This file is indexed.

/usr/share/sdcc/lib/src/logf.c is in sdcc-libraries 2.9.0-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
/*  logf.c: Computes the natural log of a 32 bit float as outlined in [1].

    Copyright (C) 2001, 2002  Jesus Calvino-Fraga, jesusc@ieee.org 

    This library is free software; you can redistribute it and/or
    modify it under the terms of the GNU Lesser General Public
    License as published by the Free Software Foundation; either
    version 2.1 of the License, or (at your option) any later version.

    This library is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
    Lesser General Public License for more details.

    You should have received a copy of the GNU Lesser General Public
    License along with this library; if not, write to the Free Software
    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA */

/* [1] William James Cody and W.  M.  Waite.  _Software manual for the
   elementary functions_, Englewood Cliffs, N.J.:Prentice-Hall, 1980. */

/* Version 1.0 - Initial release */

#define SDCC_MATH_LIB
#include <math.h>
#include <errno.h>


#ifdef MATH_ASM_MCS51

#define SDCC_FLOAT_LIB
#include <float.h>

// TODO: share with other temps
static __data unsigned char logf_tmp[4];

float logf(float x)
{
	x;
	__asm

	// extract the two input, placing it into:
	//      sign     exponent   mantiassa
	//      ----     --------   ---------
	//  x:  sign_a   exp_a     r4/r3/r2

	lcall	fsgetarg
logf_neg_check:
	jnb	sign_a, logf_zero_check
	// TODO: set errno to EDOM (negative numbers not allowed)
	ljmp	fs_return_nan

logf_zero_check:
	cjne	r4, #0, logf_ok
	// TODO: set errno to ERANGE (zero not allowed)
	setb	sign_a
	ljmp	fs_return_inf

logf_ok:
	push	exp_a
	mov	a, #3
	mov	r1, #0
	lcall	fs_rshift_a

	clr	a
	mov	(_logf_tmp + 0), a	// y = 0
	mov	(_logf_tmp + 1), a
	mov	(_logf_tmp + 2), a
	mov	(_logf_tmp + 3), a
	mov	dptr, #__fs_natural_log_table
	mov	r0, a
logf_cordic_loop:
	mov	ar7, r4		// r7/r6/r5 = x >> i
	mov	ar6, r3
	mov	ar5, r2
	mov	b, r1
	mov	a, r0
	lcall	__fs_cordic_rshift_r765_unsigned
	mov	a, r1		// check if x + (x >> i) > 1.0
	add	a, b
	mov	a, r2
	addc	a, r5
	mov	a, r3
	addc	a, r6
	mov	a, r4
	addc	a, r7
	anl	a, #0xE0
	jnz	logf_cordic_skip
	mov	a, r1		// x = x + (x >> i)
	add	a, b
	mov	r1, a
	mov	a, r2
	addc	a, r5
	mov	r2, a
	mov	a, r3
	addc	a, r6
	mov	r3, a
	mov	a, r4
	addc	a, r7
	mov	r4, a
	clr	a		// y = y + log_table[i]
	movc	a, @a+dptr
	add	a, (_logf_tmp + 0)
	mov	(_logf_tmp + 0), a
	mov	a, #1
	movc	a, @a+dptr
	addc	a, (_logf_tmp + 1)
	mov	(_logf_tmp + 1), a
	mov	a, #2
	movc	a, @a+dptr
	addc	a, (_logf_tmp + 2)
	mov	(_logf_tmp + 2), a
	mov	a, #3
	movc	a, @a+dptr
	addc	a, (_logf_tmp + 3)
	mov	(_logf_tmp + 3), a
logf_cordic_skip:
	inc	dptr
	inc	dptr
	inc	dptr
	inc	dptr
	inc	r0
	cjne	r0, #30, logf_cordic_loop
	// at this point, _logf_tmp has the natural log of the positive
	// normalized fractional part (0.5 to 1.0 -> 0.693 to 0.0)
	mov	r4, (_logf_tmp + 3)
	mov	r3, (_logf_tmp + 2)
	mov	r2, (_logf_tmp + 1)
	mov	r1, (_logf_tmp + 0)
	mov	exp_a, #129
	setb	sign_a
	lcall	fs_normalize_a
	pop	acc
	cjne	a, #126, logf_exponent
	// if the input exponent was 126, then we don't need to add
	// anything and we can just return the with we have already

	// TODO: which of these gives best accuracy???
	ljmp	fs_zerocheck_return
	//ljmp	fs_round_and_return
logf_exponent:
	jc	logf_exp_neg
	// the input exponent was greater than 126
logf_exp_pos:
	add	a, #130
	clr	sign_b
	sjmp	logf_exp_scale
logf_exp_neg:
	// the input exponent was less than 126
	cpl	a
	add	a, #127
	setb	sign_b
logf_exp_scale:
	// r0 has abs(exp - 126)
	mov	r0, a
	// put the log of faction into b, so we can use a to compute
	// the offset to be added to it or subtracted from it
	lcall	fs_swap_a_b
	// multiply r0 by log(2), or r0 * 0xB17218
	mov	a, #0x18
	mov	b, r0
	mul	ab
	mov	r1, a
	mov	r2, b
	mov	a, #0xB1
	mov	b, r0
	mul	ab
	mov	r3, a
	mov	r4, b
	mov	a, #0x72
	mov	b, r0
	mul	ab
	add	a, r2
	mov	r2, a
	mov	a, b
	addc	a, r3
	mov	r3, a
	clr	a
	addc	a, r4
	mov	r4, a
	// turn r0 * log(2) into a proper float
	mov	exp_a, #134
	lcall	fs_normalize_a
	// now just add log(fractional) +/- log(2) * abs(exp - 126)
	ljmp	fsadd_direct_entry
	__endasm;
#pragma less_pedantic
}

#else // not MATH_ASM_MCS51

/*Constants for 24 bits or less (8 decimal digits)*/
#define A0 -0.5527074855E+0
#define B0 -0.6632718214E+1
#define A(w) (A0)
#define B(w) (w+B0)

#define C0  0.70710678118654752440
#define C1  0.693359375 /*355.0/512.0*/
#define C2 -2.121944400546905827679E-4

float logf(const float x) _FLOAT_FUNC_REENTRANT
{
#if     defined(SDCC_mcs51) && defined(SDCC_MODEL_SMALL) \
    && !defined(SDCC_NOOVERLAY)
    volatile
#endif
    float Rz;
    float f, z, w, znum, zden, xn;
    int n;

    if (x<=0.0)
    {
        errno=EDOM;
        return 0.0;
    }
    f=frexpf(x, &n);
    znum=f-0.5;
    if (f>C0)
    {
        znum-=0.5;
        zden=(f*0.5)+0.5;
    }
    else
    {
        n--;
        zden=znum*0.5+0.5;
    }
    z=znum/zden;
    w=z*z;

    Rz=z+z*(w*A(w)/B(w));
    xn=n;
    return ((xn*C2+Rz)+xn*C1);
}

#endif