/usr/share/tcltk/tcllib1.14/math/calculus.tcl is in tcllib 1.14-dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 | # calculus.tcl --
# Package that implements several basic numerical methods, such
# as the integration of a one-dimensional function and the
# solution of a system of first-order differential equations.
#
# Copyright (c) 2002, 2003, 2004, 2006 by Arjen Markus.
# Copyright (c) 2004 by Kevin B. Kenny. All rights reserved.
# See the file "license.terms" for information on usage and redistribution
# of this file, and for a DISCLAIMER OF ALL WARRANTIES.
#
# RCS: @(#) $Id: calculus.tcl,v 1.15 2008/10/08 03:30:48 andreas_kupries Exp $
package require Tcl 8.4
package require math::interpolate
package provide math::calculus 0.7.1
# math::calculus --
# Namespace for the commands
namespace eval ::math::calculus {
namespace import ::math::interpolate::neville
namespace import ::math::expectDouble ::math::expectInteger
namespace export \
integral integralExpr integral2D integral3D \
eulerStep heunStep rungeKuttaStep \
boundaryValueSecondOrder solveTriDiagonal \
newtonRaphson newtonRaphsonParameters
namespace export \
integral2D_2accurate integral3D_accurate
namespace export romberg romberg_infinity
namespace export romberg_sqrtSingLower romberg_sqrtSingUpper
namespace export romberg_powerLawLower romberg_powerLawUpper
namespace export romberg_expLower romberg_expUpper
namespace export regula_falsi
variable nr_maxiter 20
variable nr_tolerance 0.001
}
# integral --
# Integrate a function over a given interval using the Simpson rule
#
# Arguments:
# begin Start of the interval
# end End of the interval
# nosteps Number of steps in which to divide the interval
# func Name of the function to be integrated (takes one
# argument)
# Return value:
# Computed integral
#
proc ::math::calculus::integral { begin end nosteps func } {
set delta [expr {($end-$begin)/double($nosteps)}]
set hdelta [expr {$delta/2.0}]
set result 0.0
set xval $begin
set func_end [uplevel 1 $func $xval]
for { set i 1 } { $i <= $nosteps } { incr i } {
set func_begin $func_end
set func_middle [uplevel 1 $func [expr {$xval+$hdelta}]]
set func_end [uplevel 1 $func [expr {$xval+$delta}]]
set result [expr {$result+$func_begin+4.0*$func_middle+$func_end}]
set xval [expr {$begin+double($i)*$delta}]
}
return [expr {$result*$delta/6.0}]
}
# integralExpr --
# Integrate an expression with "x" as the integrate according to the
# Simpson rule
#
# Arguments:
# begin Start of the interval
# end End of the interval
# nosteps Number of steps in which to divide the interval
# expression Expression with "x" as the integrate
# Return value:
# Computed integral
#
proc ::math::calculus::integralExpr { begin end nosteps expression } {
set delta [expr {($end-$begin)/double($nosteps)}]
set hdelta [expr {$delta/2.0}]
set result 0.0
set x $begin
# FRINK: nocheck
set func_end [expr $expression]
for { set i 1 } { $i <= $nosteps } { incr i } {
set func_begin $func_end
set x [expr {$x+$hdelta}]
# FRINK: nocheck
set func_middle [expr $expression]
set x [expr {$x+$hdelta}]
# FRINK: nocheck
set func_end [expr $expression]
set result [expr {$result+$func_begin+4.0*$func_middle+$func_end}]
set x [expr {$begin+double($i)*$delta}]
}
return [expr {$result*$delta/6.0}]
}
# integral2D --
# Integrate a given fucntion of two variables over a block,
# using bilinear interpolation (for this moment: block function)
#
# Arguments:
# xinterval Start, stop and number of steps of the "x" interval
# yinterval Start, stop and number of steps of the "y" interval
# func Function of the two variables to be integrated
# Return value:
# Computed integral
#
proc ::math::calculus::integral2D { xinterval yinterval func } {
foreach { xbegin xend xnumber } $xinterval { break }
foreach { ybegin yend ynumber } $yinterval { break }
set xdelta [expr {($xend-$xbegin)/double($xnumber)}]
set ydelta [expr {($yend-$ybegin)/double($ynumber)}]
set hxdelta [expr {$xdelta/2.0}]
set hydelta [expr {$ydelta/2.0}]
set result 0.0
set dxdy [expr {$xdelta*$ydelta}]
for { set j 0 } { $j < $ynumber } { incr j } {
set y [expr {$ybegin+$hydelta+double($j)*$ydelta}]
for { set i 0 } { $i < $xnumber } { incr i } {
set x [expr {$xbegin+$hxdelta+double($i)*$xdelta}]
set func_value [uplevel 1 $func $x $y]
set result [expr {$result+$func_value}]
}
}
return [expr {$result*$dxdy}]
}
# integral3D --
# Integrate a given fucntion of two variables over a block,
# using trilinear interpolation (for this moment: block function)
#
# Arguments:
# xinterval Start, stop and number of steps of the "x" interval
# yinterval Start, stop and number of steps of the "y" interval
# zinterval Start, stop and number of steps of the "z" interval
# func Function of the three variables to be integrated
# Return value:
# Computed integral
#
proc ::math::calculus::integral3D { xinterval yinterval zinterval func } {
foreach { xbegin xend xnumber } $xinterval { break }
foreach { ybegin yend ynumber } $yinterval { break }
foreach { zbegin zend znumber } $zinterval { break }
set xdelta [expr {($xend-$xbegin)/double($xnumber)}]
set ydelta [expr {($yend-$ybegin)/double($ynumber)}]
set zdelta [expr {($zend-$zbegin)/double($znumber)}]
set hxdelta [expr {$xdelta/2.0}]
set hydelta [expr {$ydelta/2.0}]
set hzdelta [expr {$zdelta/2.0}]
set result 0.0
set dxdydz [expr {$xdelta*$ydelta*$zdelta}]
for { set k 0 } { $k < $znumber } { incr k } {
set z [expr {$zbegin+$hzdelta+double($k)*$zdelta}]
for { set j 0 } { $j < $ynumber } { incr j } {
set y [expr {$ybegin+$hydelta+double($j)*$ydelta}]
for { set i 0 } { $i < $xnumber } { incr i } {
set x [expr {$xbegin+$hxdelta+double($i)*$xdelta}]
set func_value [uplevel 1 $func $x $y $z]
set result [expr {$result+$func_value}]
}
}
}
return [expr {$result*$dxdydz}]
}
# integral2D_accurate --
# Integrate a given function of two variables over a block,
# using a four-point quadrature formula
#
# Arguments:
# xinterval Start, stop and number of steps of the "x" interval
# yinterval Start, stop and number of steps of the "y" interval
# func Function of the two variables to be integrated
# Return value:
# Computed integral
#
proc ::math::calculus::integral2D_accurate { xinterval yinterval func } {
foreach { xbegin xend xnumber } $xinterval { break }
foreach { ybegin yend ynumber } $yinterval { break }
set alpha [expr {sqrt(2.0/3.0)}]
set minalpha [expr {-$alpha}]
set dpoints [list $alpha 0.0 $minalpha 0.0 0.0 $alpha 0.0 $minalpha]
set xdelta [expr {($xend-$xbegin)/double($xnumber)}]
set ydelta [expr {($yend-$ybegin)/double($ynumber)}]
set hxdelta [expr {$xdelta/2.0}]
set hydelta [expr {$ydelta/2.0}]
set result 0.0
set dxdy [expr {0.25*$xdelta*$ydelta}]
for { set j 0 } { $j < $ynumber } { incr j } {
set y [expr {$ybegin+$hydelta+double($j)*$ydelta}]
for { set i 0 } { $i < $xnumber } { incr i } {
set x [expr {$xbegin+$hxdelta+double($i)*$xdelta}]
foreach {dx dy} $dpoints {
set x1 [expr {$x+$dx}]
set y1 [expr {$y+$dy}]
set func_value [uplevel 1 $func $x1 $y1]
set result [expr {$result+$func_value}]
}
}
}
return [expr {$result*$dxdy}]
}
# integral3D_accurate --
# Integrate a given function of three variables over a block,
# using an 8-point quadrature formula
#
# Arguments:
# xinterval Start, stop and number of steps of the "x" interval
# yinterval Start, stop and number of steps of the "y" interval
# zinterval Start, stop and number of steps of the "z" interval
# func Function of the three variables to be integrated
# Return value:
# Computed integral
#
proc ::math::calculus::integral3D_accurate { xinterval yinterval zinterval func } {
foreach { xbegin xend xnumber } $xinterval { break }
foreach { ybegin yend ynumber } $yinterval { break }
foreach { zbegin zend znumber } $zinterval { break }
set alpha [expr {sqrt(1.0/3.0)}]
set minalpha [expr {-$alpha}]
set dpoints [list $alpha $alpha $alpha \
$alpha $alpha $minalpha \
$alpha $minalpha $alpha \
$alpha $minalpha $minalpha \
$minalpha $alpha $alpha \
$minalpha $alpha $minalpha \
$minalpha $minalpha $alpha \
$minalpha $minalpha $minalpha ]
set xdelta [expr {($xend-$xbegin)/double($xnumber)}]
set ydelta [expr {($yend-$ybegin)/double($ynumber)}]
set zdelta [expr {($zend-$zbegin)/double($znumber)}]
set hxdelta [expr {$xdelta/2.0}]
set hydelta [expr {$ydelta/2.0}]
set hzdelta [expr {$zdelta/2.0}]
set result 0.0
set dxdydz [expr {0.125*$xdelta*$ydelta*$zdelta}]
for { set k 0 } { $k < $znumber } { incr k } {
set z [expr {$zbegin+$hzdelta+double($k)*$zdelta}]
for { set j 0 } { $j < $ynumber } { incr j } {
set y [expr {$ybegin+$hydelta+double($j)*$ydelta}]
for { set i 0 } { $i < $xnumber } { incr i } {
set x [expr {$xbegin+$hxdelta+double($i)*$xdelta}]
foreach {dx dy dz} $dpoints {
set x1 [expr {$x+$dx}]
set y1 [expr {$y+$dy}]
set z1 [expr {$z+$dz}]
set func_value [uplevel 1 $func $x1 $y1 $z1]
set result [expr {$result+$func_value}]
}
}
}
}
return [expr {$result*$dxdydz}]
}
# eulerStep --
# Integrate a system of ordinary differential equations of the type
# x' = f(x,t), where x is a vector of quantities. Integration is
# done over a single step according to Euler's method.
#
# Arguments:
# t Start value of independent variable (time for instance)
# tstep Step size of interval
# xvec Vector of dependent values at the start
# func Function taking the arguments t and xvec to return
# the derivative of each dependent variable.
# Return value:
# List of values at the end of the step
#
proc ::math::calculus::eulerStep { t tstep xvec func } {
set xderiv [uplevel 1 $func $t [list $xvec]]
set result {}
foreach xv $xvec dx $xderiv {
set xnew [expr {$xv+$tstep*$dx}]
lappend result $xnew
}
return $result
}
# heunStep --
# Integrate a system of ordinary differential equations of the type
# x' = f(x,t), where x is a vector of quantities. Integration is
# done over a single step according to Heun's method.
#
# Arguments:
# t Start value of independent variable (time for instance)
# tstep Step size of interval
# xvec Vector of dependent values at the start
# func Function taking the arguments t and xvec to return
# the derivative of each dependent variable.
# Return value:
# List of values at the end of the step
#
proc ::math::calculus::heunStep { t tstep xvec func } {
#
# Predictor step
#
set funcq [uplevel 1 namespace which -command $func]
set xpred [eulerStep $t $tstep $xvec $funcq]
#
# Corrector step
#
set tcorr [expr {$t+$tstep}]
set xcorr [eulerStep $t $tstep $xpred $funcq]
set result {}
foreach xv $xvec xc $xcorr {
set xnew [expr {0.5*($xv+$xc)}]
lappend result $xnew
}
return $result
}
# rungeKuttaStep --
# Integrate a system of ordinary differential equations of the type
# x' = f(x,t), where x is a vector of quantities. Integration is
# done over a single step according to Runge-Kutta 4th order.
#
# Arguments:
# t Start value of independent variable (time for instance)
# tstep Step size of interval
# xvec Vector of dependent values at the start
# func Function taking the arguments t and xvec to return
# the derivative of each dependent variable.
# Return value:
# List of values at the end of the step
#
proc ::math::calculus::rungeKuttaStep { t tstep xvec func } {
set funcq [uplevel 1 namespace which -command $func]
#
# Four steps:
# - k1 = tstep*func(t,x0)
# - k2 = tstep*func(t+0.5*tstep,x0+0.5*k1)
# - k3 = tstep*func(t+0.5*tstep,x0+0.5*k2)
# - k4 = tstep*func(t+ tstep,x0+ k3)
# - x1 = x0 + (k1+2*k2+2*k3+k4)/6
#
set tstep2 [expr {$tstep/2.0}]
set tstep6 [expr {$tstep/6.0}]
set xk1 [$funcq $t $xvec]
set xvec2 {}
foreach x1 $xvec xv $xk1 {
lappend xvec2 [expr {$x1+$tstep2*$xv}]
}
set xk2 [$funcq [expr {$t+$tstep2}] $xvec2]
set xvec3 {}
foreach x1 $xvec xv $xk2 {
lappend xvec3 [expr {$x1+$tstep2*$xv}]
}
set xk3 [$funcq [expr {$t+$tstep2}] $xvec3]
set xvec4 {}
foreach x1 $xvec xv $xk3 {
lappend xvec4 [expr {$x1+$tstep*$xv}]
}
set xk4 [$funcq [expr {$t+$tstep}] $xvec4]
set result {}
foreach x0 $xvec k1 $xk1 k2 $xk2 k3 $xk3 k4 $xk4 {
set dx [expr {$k1+2.0*$k2+2.0*$k3+$k4}]
lappend result [expr {$x0+$dx*$tstep6}]
}
return $result
}
# boundaryValueSecondOrder --
# Integrate a second-order differential equation and solve for
# given boundary values.
#
# The equation is (see the documentation):
# d dy d
# -- A(x) -- + -- B(x) y + C(x) y = D(x)
# dx dx dx
#
# The procedure uses finite differences and tridiagonal matrices to
# solve the equation. The boundary values are put in the matrix
# directly.
#
# Arguments:
# coeff_func Name of triple-valued function for coefficients A, B, C
# force_func Name of the function providing the force term D(x)
# leftbnd Left boundary condition (list of: xvalue, boundary
# value or keyword zero-flux, zero-derivative)
# rightbnd Right boundary condition (ditto)
# nostep Number of steps
# Return value:
# List of x-values and calculated values (x1, y1, x2, y2, ...)
#
proc ::math::calculus::boundaryValueSecondOrder {
coeff_func force_func leftbnd rightbnd nostep } {
set coeffq [uplevel 1 namespace which -command $coeff_func]
set forceq [uplevel 1 namespace which -command $force_func]
if { [llength $leftbnd] != 2 || [llength $rightbnd] != 2 } {
error "Boundary condition(s) incorrect"
}
if { $nostep < 1 } {
error "Number of steps must be larger/equal 1"
}
#
# Set up the matrix, as three different lists and the
# righthand side as the fourth
#
set xleft [lindex $leftbnd 0]
set xright [lindex $rightbnd 0]
set xstep [expr {($xright-$xleft)/double($nostep)}]
set acoeff {}
set bcoeff {}
set ccoeff {}
set dvalue {}
set x $xleft
foreach {A B C} [$coeffq $x] { break }
set A1 [expr {$A/$xstep-0.5*$B}]
set B1 [expr {$A/$xstep+0.5*$B+0.5*$C*$xstep}]
set C1 0.0
for { set i 1 } { $i <= $nostep } { incr i } {
set x [expr {$xleft+double($i)*$xstep}]
if { [expr {abs($x)-0.5*abs($xstep)}] < 0.0 } {
set x 0.0
}
foreach {A B C} [$coeffq $x] { break }
set A2 0.0
set B2 [expr {$A/$xstep-0.5*$B+0.5*$C*$xstep}]
set C2 [expr {$A/$xstep+0.5*$B}]
lappend acoeff [expr {$A1+$A2}]
lappend bcoeff [expr {-$B1-$B2}]
lappend ccoeff [expr {$C1+$C2}]
set A1 [expr {$A/$xstep-0.5*$B}]
set B1 [expr {$A/$xstep+0.5*$B+0.5*$C*$xstep}]
set C1 0.0
}
set xvec {}
for { set i 0 } { $i < $nostep } { incr i } {
set x [expr {$xleft+(0.5+double($i))*$xstep}]
if { [expr {abs($x)-0.25*abs($xstep)}] < 0.0 } {
set x 0.0
}
lappend xvec $x
lappend dvalue [expr {$xstep*[$forceq $x]}]
}
#
# Substitute the boundary values
#
set A [lindex $acoeff 0]
set D [lindex $dvalue 0]
set D1 [expr {$D-$A*[lindex $leftbnd 1]}]
set C [lindex $ccoeff end]
set D [lindex $dvalue end]
set D2 [expr {$D-$C*[lindex $rightbnd 1]}]
set dvalue [concat $D1 [lrange $dvalue 1 end-1] $D2]
set yvec [solveTriDiagonal [lrange $acoeff 1 end] $bcoeff [lrange $ccoeff 0 end-1] $dvalue]
foreach x $xvec y $yvec {
lappend result $x $y
}
return $result
}
# solveTriDiagonal --
# Solve a system of equations Ax = b where A is a tridiagonal matrix
#
# Arguments:
# acoeff Values on lower diagonal
# bcoeff Values on main diagonal
# ccoeff Values on upper diagonal
# dvalue Values on righthand side
# Return value:
# List of values forming the solution
#
proc ::math::calculus::solveTriDiagonal { acoeff bcoeff ccoeff dvalue } {
set nostep [llength $acoeff]
#
# First step: Gauss-elimination
#
set B [lindex $bcoeff 0]
set C [lindex $ccoeff 0]
set D [lindex $dvalue 0]
set acoeff [concat 0.0 $acoeff]
set bcoeff2 [list $B]
set dvalue2 [list $D]
for { set i 1 } { $i <= $nostep } { incr i } {
set A2 [lindex $acoeff $i]
set B2 [lindex $bcoeff $i]
set D2 [lindex $dvalue $i]
set ratab [expr {$A2/double($B)}]
set B2 [expr {$B2-$ratab*$C}]
set D2 [expr {$D2-$ratab*$D}]
lappend bcoeff2 $B2
lappend dvalue2 $D2
set B $B2
set C [lindex $ccoeff $i]
set D $D2
}
#
# Second step: substitution
#
set yvec {}
set B [lindex $bcoeff2 end]
set D [lindex $dvalue2 end]
set y [expr {$D/$B}]
for { set i [expr {$nostep-1}] } { $i >= 0 } { incr i -1 } {
set yvec [concat $y $yvec]
set B [lindex $bcoeff2 $i]
set C [lindex $ccoeff $i]
set D [lindex $dvalue2 $i]
set y [expr {($D-$C*$y)/$B}]
}
set yvec [concat $y $yvec]
return $yvec
}
# newtonRaphson --
# Determine the root of an equation via the Newton-Raphson method
#
# Arguments:
# func Function (proc) in x
# deriv Derivative (proc) of func w.r.t. x
# initval Initial value for x
# Return value:
# Estimate of root
#
proc ::math::calculus::newtonRaphson { func deriv initval } {
variable nr_maxiter
variable nr_tolerance
set funcq [uplevel 1 namespace which -command $func]
set derivq [uplevel 1 namespace which -command $deriv]
set value $initval
set diff [expr {10.0*$nr_tolerance}]
for { set i 0 } { $i < $nr_maxiter } { incr i } {
if { $diff < $nr_tolerance } {
break
}
set newval [expr {$value-[$funcq $value]/[$derivq $value]}]
if { $value != 0.0 } {
set diff [expr {abs($newval-$value)/abs($value)}]
} else {
set diff [expr {abs($newval-$value)}]
}
set value $newval
}
return $newval
}
# newtonRaphsonParameters --
# Set the parameters for the Newton-Raphson method
#
# Arguments:
# maxiter Maximum number of iterations
# tolerance Relative precisiion of the result
# Return value:
# None
#
proc ::math::calculus::newtonRaphsonParameters { maxiter tolerance } {
variable nr_maxiter
variable nr_tolerance
if { $maxiter > 0 } {
set nr_maxiter $maxiter
}
if { $tolerance > 0 } {
set nr_tolerance $tolerance
}
}
#----------------------------------------------------------------------
#
# midpoint --
#
# Perform one set of steps in evaluating an integral using the
# midpoint method.
#
# Usage:
# midpoint f a b s ?n?
#
# Parameters:
# f - function to integrate
# a - One limit of integration
# b - Other limit of integration. a and b need not be in ascending
# order.
# s - Value returned from a previous call to midpoint (see below)
# n - Step number (see below)
#
# Results:
# Returns an estimate of the integral obtained by dividing the
# interval into 3**n equal intervals and using the midpoint rule.
#
# Side effects:
# f is evaluated 2*3**(n-1) times and may have side effects.
#
# The 'midpoint' procedure is designed for successive approximations.
# It should be called initially with n==0. On this initial call, s
# is ignored. The function is evaluated at the midpoint of the interval, and
# the value is multiplied by the width of the interval to give the
# coarsest possible estimate of the integral.
#
# On each iteration except the first, n should be incremented by one,
# and the previous value returned from [midpoint] should be supplied
# as 's'. The function will be evaluated at additional points
# to give a total of 3**n equally spaced points, and the estimate
# of the integral will be updated and returned
#
# Under normal circumstances, user code will not call this function
# directly. Instead, it will use ::math::calculus::romberg to
# do error control and extrapolation to a zero step size.
#
#----------------------------------------------------------------------
proc ::math::calculus::midpoint { f a b { n 0 } { s 0. } } {
if { $n == 0 } {
# First iteration. Simply evaluate the function at the midpoint
# of the interval.
set cmd $f; lappend cmd [expr { 0.5 * ( $a + $b ) }]; set v [eval $cmd]
return [expr { ( $b - $a ) * $v }]
} else {
# Subsequent iterations. We've divided the interval into
# $it subintervals. Evaluate the function at the 1/3 and
# 2/3 points of each subinterval. Then update the estimate
# of the integral that we produced on the last step with
# the new sum.
set it [expr { pow( 3, $n-1 ) }]
set h [expr { ( $b - $a ) / ( 3. * $it ) }]
set h2 [expr { $h + $h }]
set x [expr { $a + 0.5 * $h }]
set sum 0
for { set j 0 } { $j < $it } { incr j } {
set cmd $f; lappend cmd $x; set y [eval $cmd]
set sum [expr { $sum + $y }]
set x [expr { $x + $h2 }]
set cmd $f; lappend cmd $x; set y [eval $cmd]
set sum [expr { $sum + $y }]
set x [expr { $x + $h}]
}
return [expr { ( $s + ( $b - $a ) * $sum / $it ) / 3. }]
}
}
#----------------------------------------------------------------------
#
# romberg --
#
# Compute the integral of a function over an interval using
# Romberg's method.
#
# Usage:
# romberg f a b ?-option value?...
#
# Parameters:
# f - Function to integrate. Must be a single Tcl command,
# to which will be appended the abscissa at which the function
# should be evaluated. f should be analytic over the
# region of integration, but may have a removable singularity
# at either endpoint.
# a - One bound of the interval
# b - The other bound of the interval. a and b need not be in
# ascending order.
#
# Options:
# -abserror ABSERROR
# Requests that the integration be performed to make
# the estimated absolute error of the integral less than
# the given value. Default is 1.e-10.
# -relerror RELERROR
# Requests that the integration be performed to make
# the estimated absolute error of the integral less than
# the given value. Default is 1.e-6.
# -degree N
# Specifies the degree of the polynomial that will be
# used to extrapolate to a zero step size. -degree 0
# requests integration with the midpoint rule; -degree 1
# is equivalent to Simpson's 3/8 rule; higher degrees
# are difficult to describe but (within reason) give
# faster convergence for smooth functions. Default is
# -degree 4.
# -maxiter N
# Specifies the maximum number of triplings of the
# number of steps to take in integration. At most
# 3**N function evaluations will be performed in
# integrating with -maxiter N. The integration
# will terminate at that time, even if the result
# satisfies neither the -relerror nor -abserror tests.
#
# Results:
# Returns a two-element list. The first element is the estimated
# value of the integral; the second is the estimated absolute
# error of the value.
#
#----------------------------------------------------------------------
proc ::math::calculus::romberg { f a b args } {
# Replace f with a context-independent version
set f [lreplace $f 0 0 [uplevel 1 [list namespace which [lindex $f 0]]]]
# Assign default parameters
array set params {
-abserror 1.0e-10
-degree 4
-relerror 1.0e-6
-maxiter 14
}
# Extract parameters
if { ( [llength $args] % 2 ) != 0 } {
return -code error -errorcode [list romberg wrongNumArgs] \
"wrong \# args, should be\
\"[lreplace [info level 0] 1 end \
f x1 x2 ?-option value?...]\""
}
foreach { key value } $args {
if { ![info exists params($key)] } {
return -code error -errorcode [list romberg badoption $key] \
"unknown option \"$key\",\
should be -abserror, -degree, -relerror, or -maxiter"
}
set params($key) $value
}
# Check params
if { ![string is double -strict $a] } {
return -code error [expectDouble $a]
}
if { ![string is double -strict $b] } {
return -code error [expectDouble $b]
}
if { ![string is double -strict $params(-abserror)] } {
return -code error [expectDouble $params(-abserror)]
}
if { ![string is integer -strict $params(-degree)] } {
return -code error [expectInteger $params(-degree)]
}
if { ![string is integer -strict $params(-maxiter)] } {
return -code error [expectInteger $params(-maxiter)]
}
if { ![string is double -strict $params(-relerror)] } {
return -code error [expectDouble $params(-relerror)]
}
foreach key {-abserror -degree -maxiter -relerror} {
if { $params($key) <= 0 } {
return -code error -errorcode [list romberg notPositive $key] \
"$key must be positive"
}
}
if { $params(-maxiter) <= $params(-degree) } {
return -code error -errorcode [list romberg tooFewIter] \
"-maxiter must be greater than -degree"
}
# Create lists of step size and sum with the given number of steps.
set x [list]
set y [list]
set s 0; # Current best estimate of integral
set indx end-$params(-degree)
set pow3 1.; # Current step size (times b-a)
# Perform successive integrations, tripling the number of steps each time
for { set i 0 } { $i < $params(-maxiter) } { incr i } {
set s [midpoint $f $a $b $i $s]
lappend x $pow3
lappend y $s
set pow3 [expr { $pow3 / 9. }]
# Once $degree steps have been done, start Richardson extrapolation
# to a zero step size.
if { $i >= $params(-degree) } {
set x [lrange $x $indx end]
set y [lrange $y $indx end]
foreach {estimate err} [neville $x $y 0.] break
if { $err < $params(-abserror)
|| $err < $params(-relerror) * abs($estimate) } {
return [list $estimate $err]
}
}
}
# If -maxiter iterations have been done, give up, and return
# with the current error estimate.
return [list $estimate $err]
}
#----------------------------------------------------------------------
#
# u_infinity --
# Change of variable for integrating over a half-infinite
# interval
#
# Parameters:
# f - Function being integrated
# u - 1/x, where x is the abscissa where f is to be evaluated
#
# Results:
# Returns f(1/u)/(u**2)
#
# Side effects:
# Whatever f does.
#
#----------------------------------------------------------------------
proc ::math::calculus::u_infinity { f u } {
set cmd $f
lappend cmd [expr { 1.0 / $u }]
set y [eval $cmd]
return [expr { $y / ( $u * $u ) }]
}
#----------------------------------------------------------------------
#
# romberg_infinity --
# Evaluate a function on a half-open interval
#
# Usage:
# Same as 'romberg'
#
# The 'romberg_infinity' procedure performs Romberg integration on
# an interval [a,b] where an infinite a or b may be represented by
# a large number (e.g. 1.e30). It operates by a change of variable;
# instead of integrating f(x) from a to b, it makes a change
# of variable u = 1/x, and integrates from 1/b to 1/a f(1/u)/u**2 du.
#
#----------------------------------------------------------------------
proc ::math::calculus::romberg_infinity { f a b args } {
if { ![string is double -strict $a] } {
return -code error [expectDouble $a]
}
if { ![string is double -strict $b] } {
return -code error [expectDouble $b]
}
if { $a * $b <= 0. } {
return -code error -errorcode {romberg_infinity cross-axis} \
"limits of integration have opposite sign"
}
set f [lreplace $f 0 0 [uplevel 1 [list namespace which [lindex $f 0]]]]
set f [list u_infinity $f]
return [eval [linsert $args 0 \
romberg $f [expr { 1.0 / $b }] [expr { 1.0 / $a }]]]
}
#----------------------------------------------------------------------
#
# u_sqrtSingLower --
# Change of variable for integrating over an interval with
# an inverse square root singularity at the lower bound.
#
# Parameters:
# f - Function being integrated
# a - Lower bound
# u - sqrt(x-a), where x is the abscissa where f is to be evaluated
#
# Results:
# Returns 2 * u * f( a + u**2 )
#
# Side effects:
# Whatever f does.
#
#----------------------------------------------------------------------
proc ::math::calculus::u_sqrtSingLower { f a u } {
set cmd $f
lappend cmd [expr { $a + $u * $u }]
set y [eval $cmd]
return [expr { 2. * $u * $y }]
}
#----------------------------------------------------------------------
#
# u_sqrtSingUpper --
# Change of variable for integrating over an interval with
# an inverse square root singularity at the upper bound.
#
# Parameters:
# f - Function being integrated
# b - Upper bound
# u - sqrt(b-x), where x is the abscissa where f is to be evaluated
#
# Results:
# Returns 2 * u * f( b - u**2 )
#
# Side effects:
# Whatever f does.
#
#----------------------------------------------------------------------
proc ::math::calculus::u_sqrtSingUpper { f b u } {
set cmd $f
lappend cmd [expr { $b - $u * $u }]
set y [eval $cmd]
return [expr { 2. * $u * $y }]
}
#----------------------------------------------------------------------
#
# math::calculus::romberg_sqrtSingLower --
# Integrate a function with an inverse square root singularity
# at the lower bound
#
# Usage:
# Same as 'romberg'
#
# The 'romberg_sqrtSingLower' procedure is a wrapper for 'romberg'
# for integrating a function with an inverse square root singularity
# at the lower bound of the interval. It works by making the change
# of variable u = sqrt( x-a ).
#
#----------------------------------------------------------------------
proc ::math::calculus::romberg_sqrtSingLower { f a b args } {
if { ![string is double -strict $a] } {
return -code error [expectDouble $a]
}
if { ![string is double -strict $b] } {
return -code error [expectDouble $b]
}
if { $a >= $b } {
return -code error "limits of integration out of order"
}
set f [lreplace $f 0 0 [uplevel 1 [list namespace which [lindex $f 0]]]]
set f [list u_sqrtSingLower $f $a]
return [eval [linsert $args 0 \
romberg $f 0 [expr { sqrt( $b - $a ) }]]]
}
#----------------------------------------------------------------------
#
# math::calculus::romberg_sqrtSingUpper --
# Integrate a function with an inverse square root singularity
# at the upper bound
#
# Usage:
# Same as 'romberg'
#
# The 'romberg_sqrtSingUpper' procedure is a wrapper for 'romberg'
# for integrating a function with an inverse square root singularity
# at the upper bound of the interval. It works by making the change
# of variable u = sqrt( b-x ).
#
#----------------------------------------------------------------------
proc ::math::calculus::romberg_sqrtSingUpper { f a b args } {
if { ![string is double -strict $a] } {
return -code error [expectDouble $a]
}
if { ![string is double -strict $b] } {
return -code error [expectDouble $b]
}
if { $a >= $b } {
return -code error "limits of integration out of order"
}
set f [lreplace $f 0 0 [uplevel 1 [list namespace which [lindex $f 0]]]]
set f [list u_sqrtSingUpper $f $b]
return [eval [linsert $args 0 \
romberg $f 0. [expr { sqrt( $b - $a ) }]]]
}
#----------------------------------------------------------------------
#
# u_powerLawLower --
# Change of variable for integrating over an interval with
# an integrable power law singularity at the lower bound.
#
# Parameters:
# f - Function being integrated
# gammaover1mgamma - gamma / (1 - gamma), where gamma is the power
# oneover1mgamma - 1 / (1 - gamma), where gamma is the power
# a - Lower limit of integration
# u - Changed variable u == (x-a)**(1-gamma)
#
# Results:
# Returns u**(1/1-gamma) * f(a + u**(1/1-gamma) ).
#
# Side effects:
# Whatever f does.
#
#----------------------------------------------------------------------
proc ::math::calculus::u_powerLawLower { f gammaover1mgamma oneover1mgamma
a u } {
set cmd $f
lappend cmd [expr { $a + pow( $u, $oneover1mgamma ) }]
set y [eval $cmd]
return [expr { $y * pow( $u, $gammaover1mgamma ) }]
}
#----------------------------------------------------------------------
#
# math::calculus::romberg_powerLawLower --
# Integrate a function with an integrable power law singularity
# at the lower bound
#
# Usage:
# romberg_powerLawLower gamma f a b ?-option value...?
#
# Parameters:
# gamma - Power (0<gamma<1) of the singularity
# f - Function to integrate. Must be a single Tcl command,
# to which will be appended the abscissa at which the function
# should be evaluated. f is expected to have an integrable
# power law singularity at the lower endpoint; that is, the
# integrand is expected to diverge as (x-a)**gamma.
# a - One bound of the interval
# b - The other bound of the interval. a and b need not be in
# ascending order.
#
# Options:
# -abserror ABSERROR
# Requests that the integration be performed to make
# the estimated absolute error of the integral less than
# the given value. Default is 1.e-10.
# -relerror RELERROR
# Requests that the integration be performed to make
# the estimated absolute error of the integral less than
# the given value. Default is 1.e-6.
# -degree N
# Specifies the degree of the polynomial that will be
# used to extrapolate to a zero step size. -degree 0
# requests integration with the midpoint rule; -degree 1
# is equivalent to Simpson's 3/8 rule; higher degrees
# are difficult to describe but (within reason) give
# faster convergence for smooth functions. Default is
# -degree 4.
# -maxiter N
# Specifies the maximum number of triplings of the
# number of steps to take in integration. At most
# 3**N function evaluations will be performed in
# integrating with -maxiter N. The integration
# will terminate at that time, even if the result
# satisfies neither the -relerror nor -abserror tests.
#
# Results:
# Returns a two-element list. The first element is the estimated
# value of the integral; the second is the estimated absolute
# error of the value.
#
# The 'romberg_sqrtSingLower' procedure is a wrapper for 'romberg'
# for integrating a function with an integrable power law singularity
# at the lower bound of the interval. It works by making the change
# of variable u = (x-a)**(1-gamma).
#
#----------------------------------------------------------------------
proc ::math::calculus::romberg_powerLawLower { gamma f a b args } {
if { ![string is double -strict $gamma] } {
return -code error [expectDouble $gamma]
}
if { $gamma <= 0.0 || $gamma >= 1.0 } {
return -code error -errorcode [list romberg gammaTooBig] \
"gamma must lie in the interval (0,1)"
}
if { ![string is double -strict $a] } {
return -code error [expectDouble $a]
}
if { ![string is double -strict $b] } {
return -code error [expectDouble $b]
}
if { $a >= $b } {
return -code error "limits of integration out of order"
}
set f [lreplace $f 0 0 [uplevel 1 [list namespace which [lindex $f 0]]]]
set onemgamma [expr { 1. - $gamma }]
set f [list u_powerLawLower $f \
[expr { $gamma / $onemgamma }] \
[expr { 1 / $onemgamma }] \
$a]
set limit [expr { pow( $b - $a, $onemgamma ) }]
set result {}
foreach v [eval [linsert $args 0 romberg $f 0 $limit]] {
lappend result [expr { $v / $onemgamma }]
}
return $result
}
#----------------------------------------------------------------------
#
# u_powerLawLower --
# Change of variable for integrating over an interval with
# an integrable power law singularity at the upper bound.
#
# Parameters:
# f - Function being integrated
# gammaover1mgamma - gamma / (1 - gamma), where gamma is the power
# oneover1mgamma - 1 / (1 - gamma), where gamma is the power
# b - Upper limit of integration
# u - Changed variable u == (b-x)**(1-gamma)
#
# Results:
# Returns u**(1/1-gamma) * f(b-u**(1/1-gamma) ).
#
# Side effects:
# Whatever f does.
#
#----------------------------------------------------------------------
proc ::math::calculus::u_powerLawUpper { f gammaover1mgamma oneover1mgamma
b u } {
set cmd $f
lappend cmd [expr { $b - pow( $u, $oneover1mgamma ) }]
set y [eval $cmd]
return [expr { $y * pow( $u, $gammaover1mgamma ) }]
}
#----------------------------------------------------------------------
#
# math::calculus::romberg_powerLawUpper --
# Integrate a function with an integrable power law singularity
# at the upper bound
#
# Usage:
# romberg_powerLawLower gamma f a b ?-option value...?
#
# Parameters:
# gamma - Power (0<gamma<1) of the singularity
# f - Function to integrate. Must be a single Tcl command,
# to which will be appended the abscissa at which the function
# should be evaluated. f is expected to have an integrable
# power law singularity at the upper endpoint; that is, the
# integrand is expected to diverge as (b-x)**gamma.
# a - One bound of the interval
# b - The other bound of the interval. a and b need not be in
# ascending order.
#
# Options:
# -abserror ABSERROR
# Requests that the integration be performed to make
# the estimated absolute error of the integral less than
# the given value. Default is 1.e-10.
# -relerror RELERROR
# Requests that the integration be performed to make
# the estimated absolute error of the integral less than
# the given value. Default is 1.e-6.
# -degree N
# Specifies the degree of the polynomial that will be
# used to extrapolate to a zero step size. -degree 0
# requests integration with the midpoint rule; -degree 1
# is equivalent to Simpson's 3/8 rule; higher degrees
# are difficult to describe but (within reason) give
# faster convergence for smooth functions. Default is
# -degree 4.
# -maxiter N
# Specifies the maximum number of triplings of the
# number of steps to take in integration. At most
# 3**N function evaluations will be performed in
# integrating with -maxiter N. The integration
# will terminate at that time, even if the result
# satisfies neither the -relerror nor -abserror tests.
#
# Results:
# Returns a two-element list. The first element is the estimated
# value of the integral; the second is the estimated absolute
# error of the value.
#
# The 'romberg_PowerLawUpper' procedure is a wrapper for 'romberg'
# for integrating a function with an integrable power law singularity
# at the upper bound of the interval. It works by making the change
# of variable u = (b-x)**(1-gamma).
#
#----------------------------------------------------------------------
proc ::math::calculus::romberg_powerLawUpper { gamma f a b args } {
if { ![string is double -strict $gamma] } {
return -code error [expectDouble $gamma]
}
if { $gamma <= 0.0 || $gamma >= 1.0 } {
return -code error -errorcode [list romberg gammaTooBig] \
"gamma must lie in the interval (0,1)"
}
if { ![string is double -strict $a] } {
return -code error [expectDouble $a]
}
if { ![string is double -strict $b] } {
return -code error [expectDouble $b]
}
if { $a >= $b } {
return -code error "limits of integration out of order"
}
set f [lreplace $f 0 0 [uplevel 1 [list namespace which [lindex $f 0]]]]
set onemgamma [expr { 1. - $gamma }]
set f [list u_powerLawUpper $f \
[expr { $gamma / $onemgamma }] \
[expr { 1. / $onemgamma }] \
$b]
set limit [expr { pow( $b - $a, $onemgamma ) }]
set result {}
foreach v [eval [linsert $args 0 romberg $f 0 $limit]] {
lappend result [expr { $v / $onemgamma }]
}
return $result
}
#----------------------------------------------------------------------
#
# u_expUpper --
#
# Change of variable to integrate a function that decays
# exponentially.
#
# Parameters:
# f - Function to integrate
# u - Changed variable u = exp(-x)
#
# Results:
# Returns (1/u)*f(-log(u))
#
# Side effects:
# Whatever f does.
#
#----------------------------------------------------------------------
proc ::math::calculus::u_expUpper { f u } {
set cmd $f
lappend cmd [expr { -log($u) }]
set y [eval $cmd]
return [expr { $y / $u }]
}
#----------------------------------------------------------------------
#
# romberg_expUpper --
#
# Integrate a function that decays exponentially over a
# half-infinite interval.
#
# Parameters:
# Same as romberg. The upper limit of integration, 'b',
# is expected to be very large.
#
# Results:
# Same as romberg.
#
# The romberg_expUpper function operates by making the change of
# variable, u = exp(-x).
#
#----------------------------------------------------------------------
proc ::math::calculus::romberg_expUpper { f a b args } {
if { ![string is double -strict $a] } {
return -code error [expectDouble $a]
}
if { ![string is double -strict $b] } {
return -code error [expectDouble $b]
}
if { $a >= $b } {
return -code error "limits of integration out of order"
}
set f [lreplace $f 0 0 [uplevel 1 [list namespace which [lindex $f 0]]]]
set f [list u_expUpper $f]
return [eval [linsert $args 0 \
romberg $f [expr {exp(-$b)}] [expr {exp(-$a)}]]]
}
#----------------------------------------------------------------------
#
# u_expLower --
#
# Change of variable to integrate a function that grows
# exponentially.
#
# Parameters:
# f - Function to integrate
# u - Changed variable u = exp(x)
#
# Results:
# Returns (1/u)*f(log(u))
#
# Side effects:
# Whatever f does.
#
#----------------------------------------------------------------------
proc ::math::calculus::u_expLower { f u } {
set cmd $f
lappend cmd [expr { log($u) }]
set y [eval $cmd]
return [expr { $y / $u }]
}
#----------------------------------------------------------------------
#
# romberg_expLower --
#
# Integrate a function that grows exponentially over a
# half-infinite interval.
#
# Parameters:
# Same as romberg. The lower limit of integration, 'a',
# is expected to be very large and negative.
#
# Results:
# Same as romberg.
#
# The romberg_expUpper function operates by making the change of
# variable, u = exp(x).
#
#----------------------------------------------------------------------
proc ::math::calculus::romberg_expLower { f a b args } {
if { ![string is double -strict $a] } {
return -code error [expectDouble $a]
}
if { ![string is double -strict $b] } {
return -code error [expectDouble $b]
}
if { $a >= $b } {
return -code error "limits of integration out of order"
}
set f [lreplace $f 0 0 [uplevel 1 [list namespace which [lindex $f 0]]]]
set f [list u_expLower $f]
return [eval [linsert $args 0 \
romberg $f [expr {exp($a)}] [expr {exp($b)}]]]
}
# regula_falsi --
# Compute the zero of a function via regula falsi
# Arguments:
# f Name of the procedure/command that evaluates the function
# xb Start of the interval that brackets the zero
# xe End of the interval that brackets the zero
# eps Relative error that is allowed (default: 1.0e-4)
# Result:
# Estimate of the zero, such that the estimated (!)
# error < eps * abs(xe-xb)
# Note:
# f(xb)*f(xe) must be negative and eps must be positive
#
proc ::math::calculus::regula_falsi { f xb xe {eps 1.0e-4} } {
if { $eps <= 0.0 } {
return -code error "Relative error must be positive"
}
set fb [$f $xb]
set fe [$f $xe]
if { $fb * $fe > 0.0 } {
return -code error "Interval must be chosen such that the \
function has a different sign at the beginning than at the end"
}
set max_error [expr {$eps * abs($xe-$xb)}]
set interval [expr {abs($xe-$xb)}]
while { $interval > $max_error } {
set coeff [expr {($fe-$fb)/($xe-$xb)}]
set xi [expr {$xb-$fb/$coeff}]
set fi [$f $xi]
if { $fi == 0.0 } {
break
}
set diff1 [expr {abs($xe-$xi)}]
set diff2 [expr {abs($xb-$xi)}]
if { $diff1 > $diff2 } {
set interval $diff2
} else {
set interval $diff1
}
if { $fb*$fi < 0.0 } {
set xe $xi
set fe $fi
} else {
set xb $xi
set fb $fi
}
}
return $xi
}
|