/usr/share/systemtap/runtime/map.c is in systemtap-common 1.6-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 | /* -*- linux-c -*-
* Map Functions
* Copyright (C) 2005-2009 Red Hat Inc.
*
* This file is part of systemtap, and is free software. You can
* redistribute it and/or modify it under the terms of the GNU General
* Public License (GPL); either version 2, or (at your option) any
* later version.
*/
#ifndef _MAP_C_
#define _MAP_C_
/** @file map.c
* @brief Implements maps (associative arrays) and lists
*/
#include "sym.c"
#include "stat-common.c"
#include "map-stat.c"
static int map_sizes[] = {
sizeof(int64_t),
MAP_STRING_LENGTH,
sizeof(stat),
0
};
static unsigned int int64_hash (const int64_t v)
{
return (unsigned int)hash_long ((unsigned long)v, HASH_TABLE_BITS);
}
static int int64_eq_p (int64_t key1, int64_t key2)
{
return key1 == key2;
}
static void str_copy(char *dest, char *src)
{
if (src)
strlcpy(dest, src, MAP_STRING_LENGTH);
else
*dest = 0;
}
static void str_add(void *dest, char *val)
{
char *dst = (char *)dest;
strlcat(dst, val, MAP_STRING_LENGTH);
}
static int str_eq_p (char *key1, char *key2)
{
return strncmp(key1, key2, MAP_STRING_LENGTH - 1) == 0;
}
static unsigned int str_hash(const char *key1)
{
int hash = 0, count = 0;
char *v1 = (char *)key1;
while (*v1 && count++ < 5) {
hash += *v1++;
}
return (unsigned int)hash_long((unsigned long)hash, HASH_TABLE_BITS);
}
/** @addtogroup maps
* Implements maps (associative arrays) and lists
* @{
*/
/** Return an int64 from a map node.
* This function will return the int64 value of a map_node
* from a map containing int64s. You can get the map_nodes in a map
* with _stp_map_start(), _stp_map_iter() and foreach().
* @param m pointer to the map_node.
* @returns an int64 value.
*/
static int64_t _stp_get_int64(struct map_node *m)
{
if (!m || m->map->type != INT64)
return 0;
return *(int64_t *)((long)m + m->map->data_offset);
}
/** Return a string from a map node.
* This function will return the string value of a map_node
* from a map containing strings. You can get the map_nodes in a map
* with _stp_map_start(), _stp_map_iter() and foreach().
* @param m pointer to the map_node.
* @returns a pointer to a string.
*/
static char *_stp_get_str(struct map_node *m)
{
if (!m || m->map->type != STRING)
return "bad type";
return (char *)((long)m + m->map->data_offset);
}
/** Return a stat pointer from a map node.
* This function will return the stats of a map_node
* from a map containing stats. You can get the map_nodes in a map
* with _stp_map_start(), _stp_map_iter() and foreach().
* @param m pointer to the map_node.
* @returns A pointer to the stats.
*/
static stat *_stp_get_stat(struct map_node *m)
{
if (!m || m->map->type != STAT)
return 0;
return (stat *)((long)m + m->map->data_offset);
}
/** Return an int64 key from a map node.
* This function will return an int64 key from a map_node.
* @param mn pointer to the map_node.
* @param n key number
* @returns an int64
* @sa key1int(), key2int()
*/
static int64_t _stp_key_get_int64 (struct map_node *mn, int n)
{
int type;
int64_t res = 0;
if (mn) {
res = (*mn->map->get_key)(mn, n, &type).val;
if (type != INT64)
res = 0;
}
return res;
}
/** Return a string key from a map node.
* This function will return an string key from a map_node.
* @param mn pointer to the map_node.
* @param n key number
* @returns a pointer to a string
* @sa key1str(), key2str()
*/
static char *_stp_key_get_str (struct map_node *mn, int n)
{
int type;
char *str = "";
if (mn) {
str = (*mn->map->get_key)(mn, n, &type).strp;
if (type != STRING)
str = "bad type";
}
return str;
}
/** Create a new map.
* Maps must be created at module initialization time.
* @param max_entries The maximum number of entries allowed. Currently that number will
* be preallocated. If more entries are required, the oldest ones will be deleted. This makes
* it effectively a circular buffer. If max_entries is 0, there will be no maximum and entries
* will be allocated dynamically.
* @param type Type of values stored in this map.
* @return A MAP on success or NULL on failure.
* @ingroup map_create
*/
static int _stp_map_init(MAP m, unsigned max_entries, int type, int key_size, int data_size, int cpu)
{
int size;
m->maxnum = max_entries;
m->type = type;
if (type >= END) {
_stp_error("unknown map type %d\n", type);
return -1;
}
if (max_entries) {
unsigned i;
void *tmp;
/* size is the size of the map_node. */
/* add space for the value. */
key_size = ALIGN(key_size,4);
m->data_offset = key_size;
if (data_size == 0)
data_size = map_sizes[type];
data_size = ALIGN(data_size,4);
size = key_size + data_size;
for (i = 0; i < max_entries; i++) {
if (cpu < 0)
tmp = _stp_kmalloc(size);
else
tmp = _stp_kmalloc_node(size, cpu_to_node(cpu));
if (!tmp)
return -1;
// dbug ("allocated %lx\n", (long)tmp);
list_add((struct list_head *)tmp, &m->pool);
((struct map_node *)tmp)->map = m;
}
}
if (type == STAT)
m->hist.type = HIST_NONE;
return 0;
}
static MAP _stp_map_new(unsigned max_entries, int type, int key_size, int data_size)
{
MAP m = (MAP) _stp_kzalloc(sizeof(struct map_root));
if (m == NULL)
return NULL;
INIT_LIST_HEAD(&m->pool);
INIT_LIST_HEAD(&m->head);
if (_stp_map_init(m, max_entries, type, key_size, data_size, -1)) {
_stp_map_del(m);
return NULL;
}
return m;
}
static PMAP _stp_pmap_new(unsigned max_entries, int type, int key_size, int data_size)
{
int i;
MAP map, m;
PMAP pmap = (PMAP) _stp_kzalloc(sizeof(struct pmap));
if (pmap == NULL)
return NULL;
pmap->map = map = (MAP) _stp_alloc_percpu (sizeof(struct map_root));
if (map == NULL)
goto err;
/* initialize the memory lists first so if allocations fail */
/* at some point, it is easy to clean up. */
stp_for_each_cpu(i) {
m = per_cpu_ptr (map, i);
INIT_LIST_HEAD(&m->pool);
INIT_LIST_HEAD(&m->head);
}
INIT_LIST_HEAD(&pmap->agg.pool);
INIT_LIST_HEAD(&pmap->agg.head);
stp_for_each_cpu(i) {
m = per_cpu_ptr (map, i);
if (_stp_map_init(m, max_entries, type, key_size, data_size, i)) {
goto err1;
}
}
if (_stp_map_init(&pmap->agg, max_entries, type, key_size, data_size, -1))
goto err1;
return pmap;
err1:
stp_for_each_cpu(i) {
m = per_cpu_ptr (map, i);
__stp_map_del(m);
}
_stp_free_percpu(map);
err:
_stp_kfree(pmap);
return NULL;
}
/** Get the first element in a map.
* @param map
* @returns a pointer to the first element.
* This is typically used with _stp_map_iter(). See the foreach() macro
* for typical usage. It probably does what you want anyway.
* @sa foreach
*/
static struct map_node *_stp_map_start(MAP map)
{
if (map == NULL)
return NULL;
//dbug ("%lx\n", (long)map->head.next);
if (list_empty(&map->head))
return NULL;
return (struct map_node *)map->head.next;
}
/** Get the next element in a map.
* @param map
* @param m a pointer to the current element, returned from _stp_map_start()
* or _stp_map_iter().
* @returns a pointer to the next element.
* This is typically used with _stp_map_start(). See the foreach() macro
* for typical usage. It probably does what you want anyway.
* @sa foreach
*/
static struct map_node *_stp_map_iter(MAP map, struct map_node *m)
{
if (map == NULL)
return NULL;
if (m->lnode.next == &map->head)
return NULL;
return (struct map_node *)m->lnode.next;
}
/** Clears all the elements in a map.
* @param map
*/
static void _stp_map_clear(MAP map)
{
struct map_node *m;
if (map == NULL)
return;
map->num = 0;
while (!list_empty(&map->head)) {
m = (struct map_node *)map->head.next;
/* remove node from old hash list */
hlist_del_init(&m->hnode);
/* remove from entry list */
list_del(&m->lnode);
/* add to free pool */
list_add(&m->lnode, &map->pool);
}
}
static void _stp_pmap_clear(PMAP pmap)
{
int i;
if (pmap == NULL)
return;
stp_for_each_cpu(i) {
MAP m = per_cpu_ptr (pmap->map, i);
#if NEED_MAP_LOCKS
spin_lock(&m->lock);
#endif
_stp_map_clear(m);
#if NEED_MAP_LOCKS
spin_unlock(&m->lock);
#endif
}
_stp_map_clear(&pmap->agg);
}
static void __stp_map_del(MAP map)
{
struct list_head *p, *tmp;
/* free unused pool */
list_for_each_safe(p, tmp, &map->pool) {
list_del(p);
_stp_kfree(p);
}
/* free used list */
list_for_each_safe(p, tmp, &map->head) {
list_del(p);
_stp_kfree(p);
}
}
/** Deletes a map.
* Deletes a map, freeing all memory in all elements. Normally done only when the module exits.
* @param map
*/
static void _stp_map_del(MAP map)
{
if (map == NULL)
return;
__stp_map_del(map);
_stp_kfree(map);
}
static void _stp_pmap_del(PMAP pmap)
{
int i;
if (pmap == NULL)
return;
stp_for_each_cpu(i) {
MAP m = per_cpu_ptr (pmap->map, i);
__stp_map_del(m);
}
_stp_free_percpu(pmap->map);
/* free agg map elements */
__stp_map_del(&pmap->agg);
_stp_kfree(pmap);
}
/* sort keynum values */
#define SORT_COUNT -5 /* see also translate.cxx:visit_foreach_loop */
#define SORT_SUM -4
#define SORT_MIN -3
#define SORT_MAX -2
#define SORT_AVG -1
/* comparison function for sorts. */
static int _stp_cmp (struct list_head *a, struct list_head *b, int keynum, int dir, int type)
{
struct map_node *m1 = (struct map_node *)a;
struct map_node *m2 = (struct map_node *)b;
if (type == STRING) {
int ret;
if (keynum)
ret = strcmp(_stp_key_get_str(m1, keynum), _stp_key_get_str(m2, keynum));
else
ret = strcmp(_stp_get_str(m1), _stp_get_str(m2));
if ((ret < 0 && dir > 0) || (ret > 0 && dir < 0))
ret = 1;
else
ret = 0;
//dbug ("comparing %s and %s and returning %d\n", _stp_get_str(m1), _stp_get_str(m2), ret);
return ret;
} else {
int64_t a,b;
if (keynum > 0) {
a = _stp_key_get_int64(m1, keynum);
b = _stp_key_get_int64(m2, keynum);
} else if (keynum < 0) {
stat *sd1 = (stat *)((long)m1 + m1->map->data_offset);
stat *sd2 = (stat *)((long)m2 + m2->map->data_offset);
switch (keynum) {
case SORT_COUNT:
a = sd1->count;
b = sd2->count;
break;
case SORT_SUM:
a = sd1->sum;
b = sd2->sum;
break;
case SORT_MIN:
a = sd1->min;
b = sd2->min;
break;
case SORT_MAX:
a = sd1->max;
b = sd2->max;
break;
case SORT_AVG:
a = _stp_div64 (NULL, sd1->sum, sd1->count);
b = _stp_div64 (NULL, sd2->sum, sd2->count);
break;
default:
/* should never happen */
a = b = 0;
}
} else {
a = _stp_get_int64(m1);
b = _stp_get_int64(m2);
}
if ((a < b && dir > 0) || (a > b && dir < 0))
return 1;
return 0;
}
}
/* swap function for bubble sort */
static inline void _stp_swap (struct list_head *a, struct list_head *b)
{
a->prev->next = b;
b->next->prev = a;
a->next = b->next;
b->prev = a->prev;
a->prev = b;
b->next = a;
}
/** Sort an entire array.
* Sorts an entire array using merge sort.
*
* @param map Map
* @param keynum 0 for the value, or a positive number for the key number to sort on.
* @param dir Sort Direction. -1 for low-to-high. 1 for high-to-low.
* @sa _stp_map_sortn()
*/
static void _stp_map_sort (MAP map, int keynum, int dir)
{
struct list_head *p, *q, *e, *tail;
int nmerges, psize, qsize, i, type, insize = 1;
struct list_head *head = &map->head;
if (list_empty(head))
return;
if (keynum > 0)
(*map->get_key)((struct map_node *)head->next, keynum, &type);
else if (keynum < 0)
type = INT64;
else
type = ((struct map_node *)head->next)->map->type;
do {
tail = head;
p = head->next;
nmerges = 0;
while (p) {
nmerges++;
q = p;
psize = 0;
for (i = 0; i < insize; i++) {
psize++;
q = q->next == head ? NULL : q->next;
if (!q)
break;
}
qsize = insize;
while (psize > 0 || (qsize > 0 && q)) {
if (psize && (!qsize || !q || !_stp_cmp(p, q, keynum, dir, type))) {
e = p;
p = p->next == head ? NULL : p->next;
psize--;
} else {
e = q;
q = q->next == head ? NULL : q->next;
qsize--;
}
/* now put 'e' on tail of list and make it our new tail */
list_del(e);
list_add(e, tail);
tail = e;
}
p = q;
}
insize += insize;
} while (nmerges > 1);
}
/** Get the top values from an array.
* Sorts an array such that the start of the array contains the top
* or bottom 'n' values. Use this when sorting the entire array
* would be too time-consuming and you are only interested in the
* highest or lowest values.
*
* @param map Map
* @param n Top (or bottom) number of elements. 0 sorts the entire array.
* @param keynum 0 for the value, or a positive number for the key number to sort on.
* @param dir Sort Direction. -1 for low-to-high. 1 for high-to-low.
* @sa _stp_map_sort()
*/
static void _stp_map_sortn(MAP map, int n, int keynum, int dir)
{
if (n == 0 || n > 30) {
_stp_map_sort(map, keynum, dir);
} else {
struct list_head *head = &map->head;
struct list_head *c, *a, *last, *tmp;
int type, num, swaps = 1;
if (list_empty(head))
return;
if (keynum > 0)
(*map->get_key)((struct map_node *)head->next, keynum, &type);
else if (keynum < 0)
type = INT64;
else
type = ((struct map_node *)head->next)->map->type;
/* start off with a modified bubble sort of the first n elements */
while (swaps) {
num = n;
swaps = 0;
a = head->next;
c = a->next->next;
while ((a->next != head) && (--num > 0)) {
if (_stp_cmp(a, a->next, keynum, dir, type)) {
swaps++;
_stp_swap(a, a->next);
}
a = c->prev;
c = c->next;
}
}
/* Now use a kind of insertion sort for the rest of the array. */
/* Each element is tested to see if it should be be in the top 'n' */
last = a;
a = a->next;
while (a != head) {
tmp = a->next;
c = last;
while (c != head && _stp_cmp(c, a, keynum, dir, type))
c = c->prev;
if (c != last) {
list_del(a);
list_add(a, c);
last = last->prev;
}
a = tmp;
}
}
}
static struct map_node *_stp_new_agg(MAP agg, struct hlist_head *ahead, struct map_node *ptr)
{
struct map_node *aptr;
/* copy keys and aggregate */
aptr = _new_map_create(agg, ahead);
if (aptr == NULL)
return NULL;
(*agg->copy)(aptr, ptr);
switch (agg->type) {
case INT64:
_new_map_set_int64(agg,
aptr,
*(int64_t *)((long)ptr + ptr->map->data_offset),
0);
break;
case STRING:
_new_map_set_str(agg,
aptr,
(char *)((long)ptr + ptr->map->data_offset),
0);
break;
case STAT: {
stat *sd1 = (stat *)((long)aptr + agg->data_offset);
stat *sd2 = (stat *)((long)ptr + ptr->map->data_offset);
Hist st = &agg->hist;
sd1->count = sd2->count;
sd1->sum = sd2->sum;
sd1->min = sd2->min;
sd1->max = sd2->max;
if (st->type != HIST_NONE) {
int j;
for (j = 0; j < st->buckets; j++)
sd1->histogram[j] = sd2->histogram[j];
}
break;
}
default:
_stp_error("Attempted to aggregate map of type %d\n", agg->type);
}
return aptr;
}
static void _stp_add_agg(struct map_node *aptr, struct map_node *ptr)
{
switch (aptr->map->type) {
case INT64:
_new_map_set_int64(aptr->map,
aptr,
*(int64_t *)((long)ptr + ptr->map->data_offset),
1);
break;
case STRING:
_new_map_set_str(aptr->map,
aptr,
(char *)((long)ptr + ptr->map->data_offset),
1);
break;
case STAT: {
stat *sd1 = (stat *)((long)aptr + aptr->map->data_offset);
stat *sd2 = (stat *)((long)ptr + ptr->map->data_offset);
Hist st = &aptr->map->hist;
if (sd1->count == 0) {
sd1->count = sd2->count;
sd1->min = sd2->min;
sd1->max = sd2->max;
sd1->sum = sd2->sum;
} else {
sd1->count += sd2->count;
sd1->sum += sd2->sum;
if (sd2->min < sd1->min)
sd1->min = sd2->min;
if (sd2->max > sd1->max)
sd1->max = sd2->max;
}
if (st->type != HIST_NONE) {
int j;
for (j = 0; j < st->buckets; j++)
sd1->histogram[j] += sd2->histogram[j];
}
break;
}
default:
_stp_error("Attempted to aggregate map of type %d\n", aptr->map->type);
}
}
/** Aggregate per-cpu maps.
* This function aggregates the per-cpu maps into an aggregated
* map. A pointer to that aggregated map is returned.
*
* A write lock must be held on the map during this function.
*
* @param map A pointer to a pmap.
* @returns a pointer to the aggregated map. Null on failure.
*/
static MAP _stp_pmap_agg (PMAP pmap)
{
int i, hash;
MAP m, agg;
struct map_node *ptr, *aptr = NULL;
struct hlist_head *head, *ahead;
struct hlist_node *e, *f;
agg = &pmap->agg;
/* FIXME. we either clear the aggregation map or clear each local map */
/* every time we aggregate. which would be best? */
_stp_map_clear (agg);
stp_for_each_cpu(i) {
m = per_cpu_ptr (pmap->map, i);
#if NEED_MAP_LOCKS
spin_lock(&m->lock);
#endif
/* walk the hash chains. */
for (hash = 0; hash < HASH_TABLE_SIZE; hash++) {
head = &m->hashes[hash];
ahead = &agg->hashes[hash];
hlist_for_each(e, head) {
int match = 0;
ptr = (struct map_node *)((long)e - sizeof(struct list_head));
hlist_for_each(f, ahead) {
aptr = (struct map_node *)((long)f - sizeof(struct list_head));
if ((*m->cmp)(ptr, aptr)) {
match = 1;
break;
}
}
if (match)
_stp_add_agg(aptr, ptr);
else {
if (!_stp_new_agg(agg, ahead, ptr)) {
#if NEED_MAP_LOCKS
spin_unlock(&m->lock);
#endif
return NULL;
}
}
}
}
#if NEED_MAP_LOCKS
spin_unlock(&m->lock);
#endif
}
return agg;
}
/** Get the aggregation map for a pmap.
* This function returns a pointer to the aggregation map.
* It does not do any aggregation.
* @param map A pointer to a pmap.
* @returns a pointer to an aggregated map.
* @sa _stp_pmap_agg()
*/
#define _stp_pmap_get_agg(pmap) (&pmap->agg)
/* #define _stp_pmap_printn(map,n,fmt) _stp_map_printn (_stp_pmap_agg(map), n, fmt) */
/* #define _stp_pmap_print(map,fmt) _stp_map_printn(_stp_pmap_agg(map),0,fmt) */
static void _new_map_clear_node (struct map_node *m)
{
switch (m->map->type) {
case INT64:
*(int64_t *)((long)m + m->map->data_offset) = 0;
break;
case STRING:
*(char *)((long)m + m->map->data_offset) = 0;
break;
case STAT:
{
stat *sd = (stat *)((long)m + m->map->data_offset);
Hist st = &m->map->hist;
sd->count = 0;
if (st->type != HIST_NONE) {
int j;
for (j = 0; j < st->buckets; j++)
sd->histogram[j] = 0;
}
break;
}
}
}
static struct map_node *_new_map_create (MAP map, struct hlist_head *head)
{
struct map_node *m;
if (list_empty(&map->pool)) {
if (!map->wrap) {
/* ERROR. no space left */
return NULL;
}
m = (struct map_node *)map->head.next;
hlist_del_init(&m->hnode);
} else {
m = (struct map_node *)map->pool.next;
map->num++;
}
list_move_tail(&m->lnode, &map->head);
/* add node to new hash list */
hlist_add_head(&m->hnode, head);
return m;
}
static void _new_map_del_node (MAP map, struct map_node *n)
{
/* remove node from old hash list */
hlist_del_init(&n->hnode);
/* remove from entry list */
list_del(&n->lnode);
/* add it back to the pool */
list_add(&n->lnode, &map->pool);
map->num--;
}
static int _new_map_set_int64 (MAP map, struct map_node *n, int64_t val, int add)
{
if (map == NULL || n == NULL)
return -2;
if (add)
*(int64_t *)((long)n + map->data_offset) += val;
else
*(int64_t *)((long)n + map->data_offset) = val;
return 0;
}
static int _new_map_set_str (MAP map, struct map_node *n, char *val, int add)
{
if (map == NULL || n == NULL)
return -2;
if (add)
str_add((void *)((long)n + map->data_offset), val);
else
str_copy((void *)((long)n + map->data_offset), val);
return 0;
}
static int _new_map_set_stat (MAP map, struct map_node *n, int64_t val, int add)
{
stat *sd;
if (map == NULL || n == NULL)
return -2;
sd = (stat *)((long)n + map->data_offset);
if (!add) {
Hist st = &map->hist;
sd->count = 0;
if (st->type != HIST_NONE) {
int j;
for (j = 0; j < st->buckets; j++)
sd->histogram[j] = 0;
}
}
__stp_stat_add (&map->hist, sd, val);
return 0;
}
/** Return the number of elements in a map
* This function will return the number of active elements
* in a map.
* @param map
* @returns an int
*/
#define _stp_map_size(map) (map->num)
/** Return the number of elements in a pmap
* This function will return the number of active elements
* in all the per-cpu maps in a pmap. This is a quick sum and is
* not the same as the number of unique elements that would
* be in the aggragated map.
* @param pmap
* @returns an int
*/
static int _stp_pmap_size (PMAP pmap)
{
int i, num = 0;
stp_for_each_cpu(i) {
MAP m = per_cpu_ptr (pmap->map, i);
num += m->num;
}
return num;
}
#endif /* _MAP_C_ */
|