/usr/share/tcltk/tcllib1.14/math/bignum.tcl is in tcllib 1.14-dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 | # bignum library in pure Tcl [VERSION 7Sep2004]
# Copyright (C) 2004 Salvatore Sanfilippo <antirez at invece dot org>
# Copyright (C) 2004 Arjen Markus <arjen dot markus at wldelft dot nl>
#
# LICENSE
#
# This software is:
# Copyright (C) 2004 Salvatore Sanfilippo <antirez at invece dot org>
# Copyright (C) 2004 Arjen Markus <arjen dot markus at wldelft dot nl>
# The following terms apply to all files associated with the software
# unless explicitly disclaimed in individual files.
#
# The authors hereby grant permission to use, copy, modify, distribute,
# and license this software and its documentation for any purpose, provided
# that existing copyright notices are retained in all copies and that this
# notice is included verbatim in any distributions. No written agreement,
# license, or royalty fee is required for any of the authorized uses.
# Modifications to this software may be copyrighted by their authors
# and need not follow the licensing terms described here, provided that
# the new terms are clearly indicated on the first page of each file where
# they apply.
#
# IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY
# FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
# ARISING OUT OF THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY
# DERIVATIVES THEREOF, EVEN IF THE AUTHORS HAVE BEEN ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
# THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES,
# INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE
# IS PROVIDED ON AN "AS IS" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE
# NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR
# MODIFICATIONS.
#
# GOVERNMENT USE: If you are acquiring this software on behalf of the
# U.S. government, the Government shall have only "Restricted Rights"
# in the software and related documentation as defined in the Federal
# Acquisition Regulations (FARs) in Clause 52.227.19 (c) (2). If you
# are acquiring the software on behalf of the Department of Defense, the
# software shall be classified as "Commercial Computer Software" and the
# Government shall have only "Restricted Rights" as defined in Clause
# 252.227-7013 (c) (1) of DFARs. Notwithstanding the foregoing, the
# authors grant the U.S. Government and others acting in its behalf
# permission to use and distribute the software in accordance with the
# terms specified in this license.
# TODO
# - pow and powm should check if the exponent is zero in order to return one
package require Tcl 8.4
namespace eval ::math::bignum {}
#################################### Misc ######################################
# Don't change atombits define if you don't know what you are doing.
# Note that it must be a power of two, and that 16 is too big
# because expr may overflow in the product of two 16 bit numbers.
set ::math::bignum::atombits 16
set ::math::bignum::atombase [expr {1 << $::math::bignum::atombits}]
set ::math::bignum::atommask [expr {$::math::bignum::atombase-1}]
# Note: to change 'atombits' is all you need to change the
# library internal representation base.
# Return the max between a and b (not bignums)
proc ::math::bignum::max {a b} {
expr {($a > $b) ? $a : $b}
}
# Return the min between a and b (not bignums)
proc ::math::bignum::min {a b} {
expr {($a < $b) ? $a : $b}
}
############################ Basic bignum operations ###########################
# Returns a new bignum initialized to the value of 0.
#
# The big numbers are represented as a Tcl lists
# The all-is-a-string representation does not pay here
# bignums in Tcl are already slow, we can't slow-down it more.
#
# The bignum representation is [list bignum <sign> <atom0> ... <atomN>]
# Where the atom0 is the least significant. Atoms are the digits
# of a number in base 2^$::math::bignum::atombits
#
# The sign is 0 if the number is positive, 1 for negative numbers.
# Note that the function accepts an argument used in order to
# create a bignum of <atoms> atoms. For default zero is
# represented as a single zero atom.
#
# The function is designed so that "set b [zero [atoms $a]]" will
# produce 'b' with the same number of atoms as 'a'.
proc ::math::bignum::zero {{value 0}} {
set v [list bignum 0 0]
while { $value > 1 } {
lappend v 0
incr value -1
}
return $v
}
# Get the bignum sign
proc ::math::bignum::sign bignum {
lindex $bignum 1
}
# Get the number of atoms in the bignum
proc ::math::bignum::atoms bignum {
expr {[llength $bignum]-2}
}
# Get the i-th atom out of a bignum.
# If the bignum is shorter than i atoms, the function
# returns 0.
proc ::math::bignum::atom {bignum i} {
if {[::math::bignum::atoms $bignum] < [expr {$i+1}]} {
return 0
} else {
lindex $bignum [expr {$i+2}]
}
}
# Set the i-th atom out of a bignum. If the bignum
# has less than 'i+1' atoms, add zero atoms to reach i.
proc ::math::bignum::setatom {bignumvar i atomval} {
upvar 1 $bignumvar bignum
while {[::math::bignum::atoms $bignum] < [expr {$i+1}]} {
lappend bignum 0
}
lset bignum [expr {$i+2}] $atomval
}
# Set the bignum sign
proc ::math::bignum::setsign {bignumvar sign} {
upvar 1 $bignumvar bignum
lset bignum 1 $sign
}
# Remove trailing atoms with a value of zero
# The normalized bignum is returned
proc ::math::bignum::normalize bignumvar {
upvar 1 $bignumvar bignum
set atoms [expr {[llength $bignum]-2}]
set i [expr {$atoms+1}]
while {$atoms && [lindex $bignum $i] == 0} {
set bignum [lrange $bignum 0 end-1]
incr atoms -1
incr i -1
}
if {!$atoms} {
set bignum [list bignum 0 0]
}
return $bignum
}
# Return the absolute value of N
proc ::math::bignum::abs n {
::math::bignum::setsign n 0
return $n
}
################################# Comparison ###################################
# Compare by absolute value. Called by ::math::bignum::cmp after the sign check.
#
# Returns 1 if |a| > |b|
# 0 if a == b
# -1 if |a| < |b|
#
proc ::math::bignum::abscmp {a b} {
if {[llength $a] > [llength $b]} {
return 1
} elseif {[llength $a] < [llength $b]} {
return -1
}
set j [expr {[llength $a]-1}]
while {$j >= 2} {
if {[lindex $a $j] > [lindex $b $j]} {
return 1
} elseif {[lindex $a $j] < [lindex $b $j]} {
return -1
}
incr j -1
}
return 0
}
# High level comparison. Return values:
#
# 1 if a > b
# -1 if a < b
# 0 if a == b
#
proc ::math::bignum::cmp {a b} { ; # same sign case
set a [_treat $a]
set b [_treat $b]
if {[::math::bignum::sign $a] == [::math::bignum::sign $b]} {
if {[::math::bignum::sign $a] == 0} {
::math::bignum::abscmp $a $b
} else {
expr {-([::math::bignum::abscmp $a $b])}
}
} else { ; # different sign case
if {[::math::bignum::sign $a]} {return -1}
return 1
}
}
# Return true if 'z' is zero.
proc ::math::bignum::iszero z {
set z [_treat $z]
expr {[llength $z] == 3 && [lindex $z 2] == 0}
}
# Comparison facilities
proc ::math::bignum::lt {a b} {expr {[::math::bignum::cmp $a $b] < 0}}
proc ::math::bignum::le {a b} {expr {[::math::bignum::cmp $a $b] <= 0}}
proc ::math::bignum::gt {a b} {expr {[::math::bignum::cmp $a $b] > 0}}
proc ::math::bignum::ge {a b} {expr {[::math::bignum::cmp $a $b] >= 0}}
proc ::math::bignum::eq {a b} {expr {[::math::bignum::cmp $a $b] == 0}}
proc ::math::bignum::ne {a b} {expr {[::math::bignum::cmp $a $b] != 0}}
########################### Addition / Subtraction #############################
# Add two bignums, don't care about the sign.
proc ::math::bignum::rawAdd {a b} {
while {[llength $a] < [llength $b]} {lappend a 0}
while {[llength $b] < [llength $a]} {lappend b 0}
set r [::math::bignum::zero [expr {[llength $a]-1}]]
set car 0
for {set i 2} {$i < [llength $a]} {incr i} {
set sum [expr {[lindex $a $i]+[lindex $b $i]+$car}]
set car [expr {$sum >> $::math::bignum::atombits}]
set sum [expr {$sum & $::math::bignum::atommask}]
lset r $i $sum
}
if {$car} {
lset r $i $car
}
::math::bignum::normalize r
}
# Subtract two bignums, don't care about the sign. a > b condition needed.
proc ::math::bignum::rawSub {a b} {
set atoms [::math::bignum::atoms $a]
set r [::math::bignum::zero $atoms]
while {[llength $b] < [llength $a]} {lappend b 0} ; # b padding
set car 0
incr atoms 2
for {set i 2} {$i < $atoms} {incr i} {
set sub [expr {[lindex $a $i]-[lindex $b $i]-$car}]
set car 0
if {$sub < 0} {
incr sub $::math::bignum::atombase
set car 1
}
lset r $i $sub
}
# Note that if a > b there is no car in the last for iteration
::math::bignum::normalize r
}
# Higher level addition, care about sign and call rawAdd or rawSub
# as needed.
proc ::math::bignum::add {a b} {
set a [_treat $a]
set b [_treat $b]
# Same sign case
if {[::math::bignum::sign $a] == [::math::bignum::sign $b]} {
set r [::math::bignum::rawAdd $a $b]
::math::bignum::setsign r [::math::bignum::sign $a]
} else {
# Different sign case
set cmp [::math::bignum::abscmp $a $b]
# 's' is the sign, set accordingly to A or B negative
set s [expr {[::math::bignum::sign $a] == 1}]
switch -- $cmp {
0 {return [::math::bignum::zero]}
1 {
set r [::math::bignum::rawSub $a $b]
::math::bignum::setsign r $s
return $r
}
-1 {
set r [::math::bignum::rawSub $b $a]
::math::bignum::setsign r [expr {!$s}]
return $r
}
}
}
return $r
}
# Higher level subtraction, care about sign and call rawAdd or rawSub
# as needed.
proc ::math::bignum::sub {a b} {
set a [_treat $a]
set b [_treat $b]
# Different sign case
if {[::math::bignum::sign $a] != [::math::bignum::sign $b]} {
set r [::math::bignum::rawAdd $a $b]
::math::bignum::setsign r [::math::bignum::sign $a]
} else {
# Same sign case
set cmp [::math::bignum::abscmp $a $b]
# 's' is the sign, set accordingly to A and B both negative or positive
set s [expr {[::math::bignum::sign $a] == 1}]
switch -- $cmp {
0 {return [::math::bignum::zero]}
1 {
set r [::math::bignum::rawSub $a $b]
::math::bignum::setsign r $s
return $r
}
-1 {
set r [::math::bignum::rawSub $b $a]
::math::bignum::setsign r [expr {!$s}]
return $r
}
}
}
return $r
}
############################### Multiplication #################################
set ::math::bignum::karatsubaThreshold 32
# Multiplication. Calls Karatsuba that calls Base multiplication under
# a given threshold.
proc ::math::bignum::mul {a b} {
set a [_treat $a]
set b [_treat $b]
set r [::math::bignum::kmul $a $b]
# The sign is the xor between the two signs
::math::bignum::setsign r [expr {[::math::bignum::sign $a]^[::math::bignum::sign $b]}]
}
# Karatsuba Multiplication
proc ::math::bignum::kmul {a b} {
set n [expr {[::math::bignum::max [llength $a] [llength $b]]-2}]
set nmin [expr {[::math::bignum::min [llength $a] [llength $b]]-2}]
if {$nmin < $::math::bignum::karatsubaThreshold} {return [::math::bignum::bmul $a $b]}
set m [expr {($n+($n&1))/2}]
set x0 [concat [list bignum 0] [lrange $a 2 [expr {$m+1}]]]
set y0 [concat [list bignum 0] [lrange $b 2 [expr {$m+1}]]]
set x1 [concat [list bignum 0] [lrange $a [expr {$m+2}] end]]
set y1 [concat [list bignum 0] [lrange $b [expr {$m+2}] end]]
if {0} {
puts "m: $m"
puts "x0: $x0"
puts "x1: $x1"
puts "y0: $y0"
puts "y1: $y1"
}
set p1 [::math::bignum::kmul $x1 $y1]
set p2 [::math::bignum::kmul $x0 $y0]
set p3 [::math::bignum::kmul [::math::bignum::add $x1 $x0] [::math::bignum::add $y1 $y0]]
set p3 [::math::bignum::sub $p3 $p1]
set p3 [::math::bignum::sub $p3 $p2]
set p1 [::math::bignum::lshiftAtoms $p1 [expr {$m*2}]]
set p3 [::math::bignum::lshiftAtoms $p3 $m]
set p3 [::math::bignum::add $p3 $p1]
set p3 [::math::bignum::add $p3 $p2]
return $p3
}
# Base Multiplication.
proc ::math::bignum::bmul {a b} {
set r [::math::bignum::zero [expr {[llength $a]+[llength $b]-3}]]
for {set j 2} {$j < [llength $b]} {incr j} {
set car 0
set t [list bignum 0 0]
for {set i 2} {$i < [llength $a]} {incr i} {
# note that A = B * C + D + E
# with A of N*2 bits and C,D,E of N bits
# can't overflow since:
# (2^N-1)*(2^N-1)+(2^N-1)+(2^N-1) == 2^(2*N)-1
set t0 [lindex $a $i]
set t1 [lindex $b $j]
set t2 [lindex $r [expr {$i+$j-2}]]
set mul [expr {wide($t0)*$t1+$t2+$car}]
set car [expr {$mul >> $::math::bignum::atombits}]
set mul [expr {$mul & $::math::bignum::atommask}]
lset r [expr {$i+$j-2}] $mul
}
if {$car} {
lset r [expr {$i+$j-2}] $car
}
}
::math::bignum::normalize r
}
################################## Shifting ####################################
# Left shift 'z' of 'n' atoms. Low-level function used by ::math::bignum::lshift
# Exploit the internal representation to go faster.
proc ::math::bignum::lshiftAtoms {z n} {
while {$n} {
set z [linsert $z 2 0]
incr n -1
}
return $z
}
# Right shift 'z' of 'n' atoms. Low-level function used by ::math::bignum::lshift
# Exploit the internal representation to go faster.
proc ::math::bignum::rshiftAtoms {z n} {
set z [lreplace $z 2 [expr {$n+1}]]
}
# Left shift 'z' of 'n' bits. Low-level function used by ::math::bignum::lshift.
# 'n' must be <= $::math::bignum::atombits
proc ::math::bignum::lshiftBits {z n} {
set atoms [llength $z]
set car 0
for {set j 2} {$j < $atoms} {incr j} {
set t [lindex $z $j]
lset z $j \
[expr {wide($car)|((wide($t)<<$n)&$::math::bignum::atommask)}]
set car [expr {wide($t)>>($::math::bignum::atombits-$n)}]
}
if {$car} {
lappend z 0
lset z $j $car
}
return $z ; # No normalization needed
}
# Right shift 'z' of 'n' bits. Low-level function used by ::math::bignum::rshift.
# 'n' must be <= $::math::bignum::atombits
proc ::math::bignum::rshiftBits {z n} {
set atoms [llength $z]
set car 0
for {set j [expr {$atoms-1}]} {$j >= 2} {incr j -1} {
set t [lindex $z $j]
lset z $j [expr {wide($car)|(wide($t)>>$n)}]
set car \
[expr {(wide($t)<<($::math::bignum::atombits-$n))&$::math::bignum::atommask}]
}
::math::bignum::normalize z
}
# Left shift 'z' of 'n' bits.
proc ::math::bignum::lshift {z n} {
set z [_treat $z]
set atoms [expr {$n / $::math::bignum::atombits}]
set bits [expr {$n & ($::math::bignum::atombits-1)}]
::math::bignum::lshiftBits [math::bignum::lshiftAtoms $z $atoms] $bits
}
# Right shift 'z' of 'n' bits.
proc ::math::bignum::rshift {z n} {
set z [_treat $z]
set atoms [expr {$n / $::math::bignum::atombits}]
set bits [expr {$n & ($::math::bignum::atombits-1)}]
#
# Correct for "arithmetic shift" - signed integers
#
set corr 0
if { [::math::bignum::sign $z] == 1 } {
for {set j [expr {$atoms+1}]} {$j >= 2} {incr j -1} {
set t [lindex $z $j]
if { $t != 0 } {
set corr 1
}
}
if { $corr == 0 } {
set t [lindex $z [expr {$atoms+2}]]
if { ( $t & ~($::math::bignum::atommask<<($bits)) ) != 0 } {
set corr 1
}
}
}
set newz [::math::bignum::rshiftBits [math::bignum::rshiftAtoms $z $atoms] $bits]
if { $corr } {
set newz [::math::bignum::sub $newz 1]
}
return $newz
}
############################## Bit oriented ops ################################
# Set the bit 'n' of 'bignumvar'
proc ::math::bignum::setbit {bignumvar n} {
upvar 1 $bignumvar z
set atom [expr {$n / $::math::bignum::atombits}]
set bit [expr {1 << ($n & ($::math::bignum::atombits-1))}]
incr atom 2
while {$atom >= [llength $z]} {lappend z 0}
lset z $atom [expr {[lindex $z $atom]|$bit}]
}
# Clear the bit 'n' of 'bignumvar'
proc ::math::bignum::clearbit {bignumvar n} {
upvar 1 $bignumvar z
set atom [expr {$n / $::math::bignum::atombits}]
incr atom 2
if {$atom >= [llength $z]} {return $z}
set mask [expr {$::math::bignum::atommask^(1 << ($n & ($::math::bignum::atombits-1)))}]
lset z $atom [expr {[lindex $z $atom]&$mask}]
::math::bignum::normalize z
}
# Test the bit 'n' of 'z'. Returns true if the bit is set.
proc ::math::bignum::testbit {z n} {
set atom [expr {$n / $::math::bignum::atombits}]
incr atom 2
if {$atom >= [llength $z]} {return 0}
set mask [expr {1 << ($n & ($::math::bignum::atombits-1))}]
expr {([lindex $z $atom] & $mask) != 0}
}
# does bitwise and between a and b
proc ::math::bignum::bitand {a b} {
# The internal number rep is little endian. Appending zeros is
# equivalent to adding leading zeros to a regular big-endian
# representation. The two numbers are extended to the same length,
# then the operation is applied to the absolute value.
set a [_treat $a]
set b [_treat $b]
while {[llength $a] < [llength $b]} {lappend a 0}
while {[llength $b] < [llength $a]} {lappend b 0}
set r [::math::bignum::zero [expr {[llength $a]-1}]]
for {set i 2} {$i < [llength $a]} {incr i} {
set or [expr {[lindex $a $i] & [lindex $b $i]}]
lset r $i $or
}
::math::bignum::normalize r
}
# does bitwise XOR between a and b
proc ::math::bignum::bitxor {a b} {
# The internal number rep is little endian. Appending zeros is
# equivalent to adding leading zeros to a regular big-endian
# representation. The two numbers are extended to the same length,
# then the operation is applied to the absolute value.
set a [_treat $a]
set b [_treat $b]
while {[llength $a] < [llength $b]} {lappend a 0}
while {[llength $b] < [llength $a]} {lappend b 0}
set r [::math::bignum::zero [expr {[llength $a]-1}]]
for {set i 2} {$i < [llength $a]} {incr i} {
set or [expr {[lindex $a $i] ^ [lindex $b $i]}]
lset r $i $or
}
::math::bignum::normalize r
}
# does bitwise or between a and b
proc ::math::bignum::bitor {a b} {
# The internal number rep is little endian. Appending zeros is
# equivalent to adding leading zeros to a regular big-endian
# representation. The two numbers are extended to the same length,
# then the operation is applied to the absolute value.
set a [_treat $a]
set b [_treat $b]
while {[llength $a] < [llength $b]} {lappend a 0}
while {[llength $b] < [llength $a]} {lappend b 0}
set r [::math::bignum::zero [expr {[llength $a]-1}]]
for {set i 2} {$i < [llength $a]} {incr i} {
set or [expr {[lindex $a $i] | [lindex $b $i]}]
lset r $i $or
}
::math::bignum::normalize r
}
# Return the number of bits needed to represent 'z'.
proc ::math::bignum::bits z {
set atoms [::math::bignum::atoms $z]
set bits [expr {($atoms-1)*$::math::bignum::atombits}]
set atom [lindex $z [expr {$atoms+1}]]
while {$atom} {
incr bits
set atom [expr {$atom >> 1}]
}
return $bits
}
################################## Division ####################################
# Division. Returns [list n/d n%d]
#
# I got this algorithm from PGP 2.6.3i (see the mp_udiv function).
# Here is how it works:
#
# Input: N=(Nn,...,N2,N1,N0)radix2
# D=(Dn,...,D2,D1,D0)radix2
# Output: Q=(Qn,...,Q2,Q1,Q0)radix2 = N/D
# R=(Rn,...,R2,R1,R0)radix2 = N%D
#
# Assume: N >= 0, D > 0
#
# For j from 0 to n
# Qj <- 0
# Rj <- 0
# For j from n down to 0
# R <- R*2
# if Nj = 1 then R0 <- 1
# if R => D then R <- (R - D), Qn <- 1
#
# Note that the doubling of R is usually done leftshifting one position.
# The only operations needed are bit testing, bit setting and subtraction.
#
# This is the "raw" version, don't care about the sign, returns both
# quotient and rest as a two element list.
# This procedure is used by divqr, div, mod, rem.
proc ::math::bignum::rawDiv {n d} {
set bit [expr {[::math::bignum::bits $n]-1}]
set r [list bignum 0 0]
set q [::math::bignum::zero [expr {[llength $n]-2}]]
while {$bit >= 0} {
set b_atom [expr {($bit / $::math::bignum::atombits) + 2}]
set b_bit [expr {1 << ($bit & ($::math::bignum::atombits-1))}]
set r [::math::bignum::lshiftBits $r 1]
if {[lindex $n $b_atom]&$b_bit} {
lset r 2 [expr {[lindex $r 2] | 1}]
}
if {[::math::bignum::abscmp $r $d] >= 0} {
set r [::math::bignum::rawSub $r $d]
lset q $b_atom [expr {[lindex $q $b_atom]|$b_bit}]
}
incr bit -1
}
::math::bignum::normalize q
list $q $r
}
# Divide by single-atom immediate. Used to speedup bignum -> string conversion.
# The procedure returns a two-elements list with the bignum quotient and
# the remainder (that's just a number being <= of the max atom value).
proc ::math::bignum::rawDivByAtom {n d} {
set atoms [::math::bignum::atoms $n]
set t 0
set j $atoms
incr j -1
for {} {$j >= 0} {incr j -1} {
set t [expr {($t << $::math::bignum::atombits)+[lindex $n [expr {$j+2}]]}]
lset n [expr {$j+2}] [expr {$t/$d}]
set t [expr {$t % $d}]
}
::math::bignum::normalize n
list $n $t
}
# Higher level division. Returns a list with two bignums, the first
# is the quotient of n/d, the second the remainder n%d.
# Note that if you want the *modulo* operator you should use ::math::bignum::mod
#
# The remainder sign is always the same as the divident.
proc ::math::bignum::divqr {n d} {
set n [_treat $n]
set d [_treat $d]
if {[::math::bignum::iszero $d]} {
error "Division by zero"
}
foreach {q r} [::math::bignum::rawDiv $n $d] break
::math::bignum::setsign q [expr {[::math::bignum::sign $n]^[::math::bignum::sign $d]}]
::math::bignum::setsign r [::math::bignum::sign $n]
list $q $r
}
# Like divqr, but only the quotient is returned.
proc ::math::bignum::div {n d} {
lindex [::math::bignum::divqr $n $d] 0
}
# Like divqr, but only the remainder is returned.
proc ::math::bignum::rem {n d} {
lindex [::math::bignum::divqr $n $d] 1
}
# Modular reduction. Returns N modulo M
proc ::math::bignum::mod {n m} {
set n [_treat $n]
set m [_treat $m]
set r [lindex [::math::bignum::divqr $n $m] 1]
if {[::math::bignum::sign $m] != [::math::bignum::sign $r]} {
set r [::math::bignum::add $r $m]
}
return $r
}
# Returns true if n is odd
proc ::math::bignum::isodd n {
expr {[lindex $n 2]&1}
}
# Returns true if n is even
proc ::math::bignum::iseven n {
expr {!([lindex $n 2]&1)}
}
############################# Power and Power mod N ############################
# Returns b^e
proc ::math::bignum::pow {b e} {
set b [_treat $b]
set e [_treat $e]
if {[::math::bignum::iszero $e]} {return [list bignum 0 1]}
# The power is negative is the base is negative and the exponent is odd
set sign [expr {[::math::bignum::sign $b] && [::math::bignum::isodd $e]}]
# Set the base to it's abs value, i.e. make it positive
::math::bignum::setsign b 0
# Main loop
set r [list bignum 0 1]; # Start with result = 1
while {[::math::bignum::abscmp $e [list bignum 0 1]] > 0} { ;# While the exp > 1
if {[::math::bignum::isodd $e]} {
set r [::math::bignum::mul $r $b]
}
set e [::math::bignum::rshiftBits $e 1] ;# exp = exp / 2
set b [::math::bignum::mul $b $b]
}
set r [::math::bignum::mul $r $b]
::math::bignum::setsign r $sign
return $r
}
# Returns b^e mod m
proc ::math::bignum::powm {b e m} {
set b [_treat $b]
set e [_treat $e]
set m [_treat $m]
if {[::math::bignum::iszero $e]} {return [list bignum 0 1]}
# The power is negative is the base is negative and the exponent is odd
set sign [expr {[::math::bignum::sign $b] && [::math::bignum::isodd $e]}]
# Set the base to it's abs value, i.e. make it positive
::math::bignum::setsign b 0
# Main loop
set r [list bignum 0 1]; # Start with result = 1
while {[::math::bignum::abscmp $e [list bignum 0 1]] > 0} { ;# While the exp > 1
if {[::math::bignum::isodd $e]} {
set r [::math::bignum::mod [::math::bignum::mul $r $b] $m]
}
set e [::math::bignum::rshiftBits $e 1] ;# exp = exp / 2
set b [::math::bignum::mod [::math::bignum::mul $b $b] $m]
}
set r [::math::bignum::mul $r $b]
::math::bignum::setsign r $sign
set r [::math::bignum::mod $r $m]
return $r
}
################################## Square Root #################################
# SQRT using the 'binary sqrt algorithm'.
#
# The basic algoritm consists in starting from the higer-bit
# the real square root may have set, down to the bit zero,
# trying to set every bit and checking if guess*guess is not
# greater than 'n'. If it is greater we don't set the bit, otherwise
# we set it. In order to avoid to compute guess*guess a trick
# is used, so only addition and shifting are really required.
proc ::math::bignum::sqrt n {
if {[lindex $n 1]} {
error "Square root of a negative number"
}
set i [expr {(([::math::bignum::bits $n]-1)/2)+1}]
set b [expr {$i*2}] ; # Bit to set to get 2^i*2^i
set r [::math::bignum::zero] ; # guess
set x [::math::bignum::zero] ; # guess^2
set s [::math::bignum::zero] ; # guess^2 backup
set t [::math::bignum::zero] ; # intermediate result
for {} {$i >= 0} {incr i -1; incr b -2} {
::math::bignum::setbit t $b
set x [::math::bignum::rawAdd $s $t]
::math::bignum::clearbit t $b
if {[::math::bignum::abscmp $x $n] <= 0} {
set s $x
::math::bignum::setbit r $i
::math::bignum::setbit t [expr {$b+1}]
}
set t [::math::bignum::rshiftBits $t 1]
}
return $r
}
################################## Random Number ###############################
# Returns a random number in the range [0,2^n-1]
proc ::math::bignum::rand bits {
set atoms [expr {($bits+$::math::bignum::atombits-1)/$::math::bignum::atombits}]
set shift [expr {($atoms*$::math::bignum::atombits)-$bits}]
set r [list bignum 0]
while {$atoms} {
lappend r [expr {int(rand()*(1<<$::math::bignum::atombits))}]
incr atoms -1
}
set r [::math::bignum::rshiftBits $r $shift]
return $r
}
############################ Convertion to/from string #########################
# The string representation charset. Max base is 36
set ::math::bignum::cset "0123456789abcdefghijklmnopqrstuvwxyz"
# Convert 'z' to a string representation in base 'base'.
# Note that this is missing a simple but very effective optimization
# that's to divide by the biggest power of the base that fits
# in a Tcl plain integer, and then to perform divisions with [expr].
proc ::math::bignum::tostr {z {base 10}} {
if {[string length $::math::bignum::cset] < $base} {
error "base too big for string convertion"
}
if {[::math::bignum::iszero $z]} {return 0}
set sign [::math::bignum::sign $z]
set str {}
while {![::math::bignum::iszero $z]} {
foreach {q r} [::math::bignum::rawDivByAtom $z $base] break
append str [string index $::math::bignum::cset $r]
set z $q
}
if {$sign} {append str -}
# flip the resulting string
set flipstr {}
set i [string length $str]
incr i -1
while {$i >= 0} {
append flipstr [string index $str $i]
incr i -1
}
return $flipstr
}
# Create a bignum from a string representation in base 'base'.
proc ::math::bignum::fromstr {str {base 0}} {
set z [::math::bignum::zero]
set str [string trim $str]
set sign 0
if {[string index $str 0] eq {-}} {
set str [string range $str 1 end]
set sign 1
}
if {$base == 0} {
switch -- [string tolower [string range $str 0 1]] {
0x {set base 16; set str [string range $str 2 end]}
ox {set base 8 ; set str [string range $str 2 end]}
bx {set base 2 ; set str [string range $str 2 end]}
default {set base 10}
}
}
if {[string length $::math::bignum::cset] < $base} {
error "base too big for string convertion"
}
set bigbase [list bignum 0 $base] ; # Build a bignum with the base value
set basepow [list bignum 0 1] ; # multiply every digit for a succ. power
set i [string length $str]
incr i -1
while {$i >= 0} {
set digitval [string first [string index $str $i] $::math::bignum::cset]
if {$digitval == -1} {
error "Illegal char '[string index $str $i]' for base $base"
}
set bigdigitval [list bignum 0 $digitval]
set z [::math::bignum::rawAdd $z [::math::bignum::mul $basepow $bigdigitval]]
set basepow [::math::bignum::mul $basepow $bigbase]
incr i -1
}
if {![::math::bignum::iszero $z]} {
::math::bignum::setsign z $sign
}
return $z
}
#
# Pre-treatment of some constants : 0 and 1
# Updated 19/11/2005 : abandon the 'upvar' command and its cost
#
proc ::math::bignum::_treat {num} {
if {[llength $num]<2} {
if {[string equal $num 0]} {
# set to the bignum 0
return {bignum 0 0}
} elseif {[string equal $num 1]} {
# set to the bignum 1
return {bignum 0 1}
}
}
return $num
}
namespace eval ::math::bignum {
namespace export *
}
# Announce the package
package provide math::bignum 3.1.1
|