of the argument
#    eps     Relative error
# Result:
#    Principal value of the integral exp(x)/x
#    from -infinity to x
#
proc ::math::special::exponential_Ei { x { eps 1.0e-10 } } {
    variable gamma

    if { ![string is double -strict $x] } {
        return -code error "expected a floating point number but found \"$x\""
    }
    if { $x < 0.0 } {
        return [expr { -[exponential_En 1 [expr { - $x }] $eps] }]
    }
    if { $x == 0.0 } {
       set message "Argument to exponential_Ei must not be zero"
       return -code error -errorcode [list ARITH DOMAIN $message] $message
    }
    if { $x >= -log($eps) } {
        # evaluate Ei(x) as an asymptotic series; the series is formally
        # divergent, but the leading terms give the desired value to
        # enough precision.
        set sum 0.
        set term 1.
        set k 1
        while { 1 } {
            set p $term
            set term [expr { $term * ( $k / $x ) }]
            if { $term < $eps } {
                break
            }
            if { $term < $p } {
                set sum [expr { $sum + $term }]
            } else {
                set sum [expr { $sum - $p }]
                break
            }
            incr k
        }
        return [expr { exp($x) * ( 1.0 + $sum ) / $x }]
    } elseif { $x >= 1e-18 } {
        # evaluate Ei(x) as a power series
        set sum 0.
        set fact 1.
        set pow $x
        set n 1
        while { 1 } {
            set fact [expr { $fact * $n }]
            set term [expr { $pow / $n / $fact }]
            set sum [expr { $sum + $term }]
            if { $term < $eps * $sum } break
            set pow [expr { $x * $pow }]
            incr n
        }
        return [expr { $sum + $gamma + log($x) }]
    } else {
        # Ei(x) for small x
        return [expr { log($x) + $gamma }]
    }
}


# exponential_En --
#    Compute the exponential integral of n-th order, to relative error
#    epsilon
#
# Arguments:
#    n            Order of the integral (n>=1, integer)
#    x            Parameter of the integral (x>0)
#    epsilon      Relative error
# Result:
#    Value of En(x) = integral from 0 to x of exp(-x)/x**n
#
proc ::math::special::exponential_En { n x { epsilon 1.0e-10 } } {
    variable psi
    variable gamma
    if { ![string is integer -strict $n] || $n < 0 } {
        return -code error "expected a non-negative integer but found \"$n\""
    }
    if { ![string is double -strict $x] } {
        return -code error "expected a floating point number but found \"$x\""
    }
    if { $n == 0 } {
        if { $x == 0.0 } {
            return -code error "E0(0) is indeterminate"
        }
        return [expr { exp( -$x ) / $x }]
    }
    if { $n == 1 && $x < 0.0 } {
        return [expr {- [exponential_Ei [expr { -$x }] $eps] }]
    }
    if { $x < 0.0 } {
        return -code error "can't evaluate En(x) for negative x"
    }
    if { $x == 0.0 } {
        return [expr { 1.0 / ( $n - 1 ) }]
    }

    if { $x > 1.0 } {
        # evaluate En(x) as a continued fraction
        set b [expr { $x + $n }]
        set c 1.e308
        set d [expr { 1.0 / $b }]
        set h $d
        set i 1
        while { 1 } {
            set a [expr { -$i * ( $n - 1 + $i ) }]
            set b [expr { $b + 2.0 }]
            set d [expr { 1.0 / ( $a * $d + $b ) }]
            set c [expr { $b + $a / $c }]
            set delta [expr { $c * $d }]
            set h [expr { $h * $delta }]
            if { abs( $delta - 1. ) < $epsilon } {
                return [expr { $h * exp(-$x) }]
            }
            incr i
        }
    } else {
        # evaluate En(x) as a series
        if { $n == 1 } {
            set a [expr { -log($x) - $gamma }]
        } else {
            set a [expr { 1.0 / ( $n - 1 ) }]
        }
        set f 1.0
        set i 1
        while { 1 } {
            set f [expr { - $f *  $x / $i }]
            if { $i == $n - 1 } {
                set term [expr { $f * ([lindex $psi $n] - log($x)) }]
            } else {
                set term [expr { $f / ( $n - 1 - $i ) }]
            }
            set a [expr { $a + $term }]
            if { abs($term) < $epsilon * abs($a) } {
                return $a
            }
            incr i
        }
    }
}

# exponential_E1 --
#    Compute the exponential integral
#
# Arguments:
#    x            Parameter of the integral (x>0)
# Result:
#    Value of E1(x) = integral from x to infinity of exp(-x)/x
# Note:
#    This relies on a rational approximation (error ~ 2e-7 (x<1) or 5e-5 (x>1)
#
proc ::math::special::exponential_E1 {x} {
    if { $x <= 0.0 } {
        error "Domain error: x must be positive"
    }

   if { $x < 1.0 } {
      return [expr {-log($x)+((((0.00107857*$x-0.00976004)*$x+0.05519968)*$x-0.24991055)*$x+0.99999193)*$x-0.57721566}]
   } else {
      set xexpe [expr {($x*$x+2.334733*$x+0.250621)/($x*$x+3.330657*$x+1.681534)}]
      return [expr {$xexpe/($x*exp($x))}]
   }
}

# exponential_li --
#    Compute the logarithmic integral
# Arguments:
#    x       Value of the argument
# Result:
#    Value of the integral 1/ln(x) from 0 to x
#
proc ::math::special::exponential_li {x} {
    if { $x < 0 } {
        return -code error "Argument must be positive or zero"
    } else {
        if { $x == 0.0 } {
            return 0.0
        } else {
            return [exponential_Ei [expr {log($x)}]]
        }
    }
}

# exponential_Shi --
#    Compute the hyperbolic sine integral
# Arguments:
#    x       Value of the argument
# Result:
#    Value of the integral sinh(x)/x from 0 to x
#
proc ::math::special::exponential_Shi {x} {
    if { $x < 0 } {
        return -code error "Argument must be positive or zero"
    } else {
        if { $x == 0.0 } {
            return 0.0
        } else {
            proc g {x} {
               return [expr {sinh($x)/$x}]
            }
            return [lindex [::math::calculus::romberg g 0.0 $x] 0]
        }
    }
}

# exponential_Chi --
#    Compute the hyperbolic cosine integral
# Arguments:
#    x       Value of the argument
# Result:
#    Value of the integral (cosh(x)-1)/x from 0 to x
#
proc ::math::special::exponential_Chi {x} {
    variable gamma
    if { $x < 0 } {
        return -code error "Argument must be positive or zero"
    } else {
        if { $x == 0.0 } {
            return 0.0
        } else {
            proc g {x} {
               return [expr {(cosh($x)-1.0)/$x}]
            }
            set integral [lindex [::math::calculus::romberg g 0.0 $x] 0]
            return [expr {$gamma+log($x)+$integral}]
        }
    }
}

# exponential_Si --
#    Compute the sine integral
# Arguments:
#    x       Value of the argument
# Result:
#    Value of the integral sin(x)/x from 0 to x
#
proc ::math::special::exponential_Si {x} {
    variable halfpi
    if { $x < 0 } {
        return -code error "Argument must be positive or zero"
    } else {
        if { $x == 0.0 } {
            return 0.0
        } else {
            if { $x < 1.0 } {
                proc g {x} {
                    return [expr {sin($x)/$x}]
                }
                return [lindex [::math::calculus::romberg g 0.0 $x] 0]
            } else {
                foreach {f g} [ComputeExponFG $x] {break}
                return [expr {$halfpi-$f*cos($x)-$g*sin($x)}]
            }
        }
    }
}

# exponential_Ci --
#    Compute the cosine integral
# Arguments:
#    x       Value of the argument
# Result:
#    Value of the integral (cosh(x)-1)/x from 0 to x
#
proc ::math::special::exponential_Ci {x} {
    variable gamma

    if { $x < 0 } {
        return -code error "Argument must be positive or zero"
    } else {
        if { $x == 0.0 } {
            return 0.0
        } else {
            if { $x < 1.0 } {
                proc g {x} {
                    return [expr {(cos($x)-1.0)/$x}]
                }
                set integral [lindex [::math::calculus::romberg g 0.0 $x] 0]
                return [expr {$gamma+log($x)+$integral}]
            } else {
                foreach {f g} [ComputeExponFG $x] {break}
                return [expr {$f*sin($x)-$g*cos($x)}]
            }
        }
    }
}

# some tests --
#    Reproduce tables 5.1, 5.2 from Abramowitz & Stegun,

if { [info exists ::argv0] && ![string compare $::argv0 [info script]] } {
namespace eval ::math::special {
for { set i 0.01 } { $i < 0.505 } { set i [expr { $i + 0.01 }] } {
    set ei [exponential_Ei $i]
    set e1 [expr { - [exponential_Ei [expr { - $i }]] }]
    puts [format "%9.6f\t%.10g\t%.10g" $i \
              [expr {($ei - log($i) - 0.57721566490153286)/$i} ] \
              [expr {($e1 + log($i) + 0.57721566490153286) / $i }]]
}
puts {}
for { set i 0.5 } { $i < 2.005 } { set i [expr { $i + 0.01 }] } {
    set ei [exponential_Ei $i]
    set e1 [expr { - [exponential_Ei [expr { - $i }]] }]
    puts [format "%9.6f\t%.10g\t%.10g" $i $ei $e1]
}
puts {}
for {} { $i < 10.05 } { set i [expr { $i + 0.1 }] } {
    set ei [exponential_Ei $i]
    set e1 [expr { - [exponential_Ei [expr { - $i }]] }]
    puts [format "%9.6f\t%.10g\t%.10g" $i \
              [expr { $i * exp(-$i) * $ei }] \
              [expr { $i * exp($i) * $e1 }]]

}
puts {}
for {set ooi 0.1} { $ooi > 0.0046 } { set ooi [expr { $ooi - 0.005 }] } {
    set i [expr { 1.0 / $ooi }]
    set ri [expr { round($i) }]
    set ei [exponential_Ei $i]
    set e1 [expr { - [exponential_Ei [expr { - $i }]] }]
    puts [format "%9.6f\t%.10g\t%.10g\t%d" $i \
              [expr { $i * exp(-$i) * $ei }] \
              [expr { $i * exp($i) * $e1 }] \
              $ri]
}
puts {}

# Reproduce table 5.4 from Abramowitz and Stegun

for { set x 0.00 } { $x < 0.505 } { set x [expr { $x + 0.01 }] } {
    set line [format %4.2f $x]
    if { $x == 0.00 } {
        append line { } 1.0000000
    } else {
        append line { } [format %9.7f \
                             [expr { [exponential_En 2 $x] - $x * log($x) }]]
    }
    foreach n { 3 4 10 20 } {
        append line { } [format %9.7f [exponential_En $n $x]]
    }
    puts $line
}
puts {}
for { set x 0.50 } { $x < 2.005 } { set x [expr { $x + 0.01 }] } {
    set line [format %4.2f $x]
    foreach n { 2 3 4 10 20 } {
        append line { } [format %9.7f [exponential_En $n $x]]
    }
    puts $line
}
puts {}

for { set oox 0.5 } { $oox > 0.1025 } { set oox [expr { $oox - 0.05 }] } {
    set line [format %4.2f $oox]
    set x [expr { 1.0 / $oox }]
    set rx [expr { round( $x ) }]
    foreach n { 2 3 4 10 20 } {
        set en [exponential_En $n [expr { 1.0 / $oox }]]
        append line { } [format %9.7f [expr { ( $x + $n ) * exp($x) * $en }]]
    }
    append line { } [format %3d $rx]
    puts $line
}
for { set oox 0.10 } { $oox > 0.005 } { set oox [expr { $oox - 0.01 }] } {
    set line [format %4.2f $oox]
    set x [expr { 1.0 / $oox }]
    set rx [expr { round( $x ) }]
    foreach n { 2 3 4 10 20 } {
        set en [exponential_En $n $x]
        append line { } [format %9.7f [expr { ( $x + $n ) * exp($x) * $en }]]
    }
    append line { } [format %3d $rx]
    puts $line
}
puts {}
catch {exponential_Ei 0.0} result; puts $result
}
}