/usr/share/tcltk/tcllib1.14/math/elliptic.tcl is in tcllib 1.14-dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 | # elliptic.tcl --
# Compute elliptic functions and integrals
#
# Computation of elliptic functions cn, dn and sn
# adapted from:
# Michael W. Pashea
# Numerical computation of elliptic functions
# Doctor Dobbs' Journal, May 2005
#
# namespace ::math::special
#
namespace eval ::math::special {
namespace export cn sn dn
::math::constants::constants pi
variable halfpi [expr {$pi/2.0}]
variable tol
set tol 1.0e-10
}
# elliptic_K --
# Compute the complete elliptic integral of the first kind
#
# Arguments:
# k Parameter of the integral
# Result:
# Value of K(k)
# Note:
# This relies on the arithmetic-geometric mean
#
proc ::math::special::elliptic_K {k} {
variable halfpi
if { $k < 0.0 || $k >= 1.0 } {
error "Domain error: must be between 0 (inclusive) and 1 (not inclusive)"
}
if { $k == 0.0 } {
return $halfpi
}
set a 1.0
set b [expr {sqrt(1.0-$k*$k)}]
for {set i 0} {$i < 10} {incr i} {
set anew [expr {($a+$b)/2.0}]
set bnew [expr {sqrt($a*$b)}]
set a $anew
set b $bnew
#puts "$a $b"
}
return [expr {$halfpi/$a}]
}
# elliptic_E --
# Compute the complete elliptic integral of the second kind
#
# Arguments:
# k Parameter of the integral
# Result:
# Value of E(k)
# Note:
# This relies on the arithmetic-geometric mean
#
proc ::math::special::elliptic_E {k} {
variable halfpi
if { $k < 0.0 || $k >= 1.0 } {
error "Domain error: must be between 0 (inclusive) and 1 (not inclusive)"
}
if { $k == 0.0 } {
return $halfpi
}
if { $k == 1.0 } {
return 1.0
}
set a 1.0
set b [expr {sqrt(1.0-$k*$k)}]
set sumc [expr {$k*$k/2.0}]
set factor 0.25
for {set i 0} {$i < 10} {incr i} {
set anew [expr {($a+$b)/2.0}]
set bnew [expr {sqrt($a*$b)}]
set sumc [expr {$sumc+$factor*($a-$b)*($a-$b)}]
set factor [expr {$factor*2.0}]
set a $anew
set b $bnew
#puts "$a $b"
}
set Kk [expr {$halfpi/$a}]
return [expr {(1.0-$sumc)*$Kk}]
}
namespace eval ::math::special {
}
# Nextk --
# Auxiliary function for computing next value of k
#
# Arguments:
# k Parameter
# Return value:
# Next value to be used
#
proc ::math::special::Nextk { k } {
set ksq [expr {sqrt(1.0-$k*$k)}]
return [expr {(1.0-$ksq)/(1+$ksq)}]
}
# IterateUK --
# Auxiliary function to compute the raw value (phi)
#
# Arguments:
# u Independent variable
# k Parameter
# Return value:
# phi
#
proc ::math::special::IterateUK { u k } {
variable tol
set kvalues {}
set nmax 1
while { $k > $tol } {
set k [Nextk $k]
set kvalues [concat $k $kvalues]
set u [expr {$u*2.0/(1.0+$k)}]
incr nmax
#puts "$nmax -$u - $k"
}
foreach k $kvalues {
set u [expr {( $u + asin($k*sin($u)) )/2.0}]
}
return $u
}
# cn --
# Compute the elliptic function cn
#
# Arguments:
# u Independent variable
# k Parameter
# Return value:
# cn(u,k)
# Note:
# If k == 1, then the iteration does not stop
#
proc ::math::special::cn { u k } {
if { $k > 1.0 } {
return -code error "Parameter out of range - must be <= 1.0"
}
if { $k == 1.0 } {
return [expr {1.0/cosh($u)}]
} else {
set u [IterateUK $u $k]
return [expr {cos($u)}]
}
}
# sn --
# Compute the elliptic function sn
#
# Arguments:
# u Independent variable
# k Parameter
# Return value:
# sn(u,k)
# Note:
# If k == 1, then the iteration does not stop
#
proc ::math::special::sn { u k } {
if { $k > 1.0 } {
return -code error "Parameter out of range - must be <= 1.0"
}
if { $k == 1.0 } {
return [expr {tanh($u)}]
} else {
set u [IterateUK $u $k]
return [expr {sin($u)}]
}
}
# dn --
# Compute the elliptic function sn
#
# Arguments:
# u Independent variable
# k Parameter
# Return value:
# dn(u,k)
# Note:
# If k == 1, then the iteration does not stop
#
proc ::math::special::sn { u k } {
if { $k > 1.0 } {
return -code error "Parameter out of range - must be <= 1.0"
}
if { $k == 1.0 } {
return [expr {1.0/cosh($u)}]
} else {
set u [IterateUK $u $k]
return [expr {sqrt(1.0-$k*$k*sin($u))}]
}
}
# main --
# Simple tests
#
if { 0 } {
puts "Special cases:"
puts "cos(1): [::math::special::cn 1.0 0.0] -- [expr {cos(1.0)}]"
puts "1/cosh(1): [::math::special::cn 1.0 0.999] -- [expr {1.0/cosh(1.0)}]"
}
# some tests --
#
if { 0 } {
set prec $::tcl_precision
if {![package vsatisfies [package provide Tcl] 8.5]} {
set ::tcl_precision 17
} else {
set ::tcl_precision 0
}
#foreach k {0.0 0.1 0.2 0.4 0.6 0.8 0.9} {
# puts "$k: [::math::special::elliptic_K $k]"
#}
foreach k2 {0.0 0.1 0.2 0.4 0.6 0.8 0.9} {
set k [expr {sqrt($k2)}]
puts "$k2: [::math::special::elliptic_K $k] \
[::math::special::elliptic_E $k]"
}
set ::tcl_precision $prec
}
|