/usr/share/pyshared/sfc/geometry/mappings.py is in sfc 1.0.0.dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 | # -*- coding: utf-8 -*-
"""
This module contains functions for computing
integrals both symbolically and numerically.
"""
# Copyright (C) 2007-2009 Martin Sandve Alnes and Simula Resarch Laboratory
#
# This file is part of SyFi.
#
# SyFi is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# SyFi is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with SyFi. If not, see <http://www.gnu.org/licenses/>.
#
# First added: 2007-11-07
# Last changed: 2009-03-04
import swiginac
import SyFi
from sfc.quadrature import find_quadrature_rule
from sfc.symbolic_utils import symbol, symbols
from sfc.geometry.UFCCell import UFCCell
def geometry_mapping(polygon):
"""
This function computes the geometry mapping from
the corresponding reference polygon to polygon.
It returns the tuple (G,x0) in the
mapping x = G xi + x0
"""
vlen = SyFi.cvar.nsd
# If we get a point, return this trivial mapping
if isinstance(polygon, swiginac.matrix):
# x = 1 * xi + x0 = x0 because xi is always zero at the point
assert vlen == 1
assert polygon.rows() == 1
assert polygon.cols() == 1
G = swiginac.matrix(1, 1, [1])
x0 = polygon
return G, x0
Gl = []
v0 = polygon.vertex(0)
v1 = polygon.vertex(1)
assert vlen == len(v0)
if isinstance(polygon, SyFi.Line):
Gl.extend(v1[k] - v0[k] for k in range(vlen))
elif isinstance(polygon, SyFi.Triangle):
if vlen == 2 or vlen == 3:
v2 = polygon.vertex(2)
Gl.extend(v1[k] - v0[k] for k in range(vlen))
Gl.extend(v2[k] - v0[k] for k in range(vlen))
else:
raise RuntimeError("Unsupported vertex size.")
elif isinstance(polygon, SyFi.Rectangle):
if vlen == 2 or vlen == 3: # TODO: improve mapping
v2 = polygon.vertex(2)
v3 = polygon.vertex(3)
Gl.extend(v1[k] - v0[k] for k in range(vlen))
Gl.extend(v3[k] - v0[k] for k in range(vlen))
else:
raise RuntimeError("Unsupported vertex size.")
elif isinstance(polygon, SyFi.Tetrahedron):
if vlen != 3:
raise RuntimeError("Unsupported vertex size.")
v2 = polygon.vertex(2)
v3 = polygon.vertex(3)
Gl.extend(v1[k] - v0[k] for k in range(vlen))
Gl.extend(v2[k] - v0[k] for k in range(vlen))
Gl.extend(v3[k] - v0[k] for k in range(vlen))
elif isinstance(polygon, SyFi.Box):
if vlen != 3:
raise RuntimeError("Unsupported vertex size.")
v2 = polygon.vertex(2) # TODO: improve mapping
v3 = polygon.vertex(3)
v4 = polygon.vertex(4)
Gl.extend(v1[k] - v0[k] for k in range(vlen))
Gl.extend(v3[k] - v0[k] for k in range(vlen))
Gl.extend(v4[k] - v0[k] for k in range(vlen))
else:
raise RuntimeError("Unsupported polygon type.")
G = swiginac.matrix(vlen, vlen, Gl).transpose()
x0 = swiginac.matrix(vlen, 1, v0)
#print "G =", G
return G, x0
|