/usr/share/systemtap/tapset/memory.stp is in systemtap-common 1.6-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 | // memory/vm related tapset
// Copyright (C) 2005, 2006 IBM Corp.
// Copyright (C) 2006 Intel Corporation.
// Copyright (C) 2010 Red Hat Inc.
//
// This file is part of systemtap, and is free software. You can
// redistribute it and/or modify it under the terms of the GNU General
// Public License (GPL); either version 2, or (at your option) any
// later version.
// <tapsetdescription>
// This family of probe points is used to probe memory-related events.
// </tapsetdescription>
%{
#include <linux/mm.h>
%}
global VM_FAULT_OOM=0, VM_FAULT_SIGBUS=1, VM_FAULT_MINOR=2, VM_FAULT_MAJOR=3
global VM_FAULT_NOPAGE=4, VM_FAULT_LOCKED=5, VM_FAULT_ERROR=6
global FAULT_FLAG_WRITE=1
/**
* sfunction vm_fault_contains - Test return value for page fault reason
*
* @value: the fault_type returned by vm.page_fault.return
* @test: the type of fault to test for (VM_FAULT_OOM or similar)
*/
function vm_fault_contains:long (value:long, test:long)
%{
int res;
switch (THIS->test){
case 0: res = THIS->value & VM_FAULT_OOM; break;
case 1: res = THIS->value & VM_FAULT_SIGBUS; break;
#if defined(VM_FAULT_MINOR) && VM_FAULT_MINOR != 0
case 2: /* VM_FAULT_MINOR infered by that flags off */
res = !((VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_MAJOR) &
THIS->value);
break;
#else
case 2: res = THIS->value == VM_FAULT_MINOR; break;
#endif
case 3: res = THIS->value & VM_FAULT_MAJOR; break;
#ifdef VM_FAULT_NOPAGE
case 4: res = THIS->value & VM_FAULT_NOPAGE; break;
#endif
#ifdef VM_FAULT_LOCKED
case 5: res = THIS->value & VM_FAULT_LOCKED; break;
#endif
#ifdef VM_FAULT_ERROR
case 6: res = THIS->value & VM_FAULT_ERROR; break;
#endif
default: res = 0; break;
}
THIS->__retvalue = (res != 0);
return;
%}
/**
* probe vm.pagefault - Records that a page fault occurred
*
* @name: name of the probe point
* @address: the address of the faulting memory access; i.e. the address that caused the page fault
* @write_access: indicates whether this was a write or read access; 1 indicates a write,
* while 0 indicates a read
*
* Context: The process which triggered the fault
*/
probe vm.pagefault = kernel.function("__handle_mm_fault@mm/memory.c") ?,
kernel.function("handle_mm_fault@mm/memory.c") ?
{
name = "pagefault"
write_access = (@defined($flags)
? $flags & FAULT_FLAG_WRITE : $write_access)
address = $address
}
/**
* probe vm.pagefault.return - Indicates what type of fault occurred
*
* @name: name of the probe point
* @fault_type: returns either
* 0 (VM_FAULT_OOM) for out of memory faults,
* 2 (VM_FAULT_MINOR) for minor faults, 3 (VM_FAULT_MAJOR) for
* major faults, or 1 (VM_FAULT_SIGBUS) if the fault was neither OOM, minor fault,
* nor major fault.
*/
probe vm.pagefault.return =
kernel.function("__handle_mm_fault@mm/memory.c").return ?,
kernel.function("handle_mm_fault@mm/memory.c").return ?
{
name = "pagefault"
fault_type = $return
}
/**
* sfunction addr_to_node - Returns which node a given address belongs to within a NUMA system
*
* @addr: the address of the faulting memory access
*
* Description: This function accepts an address, and returns the
* node that the given address belongs to in a NUMA system.
*/
function addr_to_node:long(addr:long) %{ /* pure */
int pfn = __pa(THIS->addr) >> PAGE_SHIFT;
int nid;
#ifdef for_each_online_node
for_each_online_node(nid)
#else
for (nid=0; nid<MAX_NUMNODES; nid++) /* if (node_online(nid)) */
#endif
if ( NODE_DATA(nid)->node_start_pfn <= pfn &&
pfn < (NODE_DATA(nid)->node_start_pfn +
NODE_DATA(nid)->node_spanned_pages) )
{
THIS->__retvalue = nid;
break;
}
%}
// Return whether a page to be copied is a zero page.
function _IS_ZERO_PAGE:long(from:long, vaddr:long) %{ /* pure */
THIS->__retvalue = (THIS->from == (long) ZERO_PAGE(THIS->vaddr));
%}
/**
* probe vm.write_shared - Attempts at writing to a shared page
*
* @name: name of the probe point
* @address: the address of the shared write
*
* Context:
* The context is the process attempting the write.
*
* Fires when a process attempts to write to a shared page.
* If a copy is necessary, this will be followed by a
* vm.write_shared_copy.
*/
probe vm.write_shared = kernel.function("do_wp_page") {
name = "write_shared"
address = $address
}
/**
* probe vm.write_shared_copy - Page copy for shared page write
*
* @name: Name of the probe point
* @address: The address of the shared write
* @zero: boolean indicating whether it is a zero page
* (can do a clear instead of a copy)
*
* Context:
* The process attempting the write.
*
* Fires when a write to a shared page requires a page copy. This is
* always preceded by a vm.shared_write.
*/
probe vm.write_shared_copy = kernel.function("cow_user_page") ?,
kernel.function("copy_cow_page") ?
{
name = "write_shared_copy"
if (@defined($va)) {
address = $va
zero = _IS_ZERO_PAGE($src, $va);
} else {
address = $address
zero = _IS_ZERO_PAGE($from, $address);
}
}
/**
* probe vm.mmap - Fires when an mmap is requested
*
* @name: name of the probe point
* @address: the requested address
* @length: the length of the memory segment
*
* Context:
* The process calling mmap.
*/
probe vm.mmap = kernel.function("do_mmap"), kernel.function("do_mmap2") ?
{
name = "mmap"
address = $addr
length = $len
}
/**
* probe vm.munmap - Fires when an munmap is requested
*
* @name: name of the probe point
* @address: the requested address
* @length: the length of the memory segment
*
* Context:
* The process calling munmap.
*/
probe vm.munmap = kernel.function("do_munmap") {
name = "munmap"
address = $start
length = $len
}
/**
* probe vm.brk - Fires when a brk is requested (i.e. the heap will be resized)
*
* @name: name of the probe point
* @address: the requested address
* @length: the length of the memory segment
*
* Context:
* The process calling brk.
*/
probe vm.brk = kernel.function("do_brk") {
name = "brk"
address = $addr
length = $len
}
/**
* probe vm.oom_kill - Fires when a thread is selected for termination by the OOM killer
*
* @name: name of the probe point
* @task: the task being killed
*
* Context:
* The process that tried to consume excessive memory, and thus
* triggered the OOM.
*/
probe vm.oom_kill = kernel.function("oom_kill_process") !,
kernel.function("__oom_kill_task")
{
name = "oom_kill"
task = $p
}
function GFP_KERNEL:long()
%{ /* pure */ /* unprivileged */
THIS->__retvalue = GFP_KERNEL;
%}
function __gfp_flag_str:string(gfp_flag:long)
%{
long gfp_flag = THIS->gfp_flag;
THIS->__retvalue[0] = '\0';
/* Older kernels < 2.6.32 didn't have some of these GFP defines yet. */
#ifndef __GFP_DMA32
#define __GFP_DMA32 ((__force gfp_t)0x04u)
#endif
#ifndef GFP_DMA32
#define GFP_DMA32 __GFP_DMA32
#endif
#ifndef __GFP_MOVABLE
#define __GFP_MOVABLE ((__force gfp_t)0x08u) /* Page is movable */
#endif
#ifndef GFP_ZONEMASK
#define GFP_ZONEMASK (__GFP_DMA|__GFP_HIGHMEM|__GFP_DMA32|__GFP_MOVABLE)
#endif
#ifndef __GFP_NOTRACK
#ifdef CONFIG_KMEMCHECK
#define __GFP_NOTRACK ((__force gfp_t)0x200000u) /* Don't track with kmemcheck */
#else
#define __GFP_NOTRACK ((__force gfp_t)0)
#endif
#endif
#ifndef __GFP_THISNODE
#define __GFP_THISNODE ((__force gfp_t)0x40000u)
#endif
#ifndef __GFP_RECLAIMABLE
#define __GFP_RECLAIMABLE ((__force gfp_t)0x80000u)
#endif
#ifndef __GFP_ZERO
#define __GFP_ZERO ((__force gfp_t)0x8000u)
#endif
#ifndef __GFP_NOMEMALLOC
#define __GFP_NOMEMALLOC ((__force gfp_t)0x10000u)
#endif
#ifndef __GFP_HARDWALL
#define __GFP_HARDWALL ((__force gfp_t)0x20000u)
#endif
#ifndef GFP_TEMPORARY
#define GFP_TEMPORARY (__GFP_WAIT | __GFP_IO | __GFP_FS | \
__GFP_RECLAIMABLE)
#endif
#ifndef GFP_HIGHUSER_MOVABLE
#define GFP_HIGHUSER_MOVABLE (__GFP_WAIT | __GFP_IO | __GFP_FS | \
__GFP_HARDWALL | __GFP_HIGHMEM | \
__GFP_MOVABLE)
#endif
#ifndef GFP_THISNODE
#ifdef CONFIG_NUMA
#define GFP_THISNODE (__GFP_THISNODE | __GFP_NOWARN | __GFP_NORETRY)
#else
#define GFP_THISNODE ((__force gfp_t)0)
#endif
#endif
/* Macro for GFP Bitmasks. */
/* The resulted GFP_FLAGS may be either single or concatenation of the multiple bitmasks. */
#define __GFP_BITMASKS(FLAG) if(gfp_flag & FLAG) { if(THIS->__retvalue[0] != '\0') \
strlcat(THIS->__retvalue, " | "#FLAG, MAXSTRINGLEN); \
else strlcat(THIS->__retvalue, #FLAG, MAXSTRINGLEN); }
/* Macro for Composite Flags. */
/* Each Composite GFP_FLAG is the combination of multiple bitmasks. */
#define __GFP_COMPOSITE_FLAG(FLAG) if(gfp_flag == FLAG) { \
strlcat(THIS->__retvalue, #FLAG, MAXSTRINGLEN); return; }
/* Composite GFP FLAGS of the BitMasks. */
__GFP_COMPOSITE_FLAG(GFP_ZONEMASK)
__GFP_COMPOSITE_FLAG(GFP_ATOMIC)
__GFP_COMPOSITE_FLAG(GFP_NOIO)
__GFP_COMPOSITE_FLAG(GFP_NOFS)
__GFP_COMPOSITE_FLAG(GFP_KERNEL)
__GFP_COMPOSITE_FLAG(GFP_TEMPORARY)
__GFP_COMPOSITE_FLAG(GFP_USER)
__GFP_COMPOSITE_FLAG(GFP_HIGHUSER)
__GFP_COMPOSITE_FLAG(GFP_HIGHUSER_MOVABLE)
__GFP_COMPOSITE_FLAG(GFP_THISNODE)
__GFP_COMPOSITE_FLAG(GFP_DMA)
__GFP_COMPOSITE_FLAG(GFP_DMA32)
/* GFP BitMasks */
__GFP_BITMASKS(__GFP_DMA)
__GFP_BITMASKS(__GFP_HIGHMEM)
__GFP_BITMASKS(__GFP_MOVABLE)
__GFP_BITMASKS(__GFP_WAIT)
__GFP_BITMASKS(__GFP_HIGH)
__GFP_BITMASKS(__GFP_IO)
__GFP_BITMASKS(__GFP_FS)
__GFP_BITMASKS(__GFP_COLD)
__GFP_BITMASKS(__GFP_NOWARN)
__GFP_BITMASKS(__GFP_REPEAT)
__GFP_BITMASKS(__GFP_NOFAIL)
__GFP_BITMASKS(__GFP_COMP)
__GFP_BITMASKS(__GFP_ZERO)
__GFP_BITMASKS(__GFP_NOMEMALLOC)
__GFP_BITMASKS(__GFP_HARDWALL)
__GFP_BITMASKS(__GFP_THISNODE)
__GFP_BITMASKS(__GFP_RECLAIMABLE)
__GFP_BITMASKS(__GFP_NOTRACK)
#undef __GFP_BITMASKS
#undef __GFP_COMPOSITE_FLAG
%}
/* The Formal Parameters will be displayed if available, otherwise \
"0" or "unknown" will be displayed */
probe __vm.kmalloc.tp = kernel.trace("kmalloc")
{
call_site = $call_site
caller_function = symname(call_site)
bytes_req = $bytes_req
bytes_alloc = $bytes_alloc
gfp_flags = $gfp_flags
gfp_flag_name = __gfp_flag_str($gfp_flags)
ptr = $ptr
}
/*
* It is unsafe to invoke __builtin_return_address() presently (to get
* call_site for kprobe based probes) and that it can be improved
* later when fix for bugs bz#6961 and bz#6580 is available.
*/
probe __vm.kmalloc.kp = kernel.function("kmem_cache_alloc_notrace").return !,
kernel.function("kmem_cache_alloc").return
{
call_site = 0
caller_function = "unknown"
// Note that 'bytes_req' could be wrong. By the time
// kmem_cache_alloc* gets called the requested size could have
// rounded up to the nearest cache alloc size.
if (@defined($s)) {
bytes_req = $s->size
bytes_alloc = $s->size
}
else if (@defined($cachep->buffer_size)) {
bytes_req = $cachep->buffer_size
bytes_alloc = $cachep->buffer_size
}
else {
bytes_req = $cachep->objsize
bytes_alloc = $cachep->objsize
}
if (@defined($gfpflags)) {
gfp_flags = $gfpflags
gfp_flag_name = __gfp_flag_str($gfpflags)
}
else {
gfp_flags = $flags
gfp_flag_name = __gfp_flag_str($flags)
}
ptr = $return
}
/**
* probe vm.kmalloc - Fires when kmalloc is requested
*
* @name: name of the probe point
* @call_site: address of the kmemory function
* @caller_function: name of the caller function
* @bytes_req: requested Bytes
* @bytes_alloc: allocated Bytes
* @gfp_flags: type of kmemory to allocate
* @gfp_flag_name: type of kmemory to allocate (in String format)
* @ptr: pointer to the kmemory allocated
*/
probe vm.kmalloc = __vm.kmalloc.tp !, __vm.kmalloc.kp
{
name = "kmalloc"
}
probe __vm.kmem_cache_alloc.tp = kernel.trace("kmem_cache_alloc")
{
call_site = $call_site
caller_function = symname(call_site)
bytes_req = $bytes_req
bytes_alloc = $bytes_alloc
gfp_flags = $gfp_flags
gfp_flag_name = __gfp_flag_str($gfp_flags)
ptr = $ptr
}
probe __vm.kmem_cache_alloc.kp = kernel.function("kmem_cache_alloc").return
{
call_site = 0
caller_function = "unknown"
// Note that 'bytes_req' could be wrong. By the time
// kmem_cache_alloc* gets called the requested size could have
// rounded up to the nearest cache alloc size.
if (@defined($s)) {
bytes_req = $s->size
bytes_alloc = $s->size
}
else if (@defined($cachep->buffer_size)) {
bytes_req = $cachep->buffer_size
bytes_alloc = $cachep->buffer_size
}
else {
bytes_req = $cachep->objsize
bytes_alloc = $cachep->objsize
}
if (@defined($gfpflags)) {
gfp_flags = $gfpflags
gfp_flag_name = __gfp_flag_str($gfpflags)
}
else {
gfp_flags = $flags
gfp_flag_name = __gfp_flag_str($flags)
}
ptr = $return
}
/**
* probe vm.kmem_cache_alloc - Fires when kmem_cache_alloc is requested
*
* @name: name of the probe point
* @call_site: address of the function calling this kmemory function.
* @caller_function: name of the caller function.
* @bytes_req: requested Bytes
* @bytes_alloc: allocated Bytes
* @gfp_flags: type of kmemory to allocate
* @gfp_flag_name: type of kmemory to allocate(in string format)
* @ptr: pointer to the kmemory allocated
*/
probe vm.kmem_cache_alloc = __vm.kmem_cache_alloc.tp !,
__vm.kmem_cache_alloc.kp
{
name = "kmem_cache_alloc"
}
probe __vm.kmalloc_node.tp = kernel.trace("kmalloc_node") ?
{
call_site = $call_site
caller_function = symname(call_site)
bytes_req = $bytes_req
bytes_alloc = $bytes_alloc
gfp_flags = $gfp_flags
gfp_flag_name = __gfp_flag_str($gfp_flags)
ptr = $ptr
}
probe __vm.kmalloc_node.kp = kernel.function("kmalloc_node").return ?
{
call_site = 0
caller_function = "unknown"
bytes_req = $size
bytes_alloc = bytes_req // pretend they are always the same
# Unfortunately, on i686 f11 (2.6.29.4-167.fc11.i686.PAE), we
# can't see the '$flags' argument (even though we can see the
# '$size' argument above). Note that we can see the '$flags'
# argument on x86_64 f11 (2.6.29.4-167.fc11.x86_64). So, the
# best we can do here is just use 0 when $flags isn't defined.
gfp_flags = (@defined($flags) ? $flags : 0)
gfp_flag_name = __gfp_flag_str(@defined($flags) ? $flags : 0)
ptr = $return
}
/**
* probe vm.kmalloc_node - Fires when kmalloc_node is requested
*
* @name: name of the probe point
* @call_site: address of the function caling this kmemory function
* @caller_function: name of the caller function
* @bytes_req: requested Bytes
* @bytes_alloc: allocated Bytes
* @gfp_flags: type of kmemory to allocate
* @gfp_flag_name: type of kmemory to allocate(in string format)
* @ptr: pointer to the kmemory allocated
*/
probe vm.kmalloc_node = __vm.kmalloc_node.tp !, __vm.kmalloc_node.kp ?
{
name = "kmalloc_node"
}
probe __vm.kmem_cache_alloc_node.tp = kernel.trace("kmem_cache_alloc_node") ?
{
call_site = $call_site
caller_function = symname(call_site)
bytes_req = $bytes_req
bytes_alloc = $bytes_alloc
gfp_flags = $gfp_flags
gfp_flag_name = __gfp_flag_str($gfp_flags)
ptr = $ptr
}
probe __vm.kmem_cache_alloc_node.kp =
kernel.function("kmem_cache_alloc_node").return ?
{
call_site = 0
caller_function = "unknown"
// Note that 'bytes_req' could be wrong. By the time
// kmem_cache_alloc* gets called the requested size could have
// rounded up to the nearest cache alloc size.
if (@defined($s)) {
bytes_req = $s->size
bytes_alloc = $s->size
}
else if (@defined($cachep->buffer_size)) {
bytes_req = $cachep->buffer_size
bytes_alloc = $cachep->buffer_size
}
else {
bytes_req = $cachep->objsize
bytes_alloc = $cachep->objsize
}
// kmem_cache_alloc_node() doesn't get a flags argument. But,
// internally it uses GFP_KERNEL().
gfp_flags = GFP_KERNEL()
gfp_flag_name = __gfp_flag_str(gfp_flags)
ptr = $return
}
/**
* probe vm.kmem_cache_alloc_node - Fires when kmem_cache_alloc_node is requested
*
* @name: name of the probe point
* @call_site: address of the function calling this kmemory function
* @caller_function: name of the caller function
* @bytes_req: requested Bytes
* @bytes_alloc: allocated Bytes
* @gfp_flags: type of kmemory to allocate
* @gfp_flag_name: type of kmemory to allocate(in string format)
* @ptr: pointer to the kmemory allocated
*/
probe vm.kmem_cache_alloc_node = __vm.kmem_cache_alloc_node.tp !,
__vm.kmem_cache_alloc_node.kp ?
{
name = "kmem_cache_alloc_node"
}
probe __vm.kfree.tp = kernel.trace("kfree")
{
call_site = $call_site
caller_function = symname(call_site)
ptr = $ptr
}
probe __vm.kfree.kp = kernel.function("kfree").return
{
call_site = 0
caller_function = "unknown"
ptr = (@defined($x) ? $x : $objp)
}
/**
* probe vm.kfree - Fires when kfree is requested
*
* @name: name of the probe point
* @call_site: address of the function calling this kmemory function
* @caller_function: name of the caller function.
* @ptr: pointer to the kmemory allocated which is returned by kmalloc
*/
probe vm.kfree = __vm.kfree.tp !, __vm.kfree.kp
{
name = "kfree"
}
probe __vm.kmem_cache_free.tp = kernel.trace("kmem_cache_free")
{
call_site = $call_site
caller_function = symname(call_site)
ptr = $ptr
}
probe __vm.kmem_cache_free.kp = kernel.function("kmem_cache_free").return
{
call_site = 0
caller_function = "unknown"
ptr = (@defined($x) ? $x : $objp)
}
/**
* probe vm.kmem_cache_free - Fires when kmem_cache_free is requested
*
* @name: Name of the probe point
* @call_site: Address of the function calling this kmemory function
* @caller_function: Name of the caller function.
* @ptr: Pointer to the kmemory allocated which is returned by kmem_cache
*/
probe vm.kmem_cache_free = __vm.kmem_cache_free.tp !, __vm.kmem_cache_free.kp
{
name = "kmem_cache_free"
}
|