This file is indexed.

/usr/share/systemtap/tapset/memory.stp is in systemtap-common 1.6-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
// memory/vm related tapset
// Copyright (C) 2005, 2006 IBM Corp.
// Copyright (C) 2006 Intel Corporation.
// Copyright (C) 2010 Red Hat Inc.
//
// This file is part of systemtap, and is free software.  You can
// redistribute it and/or modify it under the terms of the GNU General
// Public License (GPL); either version 2, or (at your option) any
// later version.
// <tapsetdescription>
// This family of probe points is used to probe memory-related events. 
// </tapsetdescription>
%{
#include <linux/mm.h>
%}

global VM_FAULT_OOM=0, VM_FAULT_SIGBUS=1, VM_FAULT_MINOR=2, VM_FAULT_MAJOR=3
global VM_FAULT_NOPAGE=4, VM_FAULT_LOCKED=5, VM_FAULT_ERROR=6
global FAULT_FLAG_WRITE=1

/**
 * sfunction vm_fault_contains - Test return value for page fault reason
 *
 * @value: the fault_type returned by vm.page_fault.return
 * @test: the type of fault to test for (VM_FAULT_OOM or similar)
 */
function vm_fault_contains:long (value:long, test:long)
%{
	int res;
	switch (THIS->test){
	case 0: res = THIS->value & VM_FAULT_OOM; break;
	case 1: res = THIS->value & VM_FAULT_SIGBUS; break;
#if defined(VM_FAULT_MINOR) && VM_FAULT_MINOR != 0
	case 2: /* VM_FAULT_MINOR infered by that flags off */
		res = !((VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_MAJOR) & 
				 THIS->value);
		break;
#else
	case 2: res = THIS->value == VM_FAULT_MINOR; break;
#endif
	case 3: res = THIS->value & VM_FAULT_MAJOR; break;
#ifdef VM_FAULT_NOPAGE
	case 4: res = THIS->value & VM_FAULT_NOPAGE; break;
#endif
#ifdef VM_FAULT_LOCKED
	case 5: res = THIS->value & VM_FAULT_LOCKED; break;
#endif
#ifdef VM_FAULT_ERROR
	case 6: res = THIS->value & VM_FAULT_ERROR; break;
#endif
	default: res = 0; break;
	}
	THIS->__retvalue = (res != 0);
	return;
%}

/**
 * probe vm.pagefault - Records that a page fault occurred
 *
 * @name: name of the probe point
 * @address: the address of the faulting memory access; i.e. the address that caused the page fault
 * @write_access: indicates whether this was a write or read access; 1 indicates a write, 
 * while 0 indicates a read
 *
 * Context: The process which triggered the fault
 */
probe vm.pagefault = kernel.function("__handle_mm_fault@mm/memory.c") ?,
                     kernel.function("handle_mm_fault@mm/memory.c") ?
{
	name = "pagefault"
	write_access = (@defined($flags)
			? $flags & FAULT_FLAG_WRITE : $write_access)
	address =  $address
}

/**
 * probe vm.pagefault.return - Indicates what type of fault occurred
 *
 * @name: name of the probe point
 * @fault_type: returns either 
 * 0 (VM_FAULT_OOM) for out of memory faults, 
 * 2 (VM_FAULT_MINOR) for minor faults, 3 (VM_FAULT_MAJOR) for 
 * major faults, or 1 (VM_FAULT_SIGBUS) if the fault was neither OOM, minor fault, 
 * nor major fault.
 */
probe vm.pagefault.return =
		kernel.function("__handle_mm_fault@mm/memory.c").return ?,
		kernel.function("handle_mm_fault@mm/memory.c").return ?
{
	name = "pagefault"
	fault_type = $return
}

/**
 * sfunction addr_to_node - Returns which node a given address belongs to within a NUMA system
 *
 * @addr: the address of the faulting memory access
 *
 * Description: This function accepts an address, and returns the 
 * node that the given address belongs to in a NUMA system.
 */
function addr_to_node:long(addr:long) %{ /* pure */ 
	int pfn = __pa(THIS->addr) >> PAGE_SHIFT;
	int nid;
#ifdef for_each_online_node
	for_each_online_node(nid)
#else
	for (nid=0; nid<MAX_NUMNODES; nid++)  /* if (node_online(nid)) */
#endif
		if ( NODE_DATA(nid)->node_start_pfn <= pfn &&
			pfn < (NODE_DATA(nid)->node_start_pfn +
			NODE_DATA(nid)->node_spanned_pages) )
		{
			THIS->__retvalue = nid;
			break;
		}
%}

// Return whether a page to be copied is a zero page.
function _IS_ZERO_PAGE:long(from:long, vaddr:long) %{ /* pure */
    THIS->__retvalue = (THIS->from == (long) ZERO_PAGE(THIS->vaddr));
%}


/**
 * probe vm.write_shared - Attempts at writing to a shared page
 *
 * @name: name of the probe point
 * @address: the address of the shared write
 *
 * Context:
 *  The context is the process attempting the write.
 *
 *  Fires when a process attempts to write to a shared page. 
 *  If a copy is necessary, this will be followed by a 
 *  vm.write_shared_copy.
 */
probe vm.write_shared = kernel.function("do_wp_page") {
    name = "write_shared"
    address = $address
}

/**
 * probe vm.write_shared_copy - Page copy for shared page write
 *
 * @name: Name of the probe point
 * @address: The address of the shared write
 * @zero: boolean indicating whether it is a zero page
 *         (can do a clear instead of a copy)
 *
 * Context:
 *  The process attempting the write.
 *
 *  Fires when a write to a shared page requires a page copy.  This is
 *  always preceded by a vm.shared_write.
 */
probe vm.write_shared_copy =  kernel.function("cow_user_page") ?,
      kernel.function("copy_cow_page") ?
{
    name = "write_shared_copy"
    if (@defined($va)) {
      address = $va
      zero = _IS_ZERO_PAGE($src, $va);
    } else {
      address = $address
      zero = _IS_ZERO_PAGE($from, $address);
    }
}


/**
 * probe vm.mmap - Fires when an mmap is requested
 *
 * @name: name of the probe point
 * @address: the requested address
 * @length: the length of the memory segment 
 *
 * Context:
 *  The process calling mmap.
 */
probe vm.mmap = kernel.function("do_mmap"), kernel.function("do_mmap2") ?
{
    name = "mmap"
    address = $addr
    length = $len
}


/**
 * probe vm.munmap - Fires when an munmap is requested
 *
 * @name: name of the probe point
 * @address: the requested address
 * @length: the length of the memory segment 
 *
 * Context:
 *  The process calling munmap.
 */
probe vm.munmap = kernel.function("do_munmap") {
    name = "munmap"
    address = $start
    length = $len
}

/**
 * probe vm.brk - Fires when a brk is requested (i.e. the heap will be resized)
 *
 * @name: name of the probe point
 * @address: the requested address
 * @length: the length of the memory segment 
 *
 * Context:
 *  The process calling brk.
 */
probe vm.brk = kernel.function("do_brk") {
    name = "brk"
    address = $addr
    length = $len
}

/**
 * probe vm.oom_kill - Fires when a thread is selected for termination by the OOM killer
 *
 * @name: name of the probe point
 * @task: the task being killed
 *
 * Context:
 *  The process that tried to consume excessive memory, and thus
 *  triggered the OOM.
 */
probe vm.oom_kill = kernel.function("oom_kill_process") !,
		    kernel.function("__oom_kill_task")
{
    name = "oom_kill"
    task = $p
}

function GFP_KERNEL:long()
%{ /* pure */ /* unprivileged */
	THIS->__retvalue = GFP_KERNEL;
%}

function __gfp_flag_str:string(gfp_flag:long)
%{
	long gfp_flag = THIS->gfp_flag;
	THIS->__retvalue[0] = '\0';

/* Older kernels < 2.6.32 didn't have some of these GFP defines yet. */
#ifndef __GFP_DMA32
#define __GFP_DMA32	((__force gfp_t)0x04u)
#endif
#ifndef GFP_DMA32
#define GFP_DMA32	__GFP_DMA32
#endif

#ifndef __GFP_MOVABLE
#define __GFP_MOVABLE  ((__force gfp_t)0x08u)  /* Page is movable */
#endif

#ifndef GFP_ZONEMASK
#define GFP_ZONEMASK   (__GFP_DMA|__GFP_HIGHMEM|__GFP_DMA32|__GFP_MOVABLE)
#endif

#ifndef __GFP_NOTRACK
#ifdef CONFIG_KMEMCHECK
#define __GFP_NOTRACK  ((__force gfp_t)0x200000u)  /* Don't track with kmemcheck */
#else
#define __GFP_NOTRACK  ((__force gfp_t)0)
#endif
#endif

#ifndef __GFP_THISNODE
#define __GFP_THISNODE  ((__force gfp_t)0x40000u)
#endif

#ifndef __GFP_RECLAIMABLE
#define __GFP_RECLAIMABLE ((__force gfp_t)0x80000u)
#endif

#ifndef __GFP_ZERO
#define __GFP_ZERO	((__force gfp_t)0x8000u)
#endif

#ifndef __GFP_NOMEMALLOC
#define __GFP_NOMEMALLOC ((__force gfp_t)0x10000u)
#endif

#ifndef __GFP_HARDWALL
#define __GFP_HARDWALL   ((__force gfp_t)0x20000u)
#endif

#ifndef GFP_TEMPORARY
#define GFP_TEMPORARY  (__GFP_WAIT | __GFP_IO | __GFP_FS | \
                        __GFP_RECLAIMABLE)
#endif

#ifndef GFP_HIGHUSER_MOVABLE
#define GFP_HIGHUSER_MOVABLE   (__GFP_WAIT | __GFP_IO | __GFP_FS | \
                                __GFP_HARDWALL | __GFP_HIGHMEM | \
                                __GFP_MOVABLE)
#endif

#ifndef GFP_THISNODE
#ifdef CONFIG_NUMA
#define GFP_THISNODE    (__GFP_THISNODE | __GFP_NOWARN | __GFP_NORETRY)
#else
#define GFP_THISNODE    ((__force gfp_t)0)
#endif
#endif

/* Macro for GFP Bitmasks. */
/* The resulted GFP_FLAGS may be either single or concatenation of the multiple bitmasks. */


#define __GFP_BITMASKS(FLAG)  if(gfp_flag & FLAG) { if(THIS->__retvalue[0] != '\0') \
                strlcat(THIS->__retvalue, " | "#FLAG, MAXSTRINGLEN); \
                else strlcat(THIS->__retvalue, #FLAG, MAXSTRINGLEN); }


/* Macro for Composite Flags. */
/* Each Composite GFP_FLAG is the combination of multiple bitmasks. */


#define __GFP_COMPOSITE_FLAG(FLAG)  if(gfp_flag == FLAG) { \
                strlcat(THIS->__retvalue, #FLAG, MAXSTRINGLEN); return; }


/* Composite GFP FLAGS of the BitMasks. */

	__GFP_COMPOSITE_FLAG(GFP_ZONEMASK)
	__GFP_COMPOSITE_FLAG(GFP_ATOMIC)
	__GFP_COMPOSITE_FLAG(GFP_NOIO)
	__GFP_COMPOSITE_FLAG(GFP_NOFS)
	__GFP_COMPOSITE_FLAG(GFP_KERNEL)
	__GFP_COMPOSITE_FLAG(GFP_TEMPORARY)
	__GFP_COMPOSITE_FLAG(GFP_USER)
	__GFP_COMPOSITE_FLAG(GFP_HIGHUSER)
	__GFP_COMPOSITE_FLAG(GFP_HIGHUSER_MOVABLE)
	__GFP_COMPOSITE_FLAG(GFP_THISNODE)
	__GFP_COMPOSITE_FLAG(GFP_DMA)
	__GFP_COMPOSITE_FLAG(GFP_DMA32)

/* GFP BitMasks */

	__GFP_BITMASKS(__GFP_DMA)
	__GFP_BITMASKS(__GFP_HIGHMEM)
	__GFP_BITMASKS(__GFP_MOVABLE)
	__GFP_BITMASKS(__GFP_WAIT)
	__GFP_BITMASKS(__GFP_HIGH)
	__GFP_BITMASKS(__GFP_IO)
	__GFP_BITMASKS(__GFP_FS)
	__GFP_BITMASKS(__GFP_COLD)
	__GFP_BITMASKS(__GFP_NOWARN)
	__GFP_BITMASKS(__GFP_REPEAT)
	__GFP_BITMASKS(__GFP_NOFAIL)
	__GFP_BITMASKS(__GFP_COMP)
	__GFP_BITMASKS(__GFP_ZERO)
	__GFP_BITMASKS(__GFP_NOMEMALLOC)
	__GFP_BITMASKS(__GFP_HARDWALL)
	__GFP_BITMASKS(__GFP_THISNODE)
	__GFP_BITMASKS(__GFP_RECLAIMABLE)
	__GFP_BITMASKS(__GFP_NOTRACK)


#undef __GFP_BITMASKS
#undef __GFP_COMPOSITE_FLAG
%}

/* The Formal Parameters will be displayed if available, otherwise \
		 "0" or "unknown" will be displayed */

probe __vm.kmalloc.tp = kernel.trace("kmalloc")
{
	call_site = $call_site
	caller_function = symname(call_site)
	bytes_req = $bytes_req
	bytes_alloc = $bytes_alloc
	gfp_flags = $gfp_flags
	gfp_flag_name = __gfp_flag_str($gfp_flags)
	ptr = $ptr
}

/*
 * It is unsafe to invoke __builtin_return_address() presently (to get
 * call_site for kprobe based probes) and that it can be improved
 * later when fix for bugs bz#6961 and bz#6580 is available.
 */ 

probe __vm.kmalloc.kp = kernel.function("kmem_cache_alloc_notrace").return !,
			kernel.function("kmem_cache_alloc").return
{
	call_site = 0
	caller_function = "unknown"
	// Note that 'bytes_req' could be wrong.  By the time
	// kmem_cache_alloc* gets called the requested size could have
	// rounded up to the nearest cache alloc size.
	if (@defined($s)) {
		bytes_req = $s->size
		bytes_alloc = $s->size
	}
	else if (@defined($cachep->buffer_size)) {
		bytes_req = $cachep->buffer_size
		bytes_alloc = $cachep->buffer_size
	}
	else {
		bytes_req = $cachep->objsize
		bytes_alloc = $cachep->objsize
	}
	if (@defined($gfpflags)) {
		gfp_flags = $gfpflags
		gfp_flag_name = __gfp_flag_str($gfpflags)
	}
	else {
		gfp_flags = $flags
		gfp_flag_name = __gfp_flag_str($flags)
	}
	ptr = $return
}

/**
 * probe vm.kmalloc - Fires when kmalloc is requested
 *
 * @name: name of the probe point
 * @call_site: address of the kmemory function
 * @caller_function: name of the caller function
 * @bytes_req: requested Bytes
 * @bytes_alloc: allocated Bytes
 * @gfp_flags: type of kmemory to allocate
 * @gfp_flag_name: type of kmemory to allocate (in String format)
 * @ptr: pointer to the kmemory allocated
 */
probe vm.kmalloc = __vm.kmalloc.tp !, __vm.kmalloc.kp
{
	name = "kmalloc"
}


probe __vm.kmem_cache_alloc.tp = kernel.trace("kmem_cache_alloc")
{
	call_site = $call_site
	caller_function = symname(call_site)
	bytes_req = $bytes_req
	bytes_alloc = $bytes_alloc
	gfp_flags = $gfp_flags
	gfp_flag_name = __gfp_flag_str($gfp_flags)
	ptr = $ptr
}

probe __vm.kmem_cache_alloc.kp = kernel.function("kmem_cache_alloc").return
{
	call_site = 0
	caller_function = "unknown"
	// Note that 'bytes_req' could be wrong.  By the time
	// kmem_cache_alloc* gets called the requested size could have
	// rounded up to the nearest cache alloc size.
	if (@defined($s)) {
		bytes_req = $s->size
		bytes_alloc = $s->size
	}
	else if (@defined($cachep->buffer_size)) {
		bytes_req = $cachep->buffer_size
		bytes_alloc = $cachep->buffer_size
	}
	else {
		bytes_req = $cachep->objsize
		bytes_alloc = $cachep->objsize
	}
	if (@defined($gfpflags)) {
		gfp_flags = $gfpflags
		gfp_flag_name = __gfp_flag_str($gfpflags)
	}
	else {
		gfp_flags = $flags
		gfp_flag_name = __gfp_flag_str($flags)
	}
	ptr = $return
}

/**
 * probe vm.kmem_cache_alloc - Fires when kmem_cache_alloc is requested
 *
 * @name: name of the probe point
 * @call_site: address of the function calling this kmemory function.
 * @caller_function: name of the caller function.
 * @bytes_req: requested Bytes
 * @bytes_alloc: allocated Bytes
 * @gfp_flags: type of kmemory to allocate
 * @gfp_flag_name: type of kmemory to allocate(in string format)
 * @ptr: pointer to the kmemory allocated
 */

probe vm.kmem_cache_alloc = __vm.kmem_cache_alloc.tp !,
			    __vm.kmem_cache_alloc.kp
{
	name = "kmem_cache_alloc"
}

probe __vm.kmalloc_node.tp = kernel.trace("kmalloc_node") ?
{
	call_site = $call_site
	caller_function = symname(call_site)
	bytes_req = $bytes_req
	bytes_alloc = $bytes_alloc
	gfp_flags = $gfp_flags
	gfp_flag_name = __gfp_flag_str($gfp_flags)
	ptr = $ptr
}

probe __vm.kmalloc_node.kp = kernel.function("kmalloc_node").return ?
{
	call_site = 0
	caller_function = "unknown"
	bytes_req = $size
	bytes_alloc = bytes_req // pretend they are always the same

	# Unfortunately, on i686 f11 (2.6.29.4-167.fc11.i686.PAE), we
	# can't see the '$flags' argument (even though we can see the
	# '$size' argument above).  Note that we can see the '$flags'
	# argument on x86_64 f11 (2.6.29.4-167.fc11.x86_64).  So, the
	# best we can do here is just use 0 when $flags isn't defined.
	gfp_flags = (@defined($flags) ? $flags : 0)
	gfp_flag_name = __gfp_flag_str(@defined($flags) ? $flags : 0)

	ptr = $return
}

/**
 * probe vm.kmalloc_node - Fires when kmalloc_node is requested
 *
 * @name: name of the probe point
 * @call_site: address of the function caling this  kmemory function
 * @caller_function: name of the caller function
 * @bytes_req: requested Bytes
 * @bytes_alloc: allocated Bytes
 * @gfp_flags: type of kmemory to allocate
 * @gfp_flag_name: type of kmemory to allocate(in string format)
 * @ptr: pointer to the kmemory allocated
 */
probe vm.kmalloc_node = __vm.kmalloc_node.tp !, __vm.kmalloc_node.kp ?
{
	name = "kmalloc_node"
}

probe __vm.kmem_cache_alloc_node.tp = kernel.trace("kmem_cache_alloc_node") ?
{
	call_site = $call_site
	caller_function = symname(call_site)
	bytes_req = $bytes_req
	bytes_alloc = $bytes_alloc
	gfp_flags = $gfp_flags
	gfp_flag_name = __gfp_flag_str($gfp_flags)
	ptr = $ptr
}

probe __vm.kmem_cache_alloc_node.kp =
		kernel.function("kmem_cache_alloc_node").return ?
{
	call_site = 0
	caller_function = "unknown"
	// Note that 'bytes_req' could be wrong.  By the time
	// kmem_cache_alloc* gets called the requested size could have
	// rounded up to the nearest cache alloc size.
	if (@defined($s)) {
		bytes_req = $s->size
		bytes_alloc = $s->size
	}
	else if (@defined($cachep->buffer_size)) {
		bytes_req = $cachep->buffer_size
		bytes_alloc = $cachep->buffer_size
	}
	else {
		bytes_req = $cachep->objsize
		bytes_alloc = $cachep->objsize
	}

	// kmem_cache_alloc_node() doesn't get a flags argument.  But,
	// internally it uses GFP_KERNEL().
	gfp_flags = GFP_KERNEL()
	gfp_flag_name = __gfp_flag_str(gfp_flags)
	ptr = $return
}

/**
 * probe vm.kmem_cache_alloc_node - Fires when kmem_cache_alloc_node is requested
 *
 * @name: name of the probe point
 * @call_site: address of the function calling this kmemory function
 * @caller_function: name of the caller function
 * @bytes_req: requested Bytes
 * @bytes_alloc: allocated Bytes
 * @gfp_flags: type of kmemory to allocate
 * @gfp_flag_name: type of kmemory to allocate(in string format)
 * @ptr: pointer to the kmemory allocated
 */
probe vm.kmem_cache_alloc_node = __vm.kmem_cache_alloc_node.tp !,
				 __vm.kmem_cache_alloc_node.kp ?
{
	name = "kmem_cache_alloc_node"
}

probe __vm.kfree.tp = kernel.trace("kfree")
{
	call_site = $call_site
	caller_function = symname(call_site)
	ptr = $ptr
}

probe __vm.kfree.kp = kernel.function("kfree").return
{
	call_site = 0
	caller_function = "unknown"
	ptr = (@defined($x) ? $x : $objp)
}

/**
 * probe vm.kfree - Fires when kfree is requested
 *
 * @name: name of the probe point
 * @call_site: address of the function calling this kmemory function
 * @caller_function: name of the caller function.
 * @ptr: pointer to the kmemory allocated which is returned by kmalloc
 */
probe vm.kfree = __vm.kfree.tp !, __vm.kfree.kp
{
	name = "kfree"
}

probe __vm.kmem_cache_free.tp = kernel.trace("kmem_cache_free")
{
	call_site = $call_site
	caller_function = symname(call_site)
	ptr = $ptr
}
probe __vm.kmem_cache_free.kp = kernel.function("kmem_cache_free").return
{
	call_site = 0
	caller_function = "unknown"
	ptr = (@defined($x) ? $x : $objp)
}

/**
 * probe vm.kmem_cache_free - Fires when kmem_cache_free is requested
 *
 * @name: Name of the probe point
 * @call_site: Address of the function calling this kmemory function
 * @caller_function: Name of the caller function.
 * @ptr: Pointer to the kmemory allocated which is returned by kmem_cache
 */
probe vm.kmem_cache_free = __vm.kmem_cache_free.tp !, __vm.kmem_cache_free.kp
{
	name = "kmem_cache_free"
}