/usr/share/pyshared/sfc/representation/elementrepresentation.py is in sfc 1.0.0.dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 | #!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
This module contains functions and classes converting
from UFL to internal SyFi representations of elements.
"""
# Copyright (C) 2008 Martin Sandve Alnes and Simula Resarch Laboratory
#
# This file is part of SyFi.
#
# SyFi is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# SyFi is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with SyFi. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Kent-Andre Mardal, 2010.
#
# First added: 2008-08-13
# Last changed: 2008-12-16
import operator
import ufl
import swiginac
import SyFi
from ufl.common import component_to_index, index_to_component
from sfc.symbolic_utils import grad, ddx, symbols, symbolic_matrix
from sfc.geometry import UFCCell
from sfc.common.names import finite_element_classname, dof_map_classname
from sfc.common import sfc_assert, sfc_info, sfc_warning, sfc_error, sfc_debug
from sfc.common.options import default_parameters
def product(sequence):
return reduce(operator.__mul__, sequence, 1)
# TODO: Replace nsd with topological and geometric dimensions
# everywhere for clarity and future flexibility
def test_polygon(polygon):
print type(polygon)
print dir(polygon)
print polygon.no_space_dim()
print polygon.str()
def create_syfi_polygon(cell):
sfc_debug("Entering create_syfi_polygon")
if cell == "interval": p = SyFi.ReferenceLine()
elif cell == "triangle": p = SyFi.ReferenceTriangle()
elif cell == "tetrahedron": p = SyFi.ReferenceTetrahedron()
elif cell == "quadrilateral": p = SyFi.ReferenceRectangle()
elif cell == "hexahedron": p = SyFi.ReferenceBox()
else: raise ValueError("Unknown element cell '%s'." % cell)
sfc_debug("Leaving create_syfi_polygon")
return p
def create_syfi_element(e, polygon, default_order=1):
"Create a basic element with SyFi."
sfc_debug("Entering create_syfi_element")
sfc_assert(not isinstance(e, ufl.MixedElement), "Only creating SyFi elements for basic elements.")
f = e.family()
# ensure that the element always have some degree, this should probably be
d = e.degree()
if not isinstance(d, int): d = default_order
if f in ("Lagrange", "CG"):
fe = SyFi.Lagrange(polygon, d)
elif f in ("Discontinuous Lagrange", "DG"):
if d == 0: fe = SyFi.P0(polygon, 0)
else: fe = SyFi.DiscontinuousLagrange(polygon, d)
elif f in ("Crouzeix-Raviart", "CR"):
fe = SyFi.CrouzeixRaviart(polygon, d)
elif f in ("Bubble", "B"):
fe = SyFi.Bubble(polygon, d)
elif f in ("Brezzi-Douglas-Marini", "BDM"):
raise NotImplementedError("Not implemented element family '%s'." % f)
elif f in ("Brezzi-Douglas-Fortin-Marini", "BDFM"):
raise NotImplementedError("Not implemented element family '%s'." % f)
elif f in ("Raviart-Thomas", "RT"):
raise NotImplementedError("Not implemented element family '%s'." % f)
elif f in ("Nedelec 1st kind H(div)", "N1div"):
raise NotImplementedError("Not implemented element family '%s'." % f)
elif f in ("Nedelec 2nd kind H(div)", "N2div"):
raise NotImplementedError("Not implemented element family '%s'." % f)
elif f in ("Nedelec 1st kind H(curl)", "N1curl"):
raise NotImplementedError("Not implemented element family '%s'." % f)
elif f in ("Nedelec 2nd kind H(curl)", "N2curl"):
raise NotImplementedError("Not implemented element family '%s'." % f)
elif f in ("Quadrature", "Q"):
raise NotImplementedError("Not implemented element family '%s'." % f)
elif f in ("Boundary Quadrature", "BQ"):
raise NotImplementedError("Not implemented element family '%s'." % f)
else:
raise NotImplementedError("Unknown element family '%s'." % f)
sfc_debug("Leaving create_syfi_element")
return fe
#===============================================================================
# # swiginac.matrix(nsd, 1, dof_xi(fe,i))
# def dof_xi(fe, i):
# """Return a swiginac column vector with the reference coordinates of dof i in fe,
# assuming elements with point evaluation dofs."""
# dofi = fe.dof(i)
# # check if the element is a scalar or vector element
# if isinstance(dofi[0], swiginac.numeric):
# dofi0 = dofi
# elif isinstance(dofi[0], list):
# dofi0 = dofi[0]
# return dofi0
#===============================================================================
class ElementRepresentation(object):
__slots__ = (#Administrative data:
"options", "signature",
"dof_map_classname", "finite_element_classname",
# Element in other representations:
"ufl_element", "syfi_element",
# Cell data:
"quad_rule", "ufl_cell", "polygon", "cell",
# Dimensions:
"local_dimension", "geometric_dimension", "topological_dimension",
# Value shape info:
"value_shape", "value_rank", "value_size", "value_components",
# Subelement data
"sub_elements", "sub_element_dof_offsets", "sub_element_value_offsets",
# Caches for basis functions
"_basis_function_cache", "_basis_function_derivative_cache",
# Coordinate information:
"dof_xi", "dof_x",
# Topology information:
"entity_dofs", "dof_entity", "num_entity_dofs", "facet_dofs", "num_facet_dofs",
# Geometry symbols:
"p0", "p", "G", "GinvT",
)
def __init__(self, ufl_element, quad_rule=None, options=None, cache=None):
sfc_debug("Entering ElementRepresentation.__init__")
# Handle input and default values
assert isinstance(ufl_element, ufl.FiniteElementBase)
self.ufl_element = ufl_element
self.quad_rule = quad_rule
if options is None:
self.options = default_parameters()
else:
self.options = options
if cache is None:
cache = {}
# Some derived strings
self.signature = repr(self.ufl_element)
self.dof_map_classname = dof_map_classname(self.ufl_element)
self.finite_element_classname = finite_element_classname(self.ufl_element)
# Geometry information
self.ufl_cell = self.ufl_element.cell()
self.polygon = create_syfi_polygon(self.ufl_cell.domain())
self.cell = UFCCell(self.polygon)
self.geometric_dimension = self.cell.nsd
self.topological_dimension = self.cell.nsd
# Handy information about value shape
self.value_shape = self.ufl_element.value_shape()
self.value_rank = len(self.value_shape)
self.value_size = product(self.value_shape)
self.value_components = ufl.permutation.compute_indices(self.value_shape)
# Representations of subelements
self.sub_elements = []
self.sub_element_dof_offsets = []
self.sub_element_value_offsets = []
if isinstance(self.ufl_element, ufl.MixedElement):
dof_offset = 0
value_size_offset = 0
# Create ElementRepresentation objects for subelements, reuse if possible
for se in ufl_element.sub_elements():
rep = cache.get(se, None)
if rep is None:
rep = ElementRepresentation(se, self.quad_rule, self.options, cache)
cache[se] = rep
self.sub_elements.append(rep)
# Determine numbering offsets of subelements for dofs and values
self.sub_element_dof_offsets.append(dof_offset)
self.sub_element_value_offsets.append(value_size_offset)
dof_offset += rep.local_dimension
value_size_offset += rep.value_size
# Appending final sizes makes some algorithms more elegant
self.sub_element_dof_offsets.append(dof_offset)
self.sub_element_value_offsets.append(value_size_offset)
# No SyFi element, local dimension is the sum of subelement dimensions
self.syfi_element = None
self.local_dimension = dof_offset
elif self.ufl_element.family() == "Quadrature":
# No SyFi element, local dimension is the number of quadrature points
self.syfi_element = None
self.local_dimension = self.quad_rule.num_points
elif self.ufl_element.family() == "Boundary Quadrature":
# No SyFi element, local dimension is the number of quadrature points (TODO: On one facet or on all facets?)
sfc_error("Boundary Quadrature elements not implemented!")
self.syfi_element = None
self.local_dimension = self.facet_quad_rule.num_points # TODO: *num_facets?
elif self.ufl_element.family() == "Real":
# No SyFi element, local dimension equals value size
self.syfi_element = None
self.local_dimension = self.value_size
else:
# Make SyFi element
self.syfi_element = create_syfi_element(self.ufl_element, self.polygon, default_order=self.options.code.finite_element.default_order_of_element)
self.local_dimension = self.syfi_element.nbf()
# utility symbols
self._def_symbols()
# compute dof coordinates
self._precomp_coords()
# compute dof entity relations
self._build_entity_dofs()
self._build_facet_dofs()
# initialize cache structures
self._basis_function_cache = {}
self._basis_function_derivative_cache = {}
sfc_debug("Leaving ElementRepresentation.__init__")
def _def_symbols(self):
nsd = self.cell.nsd
# ... x,y,z symbols for convenience
self.p0 = swiginac.matrix(nsd, 1, symbols(["x0", "y0", "z0"][:nsd]))
self.p = swiginac.matrix(nsd, 1, symbols(["x", "y", "z"][:nsd]))
#self.x = swiginac.matrix(nsd, 1, symbols(["x0", "x1", "x2"][:nsd])) # TODO: Use these everywhere! self.x are global coordinates, self.xi are locals.
#self.xi = swiginac.matrix(nsd, 1, symbols(["xi0", "xi1", "xi2"][:nsd]))
# ... affine mapping symbols for convenience # TODO: Use J instead?
self.G = symbolic_matrix(nsd, nsd, "G")
self.GinvT = symbolic_matrix(nsd, nsd, "GinvT")
def _dof_xi(self, i):
"Compute local dof coordinate of dof i."
nsd = self.cell.nsd
if self.sub_elements:
sub_element_index = self.dof_to_sub_element_index(i)
sub_dof = i - self.sub_element_dof_offsets[sub_element_index]
xi = self.sub_elements[sub_element_index]._dof_xi(sub_dof)
elif self.ufl_element.family() == "Quadrature":
xi = swiginac.matrix(nsd, 1, self.quad_rule.points[i])
elif self.ufl_element.family() == "Real":
xi = swiginac.matrix(nsd, 1, [0.0]*nsd)
else:
# check if the element is a scalar or vector element
dofi = self.syfi_element.dof(i)
if isinstance(dofi[0], swiginac.numeric):
# scalar element
dof_xi_list = dofi
elif isinstance(dofi[0], list):
# vector element
if isinstance(dofi[0][0], list):
# compute midpoints
midpoint = [0 for i in range(len(dofi[0][0]))]
for d in dofi[0][0:]:
for p, dp in enumerate(d):
midpoint[p] += dp
for p in range(len(d)):
midpoint[p] /= len(dofi[0])
dof_xi_list = midpoint
else:
# use coordinate directly
dof_xi_list = dofi[0]
xi = swiginac.matrix(nsd, 1, dof_xi_list)
return xi
def _precomp_coords(self):
"Precompute dof coordinates."
self.dof_xi = []
self.dof_x = []
for i in range(self.local_dimension):
# point coordinates for this dof in reference coordinates
dof_xi = self._dof_xi(i)
self.dof_xi.append(dof_xi)
# apply geometry mapping to get global coordinates
dof_x = (self.G.mul(dof_xi).add(self.p0)).evalm() # TODO: Assumes affine mapping!
self.dof_x.append(dof_x)
def _build_entity_dofs(self): # XXXReal: Does not make sense for Real
"Build dof vs mesh entity relations."
# TODO: This may be optimized if necessary for mixed elements, but maybe we don't care.
# The basic structure we're building here is a list of lists of lists
self.entity_dofs = []
for i in range(self.topological_dimension+1):
lists = [[] for j in range(self.cell.num_entities[i])]
self.entity_dofs.append(lists)
if self.ufl_element.family() in ("Discontinuous Lagrange", "Quadrature"):
# associate all dofs with the cell
self.entity_dofs[self.topological_dimension][0] = list(range(self.local_dimension))
elif self.ufl_element.family() == "Boundary Quadrature":
sfc_error("Boundary Quadrature not handled.")
elif self.ufl_element.family() == "Real":
pass #sfc_error("Real elements not handled.")
else:
# NB! Assuming location dof_xi coordinates match topological entity!
# build dof list for each cell entity
for k in range(self.local_dimension):
(d, i) = self.cell.find_entity(self.dof_xi[k])
self.entity_dofs[d][i].append(k)
# Build the inverse mapping: idof -> ((d, i), j) (Not currently used for anything)
self.dof_entity = [None]*self.local_dimension
for d in range(self.topological_dimension+1):
for i in range(self.cell.num_entities[d]):
for j, k in enumerate(self.entity_dofs[d][i]):
sfc_assert(self.dof_entity[k] is None, "Expected to set each dof only once.")
self.dof_entity[k] = (d, i, j)
# count number of dofs per entity
self.num_entity_dofs = tuple(len(self.entity_dofs[d][0]) for d in range(self.topological_dimension+1))
# assert that all entities have the same number of associated dofs
# (there's a theoretical risk of floating point comparisons messing up the above logic)
for d in range(self.topological_dimension+1):
for doflist in self.entity_dofs[d]:
# each doflist is a list of local dofs associated
# with a particular mesh entity of dimension d
assert len(doflist) == self.num_entity_dofs[d]
def _build_facet_dofs(self):
"Build facet vs dof relations."
# ... build a list of dofs for each facet:
self.facet_dofs = [[] for j in range(self.cell.num_facets)]
if self.ufl_element.family() in ("Discontinuous Lagrange", "Quadrature", "Real"):
pass # no dofs on facets
elif self.ufl_element.family() == "Boundary Quadrature":
sfc_error("Boundary Quadrature not handled.")
else:
# for each facet j, loop over the reference coordinates
# for all dofs i and check if the dof is on the facet
for j in range(self.cell.num_facets):
for (i,p) in enumerate(self.dof_xi):
if self.cell.facet_check(j, p):
self.facet_dofs[j].append(i)
# ... count number of dofs for each facet (assuming this is constant!)
self.num_facet_dofs = len(self.facet_dofs[0])
# verify that this number is constant for all facets
sfc_assert(all(len(fdofs) == self.num_facet_dofs for fdofs in self.facet_dofs),
"Not the same number of dofs on each facet. This breaks an assumption in UFC.")
# --- subelement access
def dof_to_sub_element_index(self, dof):
"Return the index of the sub element the given dof is part of."
n = len(self.sub_elements)
sfc_assert(n, "Only mixed elements have sub elements.")
for i in range(n+1):
if dof < self.sub_element_dof_offsets[i]:
return i-1
sfc_error("Invalid dof value!")
def sub_element_to_dofs(self, i):
"Return a list of all dof indices for sub element with index i."
sfc_assert(self.sub_elements, "Only mixed elements have sub elements.")
a = self.sub_element_dof_offsets[i]
b = self.sub_element_dof_offsets[i+1]
return range(a, b)
# --- function space
def basis_function(self, i, component):
# hit cache?
N = self._basis_function_cache.get((i,component), None)
if N is not None:
return N
if self.sub_elements:
# get sub element representation corresponding to this dof
sub_element_index = self.dof_to_sub_element_index(i)
sub_element = self.sub_elements[sub_element_index]
# dof in sub element numbering
sub_dof = i - self.sub_element_dof_offsets[sub_element_index]
# component in flattened sub element value index space
comp_index = component_to_index(component, self.value_shape)
value_offset = self.sub_element_value_offsets[sub_element_index]
# check that the component is in the value range of the subelement
is_nonzero = (comp_index >= value_offset) and (comp_index < (value_offset + sub_element.value_size))
if is_nonzero:
# component in unflattened sub element value index space
sub_comp_index = comp_index - value_offset
sub_component = index_to_component(sub_comp_index, sub_element.value_shape)
# basis_function from computed component of subelement
N = sub_element.basis_function(sub_dof, sub_component)
else:
N = swiginac.numeric(0.0)
elif "Quadrature" in self.ufl_element.family():
sfc_error("Cannot compute basis functions for quadrature element.")
N = swiginac.numeric(1.0)
elif "Real" in self.ufl_element.family():
#sfc_error("Cannot compute basis functions for Real element.") # XXXReal: Will we use this or not?
N = swiginac.numeric(1.0)
else:
# Basic element, get basis function from SyFi
N = self.syfi_element.N(i)
if isinstance(N, swiginac.matrix):
sfc_assert((int(N.rows()), int(N.cols())) == self.value_shape, "Shape mismatch")
return N[component]
sfc_assert(component == (), "Found scalar basic element, expecting no component, got %s." % repr(component))
# put in cache
self._basis_function_cache[(i,component)] = N
return N
def basis_function_derivative(self, i, component, directions):
# d/dx and d/dy commute so we sort the derivative variables:
directions = tuple(sorted(directions))
# cache hit?
DN = self._basis_function_derivative_cache.get((i,component,directions), None)
if DN is not None:
return DN
# compute derivative
DN = self.basis_function(i, component)
for j in directions:
DN = ddx(DN, j, self.GinvT)
# put in cache
self._basis_function_derivative_cache[(i,component,directions)] = DN
return DN
# def component_to_sub_element_index(self, component):
# sfc_assert(self.sub_elements, "Only mixed elements have sub elements.")
#
# # FIXME!
# sfc_error("FIXME: In component_to_sub_element_index: not sure where this will be used?")
#
# component_value = flatten_component(component, self.value_shape)
#
# n = len(self.sub_elements)
# for i in range(1,n+1):
# if component_value < self.sub_element_value_offsets[i]:
# sub_component_value = self.sub_element_value_offsets[i] - ccomponent_value
# sub_element_index = i-1
# sub_element = self.sub_elements[sub_element_index]
# sub_component = unflatten_component(sub_component_value, sub_element)
# return sub_component
# sfc_error("Invalid component value!")
#
# #sub_element_component, sub_element =\
# # self.ufl_element.extract_component(component)
# #return sub_element_component, sub_element
|