This file is indexed.

/usr/include/seqan/seeds2/seeds_combination.h is in seqan-dev 1.3-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
// ==========================================================================
//                 SeqAn - The Library for Sequence Analysis
// ==========================================================================
// Copyright (c) 2006-2010, Knut Reinert, FU Berlin
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above copyright
//       notice, this list of conditions and the following disclaimer in the
//       documentation and/or other materials provided with the distribution.
//     * Neither the name of Knut Reinert or the FU Berlin nor the names of
//       its contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL KNUT REINERT OR THE FU BERLIN BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
// DAMAGE.
//
// ==========================================================================
// Author: Manuel Holtgrewe <manuel.holtgrewe@fu-berlin.de>
// ==========================================================================
// Algorithms for combining (i.e. merging and chaining) seeds.
// ==========================================================================

// TODO(holtgrew): All the Nothing()'s should not be part of the public interface.

#ifndef SEQAN_SEEDS_SEEDS_COMBINATION_H_
#define SEQAN_SEEDS_SEEDS_COMBINATION_H_

namespace seqan {

// ===========================================================================
// Enums, Tags, Classes, Specializations
// ===========================================================================

// TODO(holtgrew): Stream-line tags to Merge, ChaosChain, SimpleChain?
/**
.Tag.Local Chaining
..cat:Seed Handling
..summary:The local chaining algorithms to use when adding a seed to a @Class.SeedSet@.
..see:Class.SeedSet
..see:Function.addSeed
..tag.Merge:Merge with existing seed.
..tag.Chaos:CHAOS chaining.
..tag.SimpleChain:Simple chaining.
..tag.Single:Add single seed without merging and chaining.
..include:seqan/seeds.h
*/
struct Merge_;
typedef Tag<Merge_> Merge;

struct Chaos_;
typedef Tag<Chaos_> Chaos;

struct SimpleChain_;
typedef Tag<SimpleChain_> SimpleChain;

struct Single_;
typedef Tag<Single_> Single;

// ===========================================================================
// Metafunctions
// ===========================================================================

// ===========================================================================
// Functions
// ===========================================================================

// Returns true iff b can be merged into a where a is the one to the
// upper left, b the one to the lower right.
template <typename TSeedSpec, typename TSeedConfig, typename TThreshold>
inline bool
_seedsCombineable(Seed<TSeedSpec, TSeedConfig> const & a,
                  Seed<TSeedSpec, TSeedConfig> const & b,
                  TThreshold const & maxDiagonalDistance,
                  Nothing const & /*maxBandwidth*/,
                  Merge const &)
{
    // TODO(holtgrew): TThreshold could be Position<TSeed>::Type.
    SEQAN_CHECKPOINT;

    // b has to be right of a for the two seeds to be mergeable.
    if (getBeginDim0(b) < getBeginDim0(a) || getBeginDim1(b) < getBeginDim1(a))
        return false;
    // If the two seeds do not overlap, they cannot be merged.
    if (getBeginDim0(b) > getEndDim0(a) || getBeginDim1(b) > getEndDim1(a))
        return false;
    // If the distance between the diagonals exceeds the threshold
    // then the seeds cannot be merged.
    typedef typename MakeUnsigned_<TThreshold>::Type TUnsignedThreshold;
    if (static_cast<TUnsignedThreshold>(_abs(getEndDiagonal(a) - getStartDiagonal(b))) > static_cast<TUnsignedThreshold>(maxDiagonalDistance))
        return false;
    // Otherwise, the seeds can be merged.
    return true;
}


// Returns true iff b can be simple-chained to a where a is the one to
// the upper left, b the one to the lower right.
template <typename TSeedSpec, typename TSeedConfig, typename TThreshold>
inline bool
_seedsCombineable(Seed<TSeedSpec, TSeedConfig> const & a,
                  Seed<TSeedSpec, TSeedConfig> const & b,
                  TThreshold const & maxGapSize,
                  Nothing const & /*maxBandwidth*/,
                  SimpleChain const &)
{
    // TODO(holtgrew): We should be able to configure whether we want to have Manhattan, euclidean, minimal edit distance, for seeds.
    // TODO(holtgrew): TThreshold could be Position<TSeed>::Type.
    SEQAN_CHECKPOINT;

    // b has to be right of a for the two seeds to be chainable.
    if (getBeginDim0(b) < getEndDim0(a) || getBeginDim1(b) < getEndDim1(a))
        return false;

    // Distance is maximal distance, this corresponds to going the
    // distacen in the smaller distance with matches/mismatches and
    // the rest with indels.
    TThreshold distance = _max(getBeginDim0(b) - getEndDim0(a), getBeginDim1(b) - getEndDim1(a));
    // Compare distance with threshold.
    return distance <= maxGapSize;
}


// Returns true iff b can be Chaos chained to a where a is the one to
// the upper left, b the one to the lower right.
//
// TODO(holtgrew): Replace bandwidth with diagonalDistance.
template <typename TSeedSpec, typename TSeedConfig, typename TDistanceThreshold, typename TBandwidthThreshold>
inline bool
_seedsCombineable(Seed<TSeedSpec, TSeedConfig> const & a,
                  Seed<TSeedSpec, TSeedConfig> const & b,
                  TDistanceThreshold const & maxGapSize,
                  TBandwidthThreshold const & bandwidth,
                  Chaos const &)
{
    SEQAN_CHECKPOINT;

    // b has to be right of a for the two seeds to be chainable.
    if (getBeginDim0(b) < getEndDim0(a) || getBeginDim1(b) < getEndDim1(a))
        return false;

    // The diagonal distance has to be smaller than the bandwidth.
    // TODO(holtgrew): s/getStartDiagonal/getBeginDiagonal/
    TBandwidthThreshold diagonalDistance = _abs(getEndDiagonal(b) - getStartDiagonal(a));
    if (diagonalDistance > bandwidth)
        return false;

    // Distance is maximal distance, this corresponds to going the
    // distance in the smaller distance with matches/mismatches and
    // the rest with indels.
    TDistanceThreshold distance = _max(getBeginDim0(b) - getEndDim0(a), getBeginDim1(b) - getEndDim1(a));
    // Compare distance with threshold.
    return distance <= maxGapSize;
}


// Updating the coordinates of seeds is the same for merging and
// simple chaining.  Only the score computation differs.
template <typename TSeedConfig>
inline void
_updateSeedsCoordinatesMergeOrSimpleChain(
        Seed<Simple, TSeedConfig> & seed,
        Seed<Simple, TSeedConfig> const & other)
{
    SEQAN_CHECKPOINT;

    setBeginDim0(seed, _min(getBeginDim0(seed), getBeginDim0(other)));
    setBeginDim1(seed, _min(getBeginDim1(seed), getBeginDim1(other)));
    setEndDim0(seed, _max(getEndDim0(seed), getEndDim0(other)));
    setEndDim1(seed, _max(getEndDim1(seed), getEndDim1(other)));
    setLowerDiagonal(seed, _min(getLowerDiagonal(seed), getLowerDiagonal(other)));
    setUpperDiagonal(seed, _max(getUpperDiagonal(seed), getUpperDiagonal(other)));
}


template <typename TSeedConfig, typename TScoreValue>
inline void
_combineSeeds(Seed<Simple, TSeedConfig> & seed,
              Seed<Simple, TSeedConfig> const & other,
              Score<TScoreValue, Simple> const & /*scoringScheme*/,
              Nothing const & /*sequence0*/,
              Nothing const & /*sequence1*/,
              Merge const &)
{
    SEQAN_CHECKPOINT;

    _updateSeedsScoreMerge(seed, other);
    _updateSeedsCoordinatesMergeOrSimpleChain(seed, other);
}


template <typename TSeedConfig, typename TScoreValue>
inline void
_combineSeeds(Seed<Simple, TSeedConfig> & seed,
              Seed<Simple, TSeedConfig> const & other,
              Score<TScoreValue, Simple> const & scoringScheme,
              Nothing const & /*sequence0*/,
              Nothing const & /*sequence1*/,
              SimpleChain const &)
{
    SEQAN_CHECKPOINT;

    typedef Seed<Simple, TSeedConfig> TSeed;
    typedef typename Position<TSeed>::Type TPosition;

    _updateSeedsScoreSimpleChain(seed, other, scoringScheme);
    _updateSeedsCoordinatesMergeOrSimpleChain(seed, other);
}


template <typename TSeedConfig, typename TScoreValue, typename TSequence0, typename TSequence1>
inline void
_combineSeeds(Seed<Simple, TSeedConfig> & seed,
              Seed<Simple, TSeedConfig> const & other,
              Score<TScoreValue, Simple> const & scoringScheme,
              TSequence0 const & sequence0,
              TSequence1 const & sequence1,
              Chaos const &)
{
    SEQAN_CHECKPOINT;

    typedef Seed<Simple, TSeedConfig> TSeed;
    typedef typename Position<TSeed>::Type TPosition;

    // TODO(holtgrew): Assert seed left of other.

    // Compute gaps in both dimensions, the remaining gap is the
    // vertical/horizontal distance we will not fill with CHAOS
    // chaining.
    //
    // TODO(holtgrew): We need + 1 here, do we need it anywhere else?
    TPosition gapDim0 = getBeginDim0(other) - getEndDim0(seed);
    TPosition gapDim1 = getBeginDim1(other) - getEndDim1(seed);
    TPosition minGap = _min(gapDim0, gapDim1);
    TPosition maxGap = _max(gapDim0, gapDim1);
    TPosition remainingGap = maxGap - minGap;

    // Compute new score using the CHAOS method.
    //
    // First, compute the score when force-aligning from seed.
    TPosition posLeft0 = getEndDim0(seed);
    TPosition posLeft1 = getEndDim1(seed);
    TScoreValue tmpScore = 0;
    // TODO(holtgrew): Probably better use iterators on sequences!
    for (TPosition i = 0; i < minGap; ++i)
        tmpScore += score(scoringScheme, sequence0[posLeft0 + i], sequence1[posLeft1 + i]);

    SEQAN_ASSERT_GT(getBeginDim0(other), static_cast<TPosition>(0));
    SEQAN_ASSERT_GT(getBeginDim1(other), static_cast<TPosition>(0));
    TPosition posRight0 = getBeginDim0(other);
    TPosition posRight1 = getBeginDim1(other);

    // Now, try to put the gap at each position and get the position
    // with the highest score.  If there are two such positions, the
    // first one found is returned which is the one that is furthest
    // away from seed.
    TPosition bestGapPos = 0;  // delta to lowermost position
    TScoreValue bestScore = tmpScore;
    for (TPosition i = 1; i < minGap; ++i) {
        tmpScore -= score(scoringScheme, sequence0[posLeft0 + minGap - i], sequence1[posLeft1 + minGap - i]);
        tmpScore += score(scoringScheme, sequence0[posRight0 - i], sequence1[posRight1 - i]);
        if (tmpScore > bestScore) {
            // Found a better score.
            bestScore = tmpScore;
            bestGapPos = i;
        }
    }

    // Now, the best gap is when extending the lower right seed
    // (other) by bestGapPos to the upper right.  However, this is
    // ignored for simple seeds: We simply update the score and are
    // done.
    _updateSeedsScoreChaos(seed, other, bestScore + remainingGap * scoreGap(scoringScheme));

    // For simple seeds, the coordinate computation is the same as for
    // merge/simple chain.
    //
    // TODO(holtgrew): Adjust the name of updateSeedsCoordinatesMergeOrSimpleChain to reflect this.
    _updateSeedsCoordinatesMergeOrSimpleChain(seed, other);
}


template <typename TSeedConfig, typename TScoreValue>
inline void
_combineSeeds(Seed<ChainedSeed, TSeedConfig> & seed,
              Seed<ChainedSeed, TSeedConfig> const & other,
              Score<TScoreValue, Simple> const & /*scoringScheme*/,
              Nothing const & /*sequence0*/,
              Nothing const & /*sequence1*/,
              Merge const &)
{
    SEQAN_CHECKPOINT;
    // For chained seeds, we first remove all diagonals from seed
    // until the last diagonal of seed starts truly before other.
    // Then, we possibly shorten the last diagonal.  Finally, we copy
    // over all diagonals from other.

    // std::cout << "Merging chained seeds " << seed << " and " << other << std::endl;
    SEQAN_ASSERT_LEQ_MSG(getBeginDim0(seed), getBeginDim0(other), "Monotony in both dimensions required for merging.");
    SEQAN_ASSERT_LEQ_MSG(getBeginDim1(seed), getBeginDim1(other), "Monotony in both dimensions required for merging.");
    
    _updateSeedsScoreMerge(seed, other);

    // Remove diagonals.
    typedef Seed<ChainedSeed, TSeedConfig> TSeed;
    typedef typename Iterator<TSeed, Standard>::Type TIterator;
    TIterator it;
    // TODO(holtgrew): Could use back() instead of lastKept.
    TIterator lastKept = begin(seed);
    for (it = begin(seed); it != end(seed); ++it) {
        if (it->beginDim0 >= getBeginDim0(other) && it->beginDim1 >= getBeginDim1(other))
            break;
        lastKept = it;
    }
    if (it != end(seed))
        truncateDiagonals(seed, it);
    // std::cout << "Seed after truncating diagonals: " << seed << std::endl;

    // Shorten last diagonal if necessary.
    if (lastKept->beginDim0 + lastKept->length > getBeginDim0(other) && lastKept->beginDim1 + lastKept->length > getBeginDim1(other)) {
        lastKept->length = _min(getBeginDim0(other) - lastKept->beginDim0, getBeginDim1(other) - lastKept->beginDim1);
    } else if (lastKept->beginDim0 + lastKept->length > getBeginDim0(other)) {
        lastKept->length = getBeginDim0(other) - lastKept->beginDim0;
    } else if (lastKept->beginDim1 + lastKept->length > getBeginDim1(other)) {
        lastKept->length = getBeginDim1(other) - lastKept->beginDim1;
    }

    // Maybe remove shortened diagonal if its length is 0.
    if (back(seed).length == 0) {
        // TODO(holtgrew): Do not use dot method.
        seed._seedDiagonals.pop_back();
    }

    // Copy over other diagonals.
    typedef typename Iterator<TSeed const, Standard>::Type TConstIterator;
    for (TConstIterator it = begin(other, Standard()); it != end(other, Standard()); ++it)
        appendDiagonal(seed, *it);

    // std::cout << "Chained seed after merging: " << seed << std::endl;

    // TODO(holtgrew): Update lower and upper diagonals!
}


template <typename TSeedConfig, typename TScoreValue>
inline void
_combineSeeds(Seed<ChainedSeed, TSeedConfig> & seed,
              Seed<ChainedSeed, TSeedConfig> const & other,
              Score<TScoreValue, Simple> const & scoringScheme,
              Nothing const & /*sequence0*/,
              Nothing const & /*sequence1*/,
              SimpleChain const &)
{
    SEQAN_CHECKPOINT;
    // Simply copy over the diagonals of the seed (other) into the
    // left one (seed) after updating the score.

    _updateSeedsScoreSimpleChain(seed, other, scoringScheme);

    // Copy over other diagonals.
    typedef Seed<ChainedSeed, TSeedConfig> TSeed;
    typedef typename Iterator<TSeed const, Standard>::Type TConstIterator;
    for (TConstIterator it = begin(other, Standard()); it != end(other, Standard()); ++it)
        appendDiagonal(seed, *it);
}


template <typename TSeedConfig, typename TScoreValue, typename TSequence0, typename TSequence1>
inline void
_combineSeeds(Seed<ChainedSeed, TSeedConfig> & seed,
              Seed<ChainedSeed, TSeedConfig> const & other,
              Score<TScoreValue, Simple> const & scoringScheme,
              TSequence0 const & sequence0,
              TSequence1 const & sequence1,
              Chaos const &)
{
    SEQAN_CHECKPOINT;

    typedef Seed<ChainedSeed, TSeedConfig> TSeed;
    typedef typename Position<TSeed>::Type TPosition;
    typedef typename Iterator<TSeed const, Standard>::Type TConstIterator;

    // TODO(holtgrew): Assert seed left of other.

    // Compute gaps in both dimensions, the remaining gap is the
    // vertical/horizontal distance we will not fill with CHAOS
    // chaining.
    //
    // TODO(holtgrew): We need + 1 here, do we need it anywhere else?
    TPosition gapDim0 = getBeginDim0(other) - getEndDim0(seed);
    TPosition gapDim1 = getBeginDim1(other) - getEndDim1(seed);
    TPosition minGap = _min(gapDim0, gapDim1);
    TPosition maxGap = _max(gapDim0, gapDim1);
    TPosition remainingGap = maxGap - minGap;

    // Compute new score using the CHAOS method.
    //
    // First, compute the score when force-aligning from seed.
    TPosition posLeft0 = getEndDim0(seed);
    TPosition posLeft1 = getEndDim1(seed);
    TScoreValue tmpScore = 0;
    // TODO(holtgrew): Probably better use iterators on sequences!
    for (TPosition i = 0; i < minGap; ++i)
        tmpScore += score(scoringScheme, sequence0[posLeft0 + i], sequence1[posLeft1 + i]);

    SEQAN_ASSERT_GT(getBeginDim0(other), static_cast<TPosition>(0));
    SEQAN_ASSERT_GT(getBeginDim1(other), static_cast<TPosition>(0));
    TPosition posRight0 = getBeginDim0(other);
    TPosition posRight1 = getBeginDim1(other);

    // Now, try to put the gap at each position and get the position
    // with the highest score.  If there are two such positions, the
    // first one found is returned which is the one that is furthest
    // away from seed.
    TPosition bestGapPos = 0;  // delta to lowermost position
    TScoreValue bestScore = tmpScore;
    for (TPosition i = 1; i < minGap; ++i) {
        tmpScore -= score(scoringScheme, sequence0[posLeft0 + minGap - i], sequence1[posLeft1 + minGap - i]);
        tmpScore += score(scoringScheme, sequence0[posRight0 - i], sequence1[posRight1 - i]);
        if (tmpScore > bestScore) {
            // Found a better score.
            bestScore = tmpScore;
            bestGapPos = i;
        }
    }

    // Now, the best gap is when extending the lower right seed
    // (other) by bestGapPos to the upper right.  The upper left seed
    // is extended by (minGap - bestGapPos).
    //
    // Adjust last diagonal of seed.
    back(seed).length += minGap - bestGapPos;
    // Copy over the first diagonal of other and adjust diagonal.
    appendDiagonal(seed, front(other));
    back(seed).beginDim0 -= bestGapPos;
    back(seed).beginDim1 -= bestGapPos;
    back(seed).length += bestGapPos;
    // Copy over all other diagonals.
    TConstIterator it = begin(other, Standard());
    TConstIterator itEnd = end(other, Standard());
    // TODO(holtgrew): value(it) does not work here, the adaption around std::list needs more work!
    for (++it; it != itEnd; ++it)
        appendDiagonal(seed, *it);

    // Finally, we update the score and are done.
    _updateSeedsScoreChaos(seed, other, bestScore + remainingGap * scoreGap(scoringScheme));
}

}  // namespace seqan

#endif  // #ifndef SEQAN_SEEDS_SEEDS_COMBINATION_UNORDERED_H_