This file is indexed.

/usr/share/scsh-0.6/srfi/srfi-5.scm is in scsh-common-0.6 0.6.7-8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
; Copyright (c) 1993-2001 by Richard Kelsey and Jonathan Rees. See file COPYING.

; Rewritten, simplified, and corrected from the SRFI document.
;
; The SRFI implementation gets the scoping wrong for the name.  It is visible
; to the arguments and should not be.

(define-syntax let
  (syntax-rules ()

    ; If no name we go straight to the standard LET.
    ((let () body ...)
     (standard-let () body ...))
    ((let ((variable value) bindings ...) body ...)
     (standard-let ((variable value) bindings ...) body ...))

    ;; Signature-style and standard named LET.
    ((let (name bindings ...) body ...)
     (let-loop name (bindings ...) () () (body ...)))
    ((let name bindings body ...)
     (let-loop name bindings () () (body ...)))))

; A loop to walk down the list of bindings.

(define-syntax let-loop
  (syntax-rules ()

    ; No more bindings - make a LETREC.
    ((let-loop name () (vars ...) (vals ...) body)
     ((letrec ((name (lambda (vars ...) . body)))
        name)
      vals ...))

    ; Process a (var val) pair.
    ((let-loop name ((var val) more ...) (vars ...)     (vals ...)     body)
     (let-loop name (more ...)           (vars ... var) (vals ... val) body))
    
    ; End with a rest variable - make a LETREC.
    ((let-loop name (rest-var rest-vals ...) (vars ...) (vals ...) body)
     ((letrec ((name (lambda (vars ... . rest-var) . body)))
       name)
      vals ... rest-vals ...))))

; Four loops - normal and `signature-style', each with and without a rest
; binding.
;
;(let fibonacci ((n 10) (i 0) (f0 0) (f1 1))
;  (if (= i n)
;      f0
;      (fibonacci n (+ i 1) f1 (+ f0 f1))))
;
;(let (fibonacci (n 10) (i 0) (f0 0) (f1 1))
;  (if (= i n)
;      f0
;      (fibonacci n (+ i 1) f1 (+ f0 f1))))
;
;(let fibonacci ((n 10) (i 0) . (f 0 1))
;  (if (= i n)
;      (car f)
;      (fibonacci n (+ i 1) (cadr f) (+ (car f) (cadr f)))))
;
;(let (fibonacci (n 10) (i 0) . (f 0 1))
;  (if (= i n)
;      (car f)
;      (fibonacci n (+ i 1) (cadr f) (+ (car f) (cadr f)))))