This file is indexed.

/usr/share/scsh-0.6/srfi/srfi-13.scm is in scsh-common-0.6 0.6.7-8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
;;; SRFI 13 string library reference implementation		-*- Scheme -*-
;;; Olin Shivers 7/2000
;;;
;;; Copyright (c) 1988-1994 Massachusetts Institute of Technology.
;;; Copyright (c) 1998, 1999, 2000 Olin Shivers. All rights reserved.
;;;   The details of the copyrights appear at the end of the file. Short
;;;   summary: BSD-style open source.

;;; Exports:
;;; string-map string-map!
;;; string-fold       string-unfold
;;; string-fold-right string-unfold-right 
;;; string-tabulate string-for-each string-for-each-index
;;; string-every string-any
;;; string-hash string-hash-ci
;;; string-compare string-compare-ci
;;; string=    string<    string>    string<=    string>=    string<>
;;; string-ci= string-ci< string-ci> string-ci<= string-ci>= string-ci<> 
;;; string-downcase  string-upcase  string-titlecase  
;;; string-downcase! string-upcase! string-titlecase! 
;;; string-take string-take-right
;;; string-drop string-drop-right
;;; string-pad string-pad-right
;;; string-trim string-trim-right string-trim-both
;;; string-filter string-delete
;;; string-index string-index-right 
;;; string-skip  string-skip-right
;;; string-count
;;; string-prefix-length string-prefix-length-ci
;;; string-suffix-length string-suffix-length-ci
;;; string-prefix? string-prefix-ci?
;;; string-suffix? string-suffix-ci?
;;; string-contains string-contains-ci
;;; string-copy! substring/shared
;;; string-reverse string-reverse! reverse-list->string
;;; string-concatenate string-concatenate/shared string-concatenate-reverse
;;; string-append/shared
;;; xsubstring string-xcopy!
;;; string-null?
;;; string-join
;;; string-tokenize
;;; string-replace
;;; 
;;; R5RS extended:
;;; string->list string-copy string-fill! 
;;;
;;; R5RS re-exports:
;;; string? make-string string-length string-ref string-set! 
;;;
;;; R5RS re-exports (also defined here but commented-out):
;;; string string-append list->string
;;;
;;; Low-level routines:
;;; make-kmp-restart-vector string-kmp-partial-search kmp-step
;;; string-parse-start+end
;;; string-parse-final-start+end
;;; let-string-start+end
;;; check-substring-spec
;;; substring-spec-ok?

;;; Imports
;;; This is a fairly large library. While it was written for portability, you
;;; must be aware of its dependencies in order to run it in a given scheme
;;; implementation. Here is a complete list of the dependencies it has and the
;;; assumptions it makes beyond stock R5RS Scheme:
;;;
;;; This code has the following non-R5RS dependencies:
;;; - (RECEIVE (var ...) mv-exp body ...) multiple-value binding macro;
;;;
;;; - Various imports from the char-set library for the routines that can
;;;   take char-set arguments;
;;;   
;;; - An n-ary ERROR procedure;
;;;   
;;; - BITWISE-AND for the hash functions;
;;;   
;;; - A simple CHECK-ARG procedure for checking parameter values; it is 
;;;   (lambda (pred val proc) 
;;;     (if (pred val) val (error "Bad arg" val pred proc)))
;;;   
;;; - :OPTIONAL and LET-OPTIONALS* macros for parsing, defaulting & 
;;;   type-checking optional parameters from a rest argument;
;;;   
;;; - CHAR-CASED? and CHAR-TITLECASE for the STRING-TITLECASE & 
;;;   STRING-TITLECASE! procedures. The former returns true iff a character is
;;;   one that has case distinctions; in ASCII it returns true on a-z and A-Z.
;;;   CHAR-TITLECASE is analagous to CHAR-UPCASE and CHAR-DOWNCASE. In ASCII &
;;;   Latin-1, it is the same as CHAR-UPCASE.
;;;
;;; The code depends upon a small set of core string primitives from R5RS:
;;;     MAKE-STRING STRING-REF STRING-SET! STRING? STRING-LENGTH SUBSTRING 
;;; (Actually, SUBSTRING is not a primitive, but we assume that an 
;;; implementation's native version is probably faster than one we could
;;; define, so we import it from R5RS.)
;;;
;;; The code depends upon a small set of R5RS character primitives:
;;;   char? char=? char-ci=? char<? char-ci<?
;;;   char-upcase char-downcase
;;;   char->integer (for the hash functions)
;;;   
;;; We assume the following:
;;; - CHAR-DOWNCASE o CHAR-UPCASE = CHAR-DOWNCASE
;;; - CHAR-CI=? is equivalent to
;;;     (lambda (c1 c2) (char=? (char-downcase (char-upcase c1))
;;;                             (char-downcase (char-upcase c2))))
;;; - CHAR-UPCASE, CHAR-DOWNCASE and CHAR-TITLECASE are locale-insensitive
;;;   and consistent with Unicode's 1-1 char-mapping spec.
;;; These things are typically true, but if not, you would need to modify
;;; the case-mapping and case-insensitive routines.

;;; Enough introductory blather. On to the source code. (But see the end of
;;; the file for further notes on porting & performance tuning.)

; Start S48 additions

(define (check-arg pred val caller)
  (if (not (pred val))
      (error val caller))
  val)

(define-syntax :optional
  (syntax-rules ()
    ((:optional rest default-exp)
     (let ((maybe-arg rest))
       (if (pair? maybe-arg)
	   (if (null? (cdr maybe-arg)) (car maybe-arg)
	       (error "too many optional arguments" maybe-arg))
	   default-exp)))

    ((:optional rest default-exp arg-test)
     (let ((maybe-arg rest))
       (if (pair? maybe-arg)
	   (if (null? (cdr maybe-arg))
	       (let ((val (car maybe-arg)))
		 (if (arg-test val) val
		     (error "Optional argument failed test"
			    'arg-test val)))
	       (error "too many optional arguments" maybe-arg))
	   default-exp)))))

(define-syntax let-optionals*
  (syntax-rules ()
    ((let-optionals* arg (opt-clause ...) body ...)
     (let ((rest arg))
       (%let-optionals* rest (opt-clause ...) body ...)))))

(define-syntax %let-optionals*
  (syntax-rules ()
    ((%let-optionals* arg (((var ...) xparser) opt-clause ...) body ...)
     (call-with-values (lambda () (xparser arg))
       (lambda (rest var ...)
         (%let-optionals* rest (opt-clause ...) body ...))))
    
    ((%let-optionals* arg ((var default) opt-clause ...) body ...)
     (call-with-values (lambda () (if (null? arg) (values default '())
				      (values (car arg) (cdr arg))))
       (lambda (var rest)
	 (%let-optionals* rest (opt-clause ...) body ...))))

    ((%let-optionals* arg ((var default test) opt-clause ...) body ...)
     (call-with-values (lambda ()
			 (if (null? arg) (values default '())
			     (let ((var (car arg)))
			       (if test (values var (cdr arg))
				   (error "arg failed LET-OPT test" var)))))
       (lambda (var rest)
	 (%let-optionals* rest (opt-clause ...) body ...))))

    ((%let-optionals* arg ((var default test supplied?) opt-clause ...) body ...)
     (call-with-values (lambda ()
			 (if (null? arg) (values default #f '())
			     (let ((var (car arg)))
			       (if test (values var #t (cdr arg))
				   (error "arg failed LET-OPT test" var)))))
       (lambda (var supplied? rest)
	 (%let-optionals* rest (opt-clause ...) body ...))))

    ((%let-optionals* arg (rest) body ...)
     (let ((rest arg)) body ...))

    ((%let-optionals* arg () body ...)
     (if (null? arg) (begin body ...)
	 (error "Too many arguments in let-opt" arg)))))

(define (char-cased? ch)
  (or (and (char<=? #\a ch)
	   (char<=? ch #\z))
      (and (char<=? #\A ch)
	   (char<=? ch #\Z))))
	 
(define char-titlecase char-upcase)

; End S48 additions

;;; Support for START/END substring specs
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; This macro parses optional start/end arguments from arg lists, defaulting
;;; them to 0/(string-length s), and checks them for correctness.

(define-syntax let-string-start+end
  (syntax-rules ()
    ((let-string-start+end (start end) proc s-exp args-exp body ...)
     (receive (start end) (string-parse-final-start+end proc s-exp args-exp)
       body ...))
    ((let-string-start+end (start end rest) proc s-exp args-exp body ...)
     (receive (rest start end) (string-parse-start+end proc s-exp args-exp)
       body ...))))

;;; This one parses out a *pair* of final start/end indices. 
;;; Not exported; for internal use.
(define-syntax let-string-start+end2
  (syntax-rules ()
    ((l-s-s+e2 (start1 end1 start2 end2) proc s1 s2 args body ...)
     (let ((procv proc)) ; Make sure PROC is only evaluated once.
       (let-string-start+end (start1 end1 rest) procv s1 args
         (let-string-start+end (start2 end2) procv s2 rest
           body ...))))))


;;; Returns three values: rest start end

(define (string-parse-start+end proc s args)
  (if (not (string? s)) (error "Non-string value" proc s))
  (let ((slen (string-length s)))
    (if (pair? args)

	(let ((start (car args))
	      (args (cdr args)))
	  (if (and (integer? start) (exact? start) (>= start 0))
	      (receive (end args)
		  (if (pair? args)
		      (let ((end (car args))
			    (args (cdr args)))
			(if (and (integer? end) (exact? end) (<= end slen))
			    (values end args)
			    (error "Illegal substring END spec" proc end s)))
		      (values slen args))
		(if (<= start end) (values args start end)
		    (error "Illegal substring START/END spec"
			   proc start end s)))
	      (error "Illegal substring START spec" proc start s)))

	(values '() 0 slen))))

(define (string-parse-final-start+end proc s args)
  (receive (rest start end) (string-parse-start+end proc s args)
    (if (pair? rest) (error "Extra arguments to procedure" proc rest)
	(values start end))))

(define (substring-spec-ok? s start end)
  (and (string? s)
       (integer? start)
       (exact? start)
       (integer? end)
       (exact? end)
       (<= 0 start)
       (<= start end)
       (<= end (string-length s))))

(define (check-substring-spec proc s start end)
  (if (not (substring-spec-ok? s start end))
      (error "Illegal substring spec." proc s start end)))


;;; Defined by R5RS, so commented out here.
;(define (string . chars)
;  (let* ((len (length chars))
;         (ans (make-string len)))
;    (do ((i 0 (+ i 1))
;	 (chars chars (cdr chars)))
;	((>= i len))
;      (string-set! ans i (car chars)))
;    ans))
;
;(define (string . chars) (string-unfold null? car cdr chars))



;;; substring/shared S START [END] 
;;; string-copy      S [START END]
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; All this goop is just arg parsing & checking surrounding a call to the
;;; actual primitive, %SUBSTRING/SHARED.

(define (substring/shared s start . maybe-end)
  (check-arg string? s substring/shared)
  (let ((slen (string-length s)))
    (check-arg (lambda (start) (and (integer? start) (exact? start) (<= 0 start)))
	       start substring/shared)
    (%substring/shared s start
		       (:optional maybe-end slen
				  (lambda (end) (and (integer? end)
						     (exact? end)
						     (<= start end)
						     (<= end slen)))))))

;;; Split out so that other routines in this library can avoid arg-parsing
;;; overhead for END parameter.
(define (%substring/shared s start end)
  (if (and (zero? start) (= end (string-length s))) s
      (substring s start end)))

(define (string-copy s . maybe-start+end)
  (let-string-start+end (start end) string-copy s maybe-start+end
    (substring s start end)))

;This library uses the R5RS SUBSTRING, but doesn't export it.
;Here is a definition, just for completeness.
;(define (substring s start end)
;  (check-substring-spec substring s start end)
;  (let* ((slen (- end start))
;         (ans (make-string slen)))
;    (do ((i 0 (+ i 1))
;         (j start (+ j 1)))
;        ((>= i slen) ans)
;      (string-set! ans i (string-ref s j)))))

;;; Basic iterators and other higher-order abstractions
;;; (string-map proc s [start end])
;;; (string-map! proc s [start end])
;;; (string-fold kons knil s [start end])
;;; (string-fold-right kons knil s [start end])
;;; (string-unfold       p f g seed [base make-final])
;;; (string-unfold-right p f g seed [base make-final])
;;; (string-for-each       proc s [start end])
;;; (string-for-each-index proc s [start end])
;;; (string-every char-set/char/pred s [start end])
;;; (string-any   char-set/char/pred s [start end])
;;; (string-tabulate proc len)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; You want compiler support for high-level transforms on fold and unfold ops.
;;; You'd at least like a lot of inlining for clients of these procedures.
;;; Don't hold your breath.

(define (string-map proc s . maybe-start+end)
  (check-arg procedure? proc string-map)
  (let-string-start+end (start end) string-map s maybe-start+end
    (%string-map proc s start end)))

(define (%string-map proc s start end)	; Internal utility
  (let* ((len (- end start))
	 (ans (make-string len)))
    (do ((i (- end 1) (- i 1))
	 (j (- len 1) (- j 1)))
	((< j 0))
      (string-set! ans j (proc (string-ref s i))))
    ans))

(define (string-map! proc s . maybe-start+end)
  (check-arg procedure? proc string-map!)
  (let-string-start+end (start end) string-map! s maybe-start+end
    (%string-map! proc s start end)))

(define (%string-map! proc s start end)
  (do ((i (- end 1) (- i 1)))
      ((< i start))
    (string-set! s i (proc (string-ref s i)))))

(define (string-fold kons knil s . maybe-start+end)
  (check-arg procedure? kons string-fold)
  (let-string-start+end (start end) string-fold s maybe-start+end
    (let lp ((v knil) (i start))
      (if (< i end) (lp (kons (string-ref s i) v) (+ i 1))
	  v))))

(define (string-fold-right kons knil s . maybe-start+end)
  (check-arg procedure? kons string-fold-right)
  (let-string-start+end (start end) string-fold-right s maybe-start+end
    (let lp ((v knil) (i (- end 1)))
      (if (>= i start) (lp (kons (string-ref s i) v) (- i 1))
	  v))))

;;; (string-unfold p f g seed [base make-final])
;;; This is the fundamental constructor for strings. 
;;; - G is used to generate a series of "seed" values from the initial seed:
;;;     SEED, (G SEED), (G^2 SEED), (G^3 SEED), ...
;;; - P tells us when to stop -- when it returns true when applied to one 
;;;   of these seed values.
;;; - F maps each seed value to the corresponding character 
;;;   in the result string. These chars are assembled into the
;;;   string in a left-to-right order.
;;; - BASE is the optional initial/leftmost portion of the constructed string;
;;;   it defaults to the empty string "".
;;; - MAKE-FINAL is applied to the terminal seed value (on which P returns
;;;   true) to produce the final/rightmost portion of the constructed string.
;;;   It defaults to (LAMBDA (X) "").
;;;
;;; In other words, the following (simple, inefficient) definition holds:
;;; (define (string-unfold p f g seed base make-final)
;;;   (string-append base
;;;                  (let recur ((seed seed))
;;;                    (if (p seed) (make-final seed)
;;;                        (string-append (string (f seed))
;;;                                       (recur (g seed)))))))
;;; 
;;; STRING-UNFOLD is a fairly powerful constructor -- you can use it to
;;; reverse a string, copy a string, convert a list to a string, read
;;; a port into a string, and so forth. Examples:
;;; (port->string port) =
;;;   (string-unfold (compose eof-object? peek-char)
;;;                  read-char values port)
;;;
;;; (list->string lis) = (string-unfold null? car cdr lis)
;;; 
;;; (tabulate-string f size) = (string-unfold (lambda (i) (= i size)) f add1 0)

;;; A problem with the following simple formulation is that it pushes one
;;; stack frame for every char in the result string -- an issue if you are
;;; using it to read a 100kchar string. So we don't use it -- but I include
;;; it to give a clear, straightforward description of what the function
;;; does.

;(define (string-unfold p f g seed base make-final)
;  (let ((ans (let recur ((seed seed) (i (string-length base)))
;               (if (p seed)
;                   (let* ((final (make-final seed))
;                          (ans (make-string (+ i (string-length final)))))
;                     (string-copy! ans i final)
;                     ans)
;
;                   (let* ((c (f seed))
;                          (s (recur (g seed) (+ i 1))))
;                     (string-set! s i c)
;                     s)))))
;    (string-copy! ans 0 base)
;    ans))

;;; The strategy is to allocate a series of chunks into which we stash the
;;; chars as we generate them. Chunk size goes up in powers of two starting
;;; with 40 and levelling out at 4k, i.e.
;;;     40 40 80 160 320 640 1280 2560 4096 4096 4096 4096 4096...
;;; This should work pretty well for short strings, 1-line (80 char) strings,
;;; and longer ones. When done, we allocate an answer string and copy the
;;; chars over from the chunk buffers.

(define (string-unfold p f g seed . base+make-final)
  (check-arg procedure? p string-unfold)
  (check-arg procedure? f string-unfold)
  (check-arg procedure? g string-unfold)
  (let-optionals* base+make-final
                  ((base       ""              (string? base))
		   (make-final (lambda (x) "") (procedure? make-final)))
    (let lp ((chunks '())		; Previously filled chunks
	     (nchars 0)			; Number of chars in CHUNKS
	     (chunk (make-string 40))	; Current chunk into which we write
	     (chunk-len 40)
	     (i 0)			; Number of chars written into CHUNK
	     (seed seed))
      (let lp2 ((i i) (seed seed))
	(if (not (p seed))
	    (let ((c (f seed))
		  (seed (g seed)))
	      (if (< i chunk-len)
		  (begin (string-set! chunk i c)
			 (lp2 (+ i 1) seed))

		  (let* ((nchars2 (+ chunk-len nchars))
			 (chunk-len2 (min 4096 nchars2))
			 (new-chunk (make-string chunk-len2)))
		    (string-set! new-chunk 0 c)
		    (lp (cons chunk chunks) (+ nchars chunk-len)
			new-chunk chunk-len2 1 seed))))

	    ;; We're done. Make the answer string & install the bits.
	    (let* ((final (make-final seed))
		   (flen (string-length final))
		   (base-len (string-length base))
		   (j (+ base-len nchars i))
		   (ans (make-string (+ j flen))))
	      (%string-copy! ans j final 0 flen)	; Install FINAL.
	      (let ((j (- j i)))
		(%string-copy! ans j chunk 0 i)		; Install CHUNK[0,I).
		(let lp ((j j) (chunks chunks))		; Install CHUNKS.
		  (if (pair? chunks)
		      (let* ((chunk  (car chunks))
			     (chunks (cdr chunks))
			     (chunk-len (string-length chunk))
			     (j (- j chunk-len)))
			(%string-copy! ans j chunk 0 chunk-len)
			(lp j chunks)))))
	      (%string-copy! ans 0 base 0 base-len)	; Install BASE.
	      ans))))))

(define (string-unfold-right p f g seed . base+make-final)
  (let-optionals* base+make-final
                  ((base       ""              (string? base))
		   (make-final (lambda (x) "") (procedure? make-final)))
    (let lp ((chunks '())		; Previously filled chunks
	     (nchars 0)			; Number of chars in CHUNKS
	     (chunk (make-string 40))	; Current chunk into which we write
	     (chunk-len 40)
	     (i 40)			; Number of chars available in CHUNK
	     (seed seed))
      (let lp2 ((i i) (seed seed))	; Fill up CHUNK from right
	(if (not (p seed))		; to left.
	    (let ((c (f seed))
		  (seed (g seed)))
	      (if (> i 0)
		  (let ((i (- i 1)))
		    (string-set! chunk i c)
		    (lp2 i seed))

		  (let* ((nchars2 (+ chunk-len nchars))
			 (chunk-len2 (min 4096 nchars2))
			 (new-chunk (make-string chunk-len2))
			 (i (- chunk-len2 1)))
		    (string-set! new-chunk i c)
		    (lp (cons chunk chunks) (+ nchars chunk-len)
			new-chunk chunk-len2 i seed))))

	    ;; We're done. Make the answer string & install the bits.
	    (let* ((final (make-final seed))
		   (flen (string-length final))
		   (base-len (string-length base))
		   (chunk-used (- chunk-len i))
		   (j (+ base-len nchars chunk-used))
		   (ans (make-string (+ j flen))))
	      (%string-copy! ans 0 final 0 flen)	; Install FINAL.
	      (%string-copy! ans flen chunk i chunk-len); Install CHUNK[I,).
	      (let lp ((j (+ flen chunk-used))		; Install CHUNKS.
		       (chunks chunks))		
		  (if (pair? chunks)
		      (let* ((chunk  (car chunks))
			     (chunks (cdr chunks))
			     (chunk-len (string-length chunk)))
			(%string-copy! ans j chunk 0 chunk-len)
			(lp (+ j chunk-len) chunks))
		      (%string-copy! ans j base 0 base-len))); Install BASE.
	      ans))))))


(define (string-for-each proc s . maybe-start+end)
  (check-arg procedure? proc string-for-each)
  (let-string-start+end (start end) string-for-each s maybe-start+end
    (let lp ((i start))
      (if (< i end)
	  (begin (proc (string-ref s i)) 
		 (lp (+ i 1)))))))

(define (string-for-each-index proc s . maybe-start+end)
  (check-arg procedure? proc string-for-each-index)
  (let-string-start+end (start end) string-for-each-index s maybe-start+end
    (let lp ((i start))
      (if (< i end) (begin (proc i) (lp (+ i 1)))))))

(define (string-every criterion s . maybe-start+end)
  (let-string-start+end (start end) string-every s maybe-start+end
    (cond ((char? criterion)
	   (let lp ((i start))
	     (or (>= i end)
		 (and (char=? criterion (string-ref s i))
		      (lp (+ i 1))))))

	  ((char-set? criterion)
	   (let lp ((i start))
	     (or (>= i end)
		 (and (char-set-contains? criterion (string-ref s i))
		      (lp (+ i 1))))))

	  ((procedure? criterion)		; Slightly funky loop so that
	   (or (= start end)			; final (PRED S[END-1]) call
	       (let lp ((i start))		; is a tail call.
		 (let ((c (string-ref s i))
		       (i1 (+ i 1)))
		   (if (= i1 end) (criterion c)	; Tail call.
		       (and (criterion c) (lp i1)))))))

	  (else (error "Second param is neither char-set, char, or predicate procedure."
		       string-every criterion)))))


(define (string-any criterion s . maybe-start+end)
  (let-string-start+end (start end) string-any s maybe-start+end
    (cond ((char? criterion)
	   (let lp ((i start))
	     (and (< i end)
		  (or (char=? criterion (string-ref s i))
		      (lp (+ i 1))))))

	  ((char-set? criterion)
	   (let lp ((i start))
	     (and (< i end)
		  (or (char-set-contains? criterion (string-ref s i))
		      (lp (+ i 1))))))

	  ((procedure? criterion)		; Slightly funky loop so that
	   (and (< start end)			; final (PRED S[END-1]) call
		(let lp ((i start))		; is a tail call.
		  (let ((c (string-ref s i))
			(i1 (+ i 1)))
		    (if (= i1 end) (criterion c)	; Tail call
			(or (criterion c) (lp i1)))))))

	  (else (error "Second param is neither char-set, char, or predicate procedure."
		       string-any criterion)))))


(define (string-tabulate proc len)
  (check-arg procedure? proc string-tabulate)
  (check-arg (lambda (val) (and (integer? val) (exact? val) (<= 0 val)))
	     len string-tabulate)
  (let ((s (make-string len)))
    (do ((i (- len 1) (- i 1)))
	((< i 0))
      (string-set! s i (proc i)))
    s))



;;; string-prefix-length[-ci] s1 s2 [start1 end1 start2 end2]
;;; string-suffix-length[-ci] s1 s2 [start1 end1 start2 end2]
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Find the length of the common prefix/suffix.
;;; It is not required that the two substrings passed be of equal length.
;;; This was microcode in MIT Scheme -- a very tightly bummed primitive.
;;; %STRING-PREFIX-LENGTH is the core routine of all string-comparisons,
;;; so should be as tense as possible.

(define (%string-prefix-length s1 start1 end1 s2 start2 end2)
  (let* ((delta (min (- end1 start1) (- end2 start2)))
	 (end1 (+ start1 delta)))

    (if (and (eq? s1 s2) (= start1 start2))	; EQ fast path
	delta

	(let lp ((i start1) (j start2))		; Regular path
	  (if (or (>= i end1)
		  (not (char=? (string-ref s1 i)
			       (string-ref s2 j))))
	      (- i start1)
	      (lp (+ i 1) (+ j 1)))))))

(define (%string-suffix-length s1 start1 end1 s2 start2 end2)
  (let* ((delta (min (- end1 start1) (- end2 start2)))
	 (start1 (- end1 delta)))

    (if (and (eq? s1 s2) (= end1 end2))		; EQ fast path
	delta

	(let lp ((i (- end1 1)) (j (- end2 1)))	; Regular path
	  (if (or (< i start1)
		  (not (char=? (string-ref s1 i)
			       (string-ref s2 j))))
	      (- (- end1 i) 1)
	      (lp (- i 1) (- j 1)))))))

(define (%string-prefix-length-ci s1 start1 end1 s2 start2 end2)
  (let* ((delta (min (- end1 start1) (- end2 start2)))
	 (end1 (+ start1 delta)))

    (if (and (eq? s1 s2) (= start1 start2))	; EQ fast path
	delta

	(let lp ((i start1) (j start2))		; Regular path
	  (if (or (>= i end1)
		  (not (char-ci=? (string-ref s1 i)
				  (string-ref s2 j))))
	      (- i start1)
	      (lp (+ i 1) (+ j 1)))))))

(define (%string-suffix-length-ci s1 start1 end1 s2 start2 end2)
  (let* ((delta (min (- end1 start1) (- end2 start2)))
	 (start1 (- end1 delta)))

    (if (and (eq? s1 s2) (= end1 end2))		; EQ fast path
	delta

	(let lp ((i (- end1 1)) (j (- end2 1)))	; Regular path
	  (if (or (< i start1)
		  (not (char-ci=? (string-ref s1 i)
				  (string-ref s2 j))))
	      (- (- end1 i) 1)
	      (lp (- i 1) (- j 1)))))))


(define (string-prefix-length s1 s2 . maybe-starts+ends)
  (let-string-start+end2 (start1 end1 start2 end2) 
			 string-prefix-length s1 s2 maybe-starts+ends
    (%string-prefix-length s1 start1 end1 s2 start2 end2)))

(define (string-suffix-length s1 s2 . maybe-starts+ends)
  (let-string-start+end2 (start1 end1 start2 end2) 
			 string-suffix-length s1 s2 maybe-starts+ends
    (%string-suffix-length s1 start1 end1 s2 start2 end2)))

(define (string-prefix-length-ci s1 s2 . maybe-starts+ends)
  (let-string-start+end2 (start1 end1 start2 end2) 
			 string-prefix-length-ci s1 s2 maybe-starts+ends
    (%string-prefix-length-ci s1 start1 end1 s2 start2 end2)))

(define (string-suffix-length-ci s1 s2 . maybe-starts+ends)
  (let-string-start+end2 (start1 end1 start2 end2) 
			 string-suffix-length-ci s1 s2 maybe-starts+ends
    (%string-suffix-length-ci s1 start1 end1 s2 start2 end2)))


;;; string-prefix?    s1 s2 [start1 end1 start2 end2]
;;; string-suffix?    s1 s2 [start1 end1 start2 end2]
;;; string-prefix-ci? s1 s2 [start1 end1 start2 end2]
;;; string-suffix-ci? s1 s2 [start1 end1 start2 end2]
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; These are all simple derivatives of the previous counting funs.

(define (string-prefix? s1 s2 . maybe-starts+ends)
  (let-string-start+end2 (start1 end1 start2 end2) 
			 string-prefix? s1 s2 maybe-starts+ends
    (%string-prefix? s1 start1 end1 s2 start2 end2)))

(define (string-suffix? s1 s2 . maybe-starts+ends)
  (let-string-start+end2 (start1 end1 start2 end2) 
			 string-suffix? s1 s2 maybe-starts+ends
    (%string-suffix? s1 start1 end1 s2 start2 end2)))

(define (string-prefix-ci? s1 s2 . maybe-starts+ends)
  (let-string-start+end2 (start1 end1 start2 end2) 
			 string-prefix-ci? s1 s2 maybe-starts+ends
    (%string-prefix-ci? s1 start1 end1 s2 start2 end2)))

(define (string-suffix-ci? s1 s2 . maybe-starts+ends)
  (let-string-start+end2 (start1 end1 start2 end2) 
			 string-suffix-ci? s1 s2 maybe-starts+ends
    (%string-suffix-ci? s1 start1 end1 s2 start2 end2)))


;;; Here are the internal routines that do the real work.

(define (%string-prefix? s1 start1 end1 s2 start2 end2)
  (let ((len1 (- end1 start1)))
    (and (<= len1 (- end2 start2))	; Quick check
	 (= (%string-prefix-length s1 start1 end1
				   s2 start2 end2)
	    len1))))

(define (%string-suffix? s1 start1 end1 s2 start2 end2)
  (let ((len1 (- end1 start1)))
    (and (<= len1 (- end2 start2))	; Quick check
	 (= len1 (%string-suffix-length s1 start1 end1
					s2 start2 end2)))))

(define (%string-prefix-ci? s1 start1 end1 s2 start2 end2)
  (let ((len1 (- end1 start1)))
    (and (<= len1 (- end2 start2))	; Quick check
	 (= len1 (%string-prefix-length-ci s1 start1 end1
					   s2 start2 end2)))))

(define (%string-suffix-ci? s1 start1 end1 s2 start2 end2)
  (let ((len1 (- end1 start1)))
    (and (<= len1 (- end2 start2))	; Quick check
	 (= len1 (%string-suffix-length-ci s1 start1 end1
					   s2 start2 end2)))))


;;; string-compare    s1 s2 proc< proc= proc> [start1 end1 start2 end2]
;;; string-compare-ci s1 s2 proc< proc= proc> [start1 end1 start2 end2]
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Primitive string-comparison functions.
;;; Continuation order is different from MIT Scheme.
;;; Continuations are applied to s1's mismatch index;
;;; in the case of equality, this is END1.

(define (%string-compare s1 start1 end1 s2 start2 end2
			   proc< proc= proc>)
  (let ((size1 (- end1 start1))
	(size2 (- end2 start2)))
    (let ((match (%string-prefix-length s1 start1 end1 s2 start2 end2)))
      (if (= match size1)
	  ((if (= match size2) proc= proc<) end1)
	  ((if (= match size2)
	       proc>
	       (if (char<? (string-ref s1 (+ start1 match))
			   (string-ref s2 (+ start2 match)))
		   proc< proc>))
	   (+ match start1))))))

(define (%string-compare-ci s1 start1 end1 s2 start2 end2
			      proc< proc= proc>)
  (let ((size1 (- end1 start1))
	(size2 (- end2 start2)))
    (let ((match (%string-prefix-length-ci s1 start1 end1 s2 start2 end2)))
      (if (= match size1)
	  ((if (= match size2) proc= proc<) end1)
	  ((if (= match size2) proc>
	       (if (char-ci<? (string-ref s1 (+ start1 match))
			      (string-ref s2 (+ start2 match)))
		   proc< proc>))
	   (+ start1 match))))))

(define (string-compare s1 s2 proc< proc= proc> . maybe-starts+ends)
  (check-arg procedure? proc< string-compare)
  (check-arg procedure? proc= string-compare)
  (check-arg procedure? proc> string-compare)
  (let-string-start+end2 (start1 end1 start2 end2) 
			 string-compare s1 s2 maybe-starts+ends
    (%string-compare s1 start1 end1 s2 start2 end2 proc< proc= proc>)))

(define (string-compare-ci s1 s2 proc< proc= proc> . maybe-starts+ends)
  (check-arg procedure? proc< string-compare-ci)
  (check-arg procedure? proc= string-compare-ci)
  (check-arg procedure? proc> string-compare-ci)
  (let-string-start+end2 (start1 end1 start2 end2) 
			 string-compare-ci s1 s2 maybe-starts+ends
    (%string-compare-ci s1 start1 end1 s2 start2 end2 proc< proc= proc>)))



;;; string=          string<>		string-ci=          string-ci<>
;;; string<          string>		string-ci<          string-ci>
;;; string<=         string>=		string-ci<=         string-ci>=
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Simple definitions in terms of the previous comparison funs.
;;; I sure hope the %STRING-COMPARE calls get integrated.

(define (string= s1 s2 . maybe-starts+ends)
  (let-string-start+end2 (start1 end1 start2 end2) 
			 string= s1 s2 maybe-starts+ends
    (and (= (- end1 start1) (- end2 start2))			; Quick filter
	 (or (and (eq? s1 s2) (= start1 start2))		; Fast path
	     (%string-compare s1 start1 end1 s2 start2 end2	; Real test
			      (lambda (i) #f)
			      values
			      (lambda (i) #f))))))

(define (string<> s1 s2 . maybe-starts+ends)
  (let-string-start+end2 (start1 end1 start2 end2) 
			 string<> s1 s2 maybe-starts+ends
    (or (not (= (- end1 start1) (- end2 start2)))		; Fast path
	(and (not (and (eq? s1 s2) (= start1 start2)))		; Quick filter
	     (%string-compare s1 start1 end1 s2 start2 end2	; Real test
			      values
			      (lambda (i) #f)
			      values)))))

(define (string< s1 s2 . maybe-starts+ends)
  (let-string-start+end2 (start1 end1 start2 end2) 
			 string< s1 s2 maybe-starts+ends
    (if (and (eq? s1 s2) (= start1 start2))			; Fast path
	(< end1 end2)

	(%string-compare s1 start1 end1 s2 start2 end2 		; Real test
			 values
			 (lambda (i) #f)
			 (lambda (i) #f)))))

(define (string> s1 s2 . maybe-starts+ends)
  (let-string-start+end2 (start1 end1 start2 end2) 
			 string> s1 s2 maybe-starts+ends
    (if (and (eq? s1 s2) (= start1 start2))			; Fast path
	(> end1 end2)

	(%string-compare s1 start1 end1 s2 start2 end2 		; Real test
			 (lambda (i) #f)
			 (lambda (i) #f)
			 values))))

(define (string<= s1 s2 . maybe-starts+ends)
  (let-string-start+end2 (start1 end1 start2 end2) 
			 string<= s1 s2 maybe-starts+ends
    (if (and (eq? s1 s2) (= start1 start2))			; Fast path
	(<= end1 end2)

	(%string-compare s1 start1 end1 s2 start2 end2 		; Real test
			 values
			 values
			 (lambda (i) #f)))))

(define (string>= s1 s2 . maybe-starts+ends)
  (let-string-start+end2 (start1 end1 start2 end2) 
			 string>= s1 s2 maybe-starts+ends
    (if (and (eq? s1 s2) (= start1 start2))			; Fast path
	(>= end1 end2)

	(%string-compare s1 start1 end1 s2 start2 end2 		; Real test
			 (lambda (i) #f)
			 values
			 values))))

(define (string-ci= s1 s2 . maybe-starts+ends)
  (let-string-start+end2 (start1 end1 start2 end2) 
			 string-ci= s1 s2 maybe-starts+ends
    (and (= (- end1 start1) (- end2 start2))			; Quick filter
	 (or (and (eq? s1 s2) (= start1 start2))		; Fast path
	     (%string-compare-ci s1 start1 end1 s2 start2 end2	; Real test
				 (lambda (i) #f)
				 values
				 (lambda (i) #f))))))

(define (string-ci<> s1 s2 . maybe-starts+ends)
  (let-string-start+end2 (start1 end1 start2 end2) 
			 string-ci<> s1 s2 maybe-starts+ends
    (or (not (= (- end1 start1) (- end2 start2)))		; Fast path
	(and (not (and (eq? s1 s2) (= start1 start2)))		; Quick filter
	     (%string-compare-ci s1 start1 end1 s2 start2 end2	; Real test
				 values
				 (lambda (i) #f)
				 values)))))

(define (string-ci< s1 s2 . maybe-starts+ends)
  (let-string-start+end2 (start1 end1 start2 end2) 
			 string-ci< s1 s2 maybe-starts+ends
    (if (and (eq? s1 s2) (= start1 start2))			; Fast path
	(< end1 end2)

	(%string-compare-ci s1 start1 end1 s2 start2 end2	; Real test
			    values
			    (lambda (i) #f)
			    (lambda (i) #f)))))

(define (string-ci> s1 s2 . maybe-starts+ends)
  (let-string-start+end2 (start1 end1 start2 end2) 
			 string-ci> s1 s2 maybe-starts+ends
    (if (and (eq? s1 s2) (= start1 start2))			; Fast path
	(> end1 end2)

	(%string-compare-ci s1 start1 end1 s2 start2 end2	; Real test
			    (lambda (i) #f)
			    (lambda (i) #f)
			    values))))

(define (string-ci<= s1 s2 . maybe-starts+ends)
  (let-string-start+end2 (start1 end1 start2 end2) 
			 string-ci<= s1 s2 maybe-starts+ends
    (if (and (eq? s1 s2) (= start1 start2))			; Fast path
	(<= end1 end2)

	(%string-compare-ci s1 start1 end1 s2 start2 end2	; Real test
			    values
			    values
			    (lambda (i) #f)))))

(define (string-ci>= s1 s2 . maybe-starts+ends)
  (let-string-start+end2 (start1 end1 start2 end2) 
			 string-ci>= s1 s2 maybe-starts+ends
    (if (and (eq? s1 s2) (= start1 start2))			; Fast path
	(>= end1 end2)

	(%string-compare-ci s1 start1 end1 s2 start2 end2	; Real test
			    (lambda (i) #f)
			    values
			    values))))


;;; Hash
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Compute (c + 37 c + 37^2 c + ...) modulo BOUND, with sleaze thrown in
;;; to keep the intermediate values small. (We do the calculation with just
;;; enough bits to represent BOUND, masking off high bits at each step in
;;; calculation. If this screws up any important properties of the hash
;;; function I'd like to hear about it. -Olin)
;;;
;;; If you keep BOUND small enough, the intermediate calculations will 
;;; always be fixnums. How small is dependent on the underlying Scheme system; 
;;; we use a default BOUND of 2^22 = 4194304, which should hack it in
;;; Schemes that give you at least 29 signed bits for fixnums. The core 
;;; calculation that you don't want to overflow is, worst case,
;;;     (+ 65535 (* 37 (- bound 1)))
;;; where 65535 is the max character code. Choose the default BOUND to be the
;;; biggest power of two that won't cause this expression to fixnum overflow, 
;;; and everything will be copacetic.

(define (%string-hash s char->int bound start end)
  (let ((iref (lambda (s i) (char->int (string-ref s i))))
	;; Compute a 111...1 mask that will cover BOUND-1:
	(mask (let lp ((i #x10000)) ; Let's skip first 16 iterations, eh?
		(if (>= i bound) (- i 1) (lp (+ i i))))))
    (let lp ((i start) (ans 0))
      (if (>= i end) (modulo ans bound)
	  (lp (+ i 1) (bitwise-and mask (+ (* 37 ans) (iref s i))))))))

(define (string-hash s . maybe-bound+start+end)
  (let-optionals* maybe-bound+start+end ((bound 4194304 (and (integer? bound)
							     (exact? bound)
							     (<= 0 bound)))
					 rest)
    (let ((bound (if (zero? bound) 4194304 bound)))	; 0 means default.
      (let-string-start+end (start end) string-hash s rest
        (%string-hash s char->integer bound start end)))))

(define (string-hash-ci s . maybe-bound+start+end)
  (let-optionals* maybe-bound+start+end ((bound 4194304 (and (integer? bound)
							     (exact? bound)
							     (<= 0 bound)))
					 rest)
    (let ((bound (if (zero? bound) 4194304 bound)))	; 0 means default.
      (let-string-start+end (start end) string-hash-ci s rest
        (%string-hash s (lambda (c) (char->integer (char-downcase c)))
		      bound start end)))))

;;; Case hacking
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; string-upcase  s [start end]
;;; string-upcase! s [start end]
;;; string-downcase  s [start end]
;;; string-downcase! s [start end]
;;;
;;; string-titlecase  s [start end]
;;; string-titlecase! s [start end]
;;;   Capitalize every contiguous alpha sequence: capitalise
;;;   first char, lowercase rest.

(define (string-upcase  s . maybe-start+end)
  (let-string-start+end (start end) string-upcase s maybe-start+end
    (%string-map char-upcase s start end)))

(define (string-upcase! s . maybe-start+end)
  (let-string-start+end (start end) string-upcase! s maybe-start+end
    (%string-map! char-upcase s start end)))

(define (string-downcase  s . maybe-start+end)
  (let-string-start+end (start end) string-downcase s maybe-start+end
    (%string-map char-downcase s start end)))

(define (string-downcase! s . maybe-start+end)
  (let-string-start+end (start end) string-downcase! s maybe-start+end
    (%string-map! char-downcase s start end)))

(define (%string-titlecase! s start end)
  (let lp ((i start))
    (cond ((string-index s char-cased? i end) =>
           (lambda (i)
	     (string-set! s i (char-titlecase (string-ref s i)))
	     (let ((i1 (+ i 1)))
	       (cond ((string-skip s char-cased? i1 end) =>
		      (lambda (j)
			(string-downcase! s i1 j)
			(lp (+ j 1))))
		     (else (string-downcase! s i1 end)))))))))

(define (string-titlecase! s . maybe-start+end)
  (let-string-start+end (start end) string-titlecase! s maybe-start+end
    (%string-titlecase! s start end)))

(define (string-titlecase s . maybe-start+end)
  (let-string-start+end (start end) string-titlecase! s maybe-start+end
    (let ((ans (substring s start end)))
      (%string-titlecase! ans 0 (- end start))
      ans)))


;;; Cutting & pasting strings
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; string-take string nchars
;;; string-drop string nchars
;;;
;;; string-take-right string nchars
;;; string-drop-right string nchars
;;;
;;; string-pad string k [char start end] 
;;; string-pad-right string k [char start end] 
;;; 
;;; string-trim       string [char/char-set/pred start end] 
;;; string-trim-right string [char/char-set/pred start end] 
;;; string-trim-both  string [char/char-set/pred start end] 
;;;
;;; These trimmers invert the char-set meaning from MIT Scheme -- you
;;; say what you want to trim.

(define (string-take s n)
  (check-arg string? s string-take)
  (check-arg (lambda (val) (and (integer? n) (exact? n)
				(<= 0 n (string-length s))))
	     n string-take)
  (%substring/shared s 0 n))

(define (string-take-right s n)
  (check-arg string? s string-take-right)
  (let ((len (string-length s)))
    (check-arg (lambda (val) (and (integer? n) (exact? n) (<= 0 n len)))
	       n string-take-right)
    (%substring/shared s (- len n) len)))

(define (string-drop s n)
  (check-arg string? s string-drop)
  (let ((len (string-length s)))
    (check-arg (lambda (val) (and (integer? n) (exact? n) (<= 0 n len)))
	       n string-drop)
  (%substring/shared s n len)))

(define (string-drop-right s n)
  (check-arg string? s string-drop-right)
  (let ((len (string-length s)))
    (check-arg (lambda (val) (and (integer? n) (exact? n) (<= 0 n len)))
	       n string-drop-right)
    (%substring/shared s 0 (- len n))))


(define (string-trim s . criterion+start+end)
  (let-optionals* criterion+start+end ((criterion char-set:whitespace) rest)
    (let-string-start+end (start end) string-trim s rest
      (cond ((string-skip s criterion start end) =>
	     (lambda (i) (%substring/shared s i end)))
	    (else "")))))

(define (string-trim-right s . criterion+start+end)
  (let-optionals* criterion+start+end ((criterion char-set:whitespace) rest)
    (let-string-start+end (start end) string-trim-right s rest
      (cond ((string-skip-right s criterion start end) =>
	     (lambda (i) (%substring/shared s 0 (+ 1 i))))
	    (else "")))))

(define (string-trim-both s . criterion+start+end)
  (let-optionals* criterion+start+end ((criterion char-set:whitespace) rest)
    (let-string-start+end (start end) string-trim-both s rest
      (cond ((string-skip s criterion start end) =>
	     (lambda (i)
	       (%substring/shared s i (+ 1 (string-skip-right s criterion i end)))))
	    (else "")))))


(define (string-pad-right s n . char+start+end)
  (let-optionals* char+start+end ((char #\space (char? char)) rest)
    (let-string-start+end (start end) string-pad-right s rest
      (check-arg (lambda (n) (and (integer? n) (exact? n) (<= 0 n)))
		 n string-pad-right)
      (let ((len (- end start)))
	(if (<= n len)
	    (%substring/shared s start (+ start n))
	    (let ((ans (make-string n char)))
	      (%string-copy! ans 0 s start end)
	      ans))))))

(define (string-pad s n . char+start+end)
  (let-optionals* char+start+end ((char #\space (char? char)) rest)
    (let-string-start+end (start end) string-pad s rest
      (check-arg (lambda (n) (and (integer? n) (exact? n) (<= 0 n)))
		 n string-pad)
      (let ((len (- end start)))
	(if (<= n len)
	    (%substring/shared s (- end n) end)
	    (let ((ans (make-string n char)))
	      (%string-copy! ans (- n len) s start end)
	      ans))))))



;;; Filtering strings
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; string-delete char/char-set/pred string [start end]
;;; string-filter char/char-set/pred string [start end]
;;;
;;; If the criterion is a char or char-set, we scan the string twice with
;;;   string-fold -- once to determine the length of the result string, 
;;;   and once to do the filtered copy.
;;; If the criterion is a predicate, we don't do this double-scan strategy, 
;;;   because the predicate might have side-effects or be very expensive to
;;;   compute. So we preallocate a temp buffer pessimistically, and only do
;;;   one scan over S. This is likely to be faster and more space-efficient
;;;   than consing a list.

(define (string-delete criterion s . maybe-start+end)
  (let-string-start+end (start end) string-delete s maybe-start+end
    (if (procedure? criterion)
	(let* ((slen (- end start))
	       (temp (make-string slen))
	       (ans-len (string-fold (lambda (c i)
				       (if (criterion c) i
					   (begin (string-set! temp i c)
						  (+ i 1))))
				     0 s start end)))
	  (if (= ans-len slen) temp (substring temp 0 ans-len)))

	(let* ((cset (cond ((char-set? criterion) criterion)
			   ((char? criterion) (char-set criterion))
			   (else (error "string-delete criterion not predicate, char or char-set" criterion))))
	       (len (string-fold (lambda (c i) (if (char-set-contains? cset c)
						   i
						   (+ i 1)))
				 0 s start end))
	       (ans (make-string len)))
	  (string-fold (lambda (c i) (if (char-set-contains? cset c)
					 i
					 (begin (string-set! ans i c)
						(+ i 1))))
		       0 s start end)
	  ans))))

(define (string-filter criterion s . maybe-start+end)
  (let-string-start+end (start end) string-filter s maybe-start+end
    (if (procedure? criterion)
	(let* ((slen (- end start))
	       (temp (make-string slen))
	       (ans-len (string-fold (lambda (c i)
				       (if (criterion c)
					   (begin (string-set! temp i c)
						  (+ i 1))
					   i))
				     0 s start end)))
	  (if (= ans-len slen) temp (substring temp 0 ans-len)))

	(let* ((cset (cond ((char-set? criterion) criterion)
			   ((char? criterion) (char-set criterion))
			   (else (error "string-delete criterion not predicate, char or char-set" criterion))))

	       (len (string-fold (lambda (c i) (if (char-set-contains? cset c)
						   (+ i 1)
						   i))
				 0 s start end))
	       (ans (make-string len)))
	  (string-fold (lambda (c i) (if (char-set-contains? cset c)
					 (begin (string-set! ans i c)
						(+ i 1))
					 i))
		       0 s start end)
	  ans))))


;;; String search
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; string-index       string char/char-set/pred [start end]
;;; string-index-right string char/char-set/pred [start end]
;;; string-skip        string char/char-set/pred [start end]
;;; string-skip-right  string char/char-set/pred [start end]
;;; string-count       string char/char-set/pred [start end]
;;;     There's a lot of replicated code here for efficiency.
;;;     For example, the char/char-set/pred discrimination has
;;;     been lifted above the inner loop of each proc.

(define (string-index str criterion . maybe-start+end)
  (let-string-start+end (start end) string-index str maybe-start+end
    (cond ((char? criterion)
	   (let lp ((i start))
	     (and (< i end)
		  (if (char=? criterion (string-ref str i)) i
		      (lp (+ i 1))))))
	  ((char-set? criterion)
	   (let lp ((i start))
	     (and (< i end)
		  (if (char-set-contains? criterion (string-ref str i)) i
		      (lp (+ i 1))))))
	  ((procedure? criterion)
	   (let lp ((i start))
	     (and (< i end)
		  (if (criterion (string-ref str i)) i
		      (lp (+ i 1))))))
	  (else (error "Second param is neither char-set, char, or predicate procedure."
		       string-index criterion)))))

(define (string-index-right str criterion . maybe-start+end)
  (let-string-start+end (start end) string-index-right str maybe-start+end
    (cond ((char? criterion)
	   (let lp ((i (- end 1)))
	     (and (>= i 0)
		  (if (char=? criterion (string-ref str i)) i
		      (lp (- i 1))))))
	  ((char-set? criterion)
	   (let lp ((i (- end 1)))
	     (and (>= i 0)
		  (if (char-set-contains? criterion (string-ref str i)) i
		      (lp (- i 1))))))
	  ((procedure? criterion)
	   (let lp ((i (- end 1)))
	     (and (>= i 0)
		  (if (criterion (string-ref str i)) i
		      (lp (- i 1))))))
	  (else (error "Second param is neither char-set, char, or predicate procedure."
		       string-index-right criterion)))))

(define (string-skip str criterion . maybe-start+end)
  (let-string-start+end (start end) string-skip str maybe-start+end
    (cond ((char? criterion)
	   (let lp ((i start))
	     (and (< i end)
		  (if (char=? criterion (string-ref str i))
		      (lp (+ i 1))
		      i))))
	  ((char-set? criterion)
	   (let lp ((i start))
	     (and (< i end)
		  (if (char-set-contains? criterion (string-ref str i))
		      (lp (+ i 1))
		      i))))
	  ((procedure? criterion)
	   (let lp ((i start))
	     (and (< i end)
		  (if (criterion (string-ref str i)) (lp (+ i 1))
		      i))))
	  (else (error "Second param is neither char-set, char, or predicate procedure."
		       string-skip criterion)))))

(define (string-skip-right str criterion . maybe-start+end)
  (let-string-start+end (start end) string-skip-right str maybe-start+end
    (cond ((char? criterion)
	   (let lp ((i (- end 1)))
	     (and (>= i 0)
		  (if (char=? criterion (string-ref str i))
		      (lp (- i 1))
		      i))))
	  ((char-set? criterion)
	   (let lp ((i (- end 1)))
	     (and (>= i 0)
		  (if (char-set-contains? criterion (string-ref str i))
		      (lp (- i 1))
		      i))))
	  ((procedure? criterion)
	   (let lp ((i (- end 1)))
	     (and (>= i 0)
		  (if (criterion (string-ref str i)) (lp (- i 1))
		      i))))
	  (else (error "CRITERION param is neither char-set or char."
		       string-skip-right criterion)))))


(define (string-count s criterion . maybe-start+end)
  (let-string-start+end (start end) string-count s maybe-start+end
    (cond ((char? criterion)
	   (do ((i start (+ i 1))
		(count 0 (if (char=? criterion (string-ref s i))
			     (+ count 1)
			     count)))
	       ((>= i end) count)))

	  ((char-set? criterion)
	   (do ((i start (+ i 1))
		(count 0 (if (char-set-contains? criterion (string-ref s i))
			     (+ count 1)
			     count)))
	       ((>= i end) count)))

	  ((procedure? criterion)
	   (do ((i start (+ i 1))
		(count 0 (if (criterion (string-ref s i)) (+ count 1) count)))
	       ((>= i end) count)))

	  (else (error "CRITERION param is neither char-set or char."
		       string-count criterion)))))



;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; string-fill! string char [start end]
;;; 
;;; string-copy! to tstart from [fstart fend]
;;; 	Guaranteed to work, even if s1 eq s2.

(define (string-fill! s char . maybe-start+end)
  (check-arg char? char string-fill!)
  (let-string-start+end (start end) string-fill! s maybe-start+end
    (do ((i (- end 1) (- i 1)))
	((< i start))
      (string-set! s i char))))

(define (string-copy! to tstart from . maybe-fstart+fend)
  (let-string-start+end (fstart fend) string-copy! from maybe-fstart+fend
    (check-arg integer? tstart string-copy!)
    (check-substring-spec string-copy! to tstart (+ tstart (- fend fstart)))
    (%string-copy! to tstart from fstart fend)))

;;; Library-internal routine
(define (%string-copy! to tstart from fstart fend)
  (if (> fstart tstart)
      (do ((i fstart (+ i 1))
	   (j tstart (+ j 1)))
	  ((>= i fend))
	(string-set! to j (string-ref from i)))

      (do ((i (- fend 1)                    (- i 1))
	   (j (+ -1 tstart (- fend fstart)) (- j 1)))
	  ((< i fstart))
	(string-set! to j (string-ref from i)))))



;;; Returns starting-position in STRING or #f if not true.
;;; This implementation is slow & simple. It is useful as a "spec" or for
;;; comparison testing with fancier implementations.
;;; See below for fast KMP version.

(define (%string-contains string substring start1 end1 start2 end2 the-string=)
   (let* ((len (- end2 start2))
          (i-bound (- end1 len)))
     (let lp ((i start1))
       (and (<= i i-bound)
            (if (the-string= string substring i (+ i len) start2 end2)
                i
                (lp (+ i 1)))))))

(define (string-contains text pattern . maybe-starts+ends)
  (let-string-start+end2 (t-start t-end p-start p-end)
                         string-contains text pattern maybe-starts+ends
    (%string-contains text pattern t-start t-end p-start p-end string=)))

(define (string-contains-ci text pattern . maybe-starts+ends)
  (let-string-start+end2 (t-start t-end p-start p-end)
                         string-contains-ci text pattern maybe-starts+ends
    (%string-contains text pattern t-start t-end p-start p-end string-ci=)))
  
;;; Searching for an occurrence of a substring
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; Broken, see http://srfi.schemers.org/srfi-13/post-mail-archive/msg00003.html
; (define (string-contains text pattern . maybe-starts+ends)
;   (let-string-start+end2 (t-start t-end p-start p-end)
;                          string-contains text pattern maybe-starts+ends
;     (%kmp-search pattern text char=? p-start p-end t-start t-end)))

; (define (string-contains-ci text pattern . maybe-starts+ends)
;   (let-string-start+end2 (t-start t-end p-start p-end)
;                          string-contains-ci text pattern maybe-starts+ends
;     (%kmp-search pattern text char-ci=? p-start p-end t-start t-end)))


;;; Knuth-Morris-Pratt string searching
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; See
;;;     "Fast pattern matching in strings"
;;;     SIAM J. Computing 6(2):323-350 1977
;;;     D. E. Knuth, J. H. Morris and V. R. Pratt
;;; also described in
;;;     "Pattern matching in strings"
;;;     Alfred V. Aho
;;;     Formal Language Theory - Perspectives and Open Problems
;;;     Ronald V. Brook (editor)
;;; This algorithm is O(m + n) where m and n are the 
;;; lengths of the pattern and string respectively

;;; KMP search source[start,end) for PATTERN. Return starting index of
;;; leftmost match or #f.

(define (%kmp-search pattern text c= p-start p-end t-start t-end)
  (let ((plen (- p-end p-start))
	(rv (make-kmp-restart-vector pattern c= p-start p-end)))

    ;; The search loop. TJ & PJ are redundant state.
    (let lp ((ti t-start) (pi 0)
	     (tj (- t-end t-start))	; (- tlen ti) -- how many chars left.
	     (pj plen))			; (- plen pi) -- how many chars left.

      (if (= pi plen) (- ti plen)			; Win.
	  
	  (and (<= pj tj)				; Lose.
		 
	       (if (c= (string-ref text ti)		; Search.
		       (string-ref pattern (+ p-start pi)))
		   (lp (+ 1 ti) (+ 1 pi) (- tj 1) (- pj 1))	; Advance.
		   
		   (let ((pi (vector-ref rv pi)))		; Retreat.
		     (if (= pi -1)
			 (lp (+ ti 1)  0   (- tj 1)  plen)	; Punt.
			 (lp ti        pi  tj        (- plen pi))))))))))

;;; (make-kmp-restart-vector pattern [c= start end]) -> integer-vector
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Compute the KMP restart vector RV for string PATTERN.  If
;;; we have matched chars 0..i-1 of PATTERN against a search string S, and
;;; PATTERN[i] doesn't match S[k], then reset i := RV[i], and try again to
;;; match S[k].  If RV[i] = -1, then punt S[k] completely, and move on to
;;; S[k+1] and PATTERN[0] -- no possible match of PAT[0..i] contains S[k].
;;;
;;; In other words, if you have matched the first i chars of PATTERN, but
;;; the i+1'th char doesn't match, RV[i] tells you what the next-longest
;;; prefix of PATTERN is that you have matched.
;;;
;;; - C= (default CHAR=?) is used to compare characters for equality.
;;;   Pass in CHAR-CI=? for case-folded string search.
;;;
;;; - START & END restrict the pattern to the indicated substring; the
;;;   returned vector will be of length END - START. The numbers stored
;;;   in the vector will be values in the range [0,END-START) -- that is,
;;;   they are valid indices into the restart vector; you have to add START
;;;   to them to use them as indices into PATTERN.
;;;
;;; I've split this out as a separate function in case other constant-string
;;; searchers might want to use it.
;;;
;;; E.g.:
;;;    a b d  a b x
;;; #(-1 0 0 -1 1 2)

(define (make-kmp-restart-vector pattern . maybe-c=+start+end)
  (let-optionals* maybe-c=+start+end
                  ((c= char=? (procedure? c=))
		   ((start end) (lambda (args)
				  (string-parse-start+end make-kmp-restart-vector
							  pattern args))))
    (let* ((rvlen (- end start))
	   (rv (make-vector rvlen -1)))
      (if (> rvlen 0)
	  (let ((rvlen-1 (- rvlen 1))
		(c0 (string-ref pattern start)))

	    ;; Here's the main loop. We have set rv[0] ... rv[i].
	    ;; K = I + START -- it is the corresponding index into PATTERN.
	    (let lp1 ((i 0) (j -1) (k start))	
	      (if (< i rvlen-1)

		  (let ((ck (string-ref pattern k)))
		    ;; lp2 invariant:
		    ;;   pat[(k-j) .. k-1] matches pat[start .. start+j-1]
		    ;;   or j = -1.
		    (let lp2 ((j j))

		      (cond ((= j -1)
			     (let ((i1 (+ i 1)))
			       (vector-set! rv i1 (if (c= ck c0) -1 0))
			       (lp1 i1 0 (+ k 1))))

			    ;; pat[(k-j) .. k] matches pat[start..start+j].
			    ((c= ck (string-ref pattern (+ j start)))
			     (let* ((i1 (+ 1 i))
				    (j1 (+ 1 j)))
			       (vector-set! rv i1 j1)
			       (lp1 i1 j1 (+ k 1))))

			    (else (lp2 (vector-ref rv j))))))))))
      rv)))


;;; We've matched I chars from PAT. C is the next char from the search string.
;;; Return the new I after handling C. 
;;;
;;; The pattern is (VECTOR-LENGTH RV) chars long, beginning at index PAT-START
;;; in PAT (PAT-START is usually 0). The I chars of the pattern we've matched
;;; are 
;;;     PAT[PAT-START .. PAT-START + I].
;;;
;;; It's *not* an oversight that there is no friendly error checking or
;;; defaulting of arguments. This is a low-level, inner-loop procedure
;;; that we want integrated/inlined into the point of call.

(define (kmp-step pat rv c i c= p-start)
  (let lp ((i i))
    (if (c= c (string-ref pat (+ i p-start)))	; Match =>
	(+ i 1)					;   Done.
	(let ((i (vector-ref rv i)))		; Back up in PAT.
	  (if (= i -1) 0			; Can't back up further.
	      (lp i))))))			; Keep trying for match.

;;; Zip through S[start,end), looking for a match of PAT. Assume we've
;;; already matched the first I chars of PAT when we commence at S[start].
;;; - <0:  If we find a match *ending* at index J, return -J.
;;; - >=0: If we get to the end of the S[start,end) span without finding
;;;   a complete match, return the number of chars from PAT we'd matched
;;;   when we ran off the end.
;;;
;;; This is useful for searching *across* buffers -- that is, when your
;;; input comes in chunks of text. We hand-integrate the KMP-STEP loop
;;; for speed.

(define (string-kmp-partial-search pat rv s i . c=+p-start+s-start+s-end)
  (check-arg vector? rv string-kmp-partial-search)
  (let-optionals* c=+p-start+s-start+s-end
		  ((c=      char=? (procedure? c=))
		   (p-start 0 (and (integer? p-start) (exact? p-start) (<= 0 p-start)))
		   ((s-start s-end) (lambda (args)
				      (string-parse-start+end string-kmp-partial-search
							      s args))))
    (let ((patlen (vector-length rv)))
      (check-arg (lambda (i) (and (integer? i) (exact? i) (<= 0 i) (< i patlen)))
		 i string-kmp-partial-search)

      ;; Enough prelude. Here's the actual code.
      (let lp ((si s-start)		; An index into S.
	       (vi i))			; An index into RV.
	(cond ((= vi patlen) (- si))	; Win.
	      ((= si s-end) vi)		; Ran off the end.
	      (else			; Match s[si] & loop.
	       (let ((c (string-ref s si)))
		 (lp (+ si 1)	
		     (let lp2 ((vi vi))	; This is just KMP-STEP.
		       (if (c= c (string-ref pat (+ vi p-start)))
			   (+ vi 1)
			   (let ((vi (vector-ref rv vi)))
			     (if (= vi -1) 0
				 (lp2 vi)))))))))))))


;;; Misc
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; (string-null? s)
;;; (string-reverse  s [start end])
;;; (string-reverse! s [start end])
;;; (reverse-list->string clist)
;;; (string->list s [start end])

(define (string-null? s) (zero? (string-length s)))

(define (string-reverse s . maybe-start+end)
  (let-string-start+end (start end) string-reverse s maybe-start+end
    (let* ((len (- end start))
	   (ans (make-string len)))
      (do ((i start (+ i 1))
	   (j (- len 1) (- j 1)))
	  ((< j 0))
	(string-set! ans j (string-ref s i)))
      ans)))

(define (string-reverse! s . maybe-start+end)
  (let-string-start+end (start end) string-reverse! s maybe-start+end
    (do ((i (- end 1) (- i 1))
	 (j start (+ j 1)))
	((<= i j))
      (let ((ci (string-ref s i)))
	(string-set! s i (string-ref s j))
	(string-set! s j ci)))))


(define (reverse-list->string clist)
  (let* ((len (length clist))
	 (s (make-string len)))
    (do ((i (- len 1) (- i 1))   (clist clist (cdr clist)))
	((not (pair? clist)))
      (string-set! s i (car clist)))
    s))


;(define (string->list s . maybe-start+end)
;  (apply string-fold-right cons '() s maybe-start+end))

(define (string->list s . maybe-start+end)
  (let-string-start+end (start end) string->list s maybe-start+end
    (do ((i (- end 1) (- i 1))
	 (ans '() (cons (string-ref s i) ans)))
	((< i start) ans))))

;;; Defined by R5RS, so commented out here.
;(define (list->string lis) (string-unfold null? car cdr lis))


;;; string-concatenate        string-list -> string
;;; string-concatenate/shared string-list -> string
;;; string-append/shared s ... -> string
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; STRING-APPEND/SHARED has license to return a string that shares storage
;;; with any of its arguments. In particular, if there is only one non-empty
;;; string amongst its parameters, it is permitted to return that string as
;;; its result. STRING-APPEND, by contrast, always allocates new storage.
;;;
;;; STRING-CONCATENATE & STRING-CONCATENATE/SHARED are passed a list of
;;; strings, which they concatenate into a result string. STRING-CONCATENATE
;;; always allocates a fresh string; STRING-CONCATENATE/SHARED may (or may
;;; not) return a result that shares storage with any of its arguments. In
;;; particular, if it is applied to a singleton list, it is permitted to
;;; return the car of that list as its value.

(define (string-append/shared . strings) (string-concatenate/shared strings))

(define (string-concatenate/shared strings)
  (let lp ((strings strings) (nchars 0) (first #f))
    (cond ((pair? strings)			; Scan the args, add up total
	   (let* ((string  (car strings))	; length, remember 1st 
		  (tail (cdr strings))		; non-empty string.
		  (slen (string-length string)))
	     (if (zero? slen)
		 (lp tail nchars first)
		 (lp tail (+ nchars slen) (or first strings)))))

	  ((zero? nchars) "")

	  ;; Just one non-empty string! Return it.
	  ((= nchars (string-length (car first))) (car first))

	  (else (let ((ans (make-string nchars)))
		  (let lp ((strings first) (i 0))
		    (if (pair? strings)
			(let* ((s (car strings))
			       (slen (string-length s)))
			  (%string-copy! ans i s 0 slen)
			  (lp (cdr strings) (+ i slen)))))
		  ans)))))
			

; Alas, Scheme 48's APPLY blows up if you have many, many arguments.
;(define (string-concatenate strings) (apply string-append strings))

;;; Here it is written out. I avoid using REDUCE to add up string lengths
;;; to avoid non-R5RS dependencies.
(define (string-concatenate strings)
  (let* ((total (do ((strings strings (cdr strings))
		     (i 0 (+ i (string-length (car strings)))))
		    ((not (pair? strings)) i)))
	 (ans (make-string total)))
    (let lp ((i 0) (strings strings))
      (if (pair? strings)
	  (let* ((s (car strings))
		 (slen (string-length s)))
	    (%string-copy! ans i s 0 slen)
	    (lp (+ i slen) (cdr strings)))))
    ans))
	  

;;; Defined by R5RS, so commented out here.
;(define (string-append . strings) (string-concatenate strings))

;;; string-concatenate-reverse        string-list [final-string end] -> string
;;; string-concatenate-reverse/shared string-list [final-string end] -> string
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Return
;;;   (string-concatenate 
;;;     (reverse
;;;       (cons (substring final-string 0 end) string-list)))

(define (string-concatenate-reverse string-list . maybe-final+end)
  (let-optionals* maybe-final+end ((final "" (string? final))
				   (end (string-length final)
					(and (integer? end)
					     (exact? end)
					     (<= 0 end (string-length final)))))
    (let ((len (let lp ((sum 0) (lis string-list))
		 (if (pair? lis)
		     (lp (+ sum (string-length (car lis))) (cdr lis))
		     sum))))

      (%finish-string-concatenate-reverse len string-list final end))))

(define (string-concatenate-reverse/shared string-list . maybe-final+end)
  (let-optionals* maybe-final+end ((final "" (string? final))
				   (end (string-length final)
					(and (integer? end)
					     (exact? end)
					     (<= 0 end (string-length final)))))
    ;; Add up the lengths of all the strings in STRING-LIST; also get a
    ;; pointer NZLIST into STRING-LIST showing where the first non-zero-length
    ;; string starts.
    (let lp ((len 0) (nzlist #f) (lis string-list))
      (if (pair? lis)
	  (let ((slen (string-length (car lis))))
	    (lp (+ len slen)
		(if (or nzlist (zero? slen)) nzlist lis)
		(cdr lis)))

	  (cond ((zero? len) (substring/shared final 0 end))

		;; LEN > 0, so NZLIST is non-empty.

		((and (zero? end) (= len (string-length (car nzlist))))
		 (car nzlist))

		(else (%finish-string-concatenate-reverse len nzlist final end)))))))

(define (%finish-string-concatenate-reverse len string-list final end)
  (let ((ans (make-string (+ end len))))
    (%string-copy! ans len final 0 end)
    (let lp ((i len) (lis string-list))
      (if (pair? lis)
	  (let* ((s   (car lis))
		 (lis (cdr lis))
		 (slen (string-length s))
		 (i (- i slen)))
	    (%string-copy! ans i s 0 slen)
	    (lp i lis))))
    ans))




;;; string-replace s1 s2 start1 end1 [start2 end2] -> string
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Replace S1[START1,END1) with S2[START2,END2).

(define (string-replace s1 s2 start1 end1 . maybe-start+end)
  (check-substring-spec string-replace s1 start1 end1)
  (let-string-start+end (start2 end2) string-replace s2 maybe-start+end
    (let* ((slen1 (string-length s1))
	   (sublen2 (- end2 start2))
	   (alen (+ (- slen1 (- end1 start1)) sublen2))
	   (ans (make-string alen)))
      (%string-copy! ans 0 s1 0 start1)
      (%string-copy! ans start1 s2 start2 end2)
      (%string-copy! ans (+ start1 sublen2) s1 end1 slen1)
      ans)))


;;; string-tokenize s [token-set start end] -> list
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Break S up into a list of token strings, where a token is a maximal
;;; non-empty contiguous sequence of chars belonging to TOKEN-SET.
;;; (string-tokenize "hello, world") => ("hello," "world")

(define (string-tokenize s . token-chars+start+end)
  (let-optionals* token-chars+start+end
                  ((token-chars char-set:graphic (char-set? token-chars)) rest)
    (let-string-start+end (start end) string-tokenize s rest
      (let lp ((i end) (ans '()))
	(cond ((and (< start i) (string-index-right s token-chars start i)) =>
	       (lambda (tend-1)
		 (let ((tend (+ 1 tend-1)))
		   (cond ((string-skip-right s token-chars start tend-1) =>
			  (lambda (tstart-1)
			    (lp tstart-1
				(cons (substring s (+ 1 tstart-1) tend)
				      ans))))
			 (else (cons (substring s start tend) ans))))))
	      (else ans))))))


;;; xsubstring s from [to start end] -> string
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; S is a string; START and END are optional arguments that demarcate
;;; a substring of S, defaulting to 0 and the length of S (e.g., the whole
;;; string). Replicate this substring up and down index space, in both the
;;  positive and negative directions. For example, if S = "abcdefg", START=3, 
;;; and END=6, then we have the conceptual bidirectionally-infinite string
;;;     ...  d  e  f  d  e  f  d  e  f  d  e  f  d  e  f  d  e  f  d  e  f ...
;;;     ... -9 -8 -7 -6 -5 -4 -3 -2 -1  0  1  2  3  4  5  6  7  8  9 ...
;;; XSUBSTRING returns the substring of this string beginning at index FROM,
;;; and ending at TO (which defaults to FROM+(END-START)).
;;; 
;;; You can use XSUBSTRING in many ways:
;;; - To rotate a string left:  (xsubstring "abcdef" 2)  => "cdefab"
;;; - To rotate a string right: (xsubstring "abcdef" -2) => "efabcd"
;;; - To replicate a string:    (xsubstring "abc" 0 7) => "abcabca"
;;;
;;; Note that 
;;;   - The FROM/TO indices give a half-open range -- the characters from
;;;     index FROM up to, but not including index TO.
;;;   - The FROM/TO indices are not in terms of the index space for string S.
;;;     They are in terms of the replicated index space of the substring
;;;     defined by S, START, and END.
;;;
;;; It is an error if START=END -- although this is allowed by special
;;; dispensation when FROM=TO.

(define (xsubstring s from . maybe-to+start+end)
  (check-arg (lambda (val) (and (integer? val) (exact? val)))
	     from xsubstring)
  (receive (to start end)
           (if (pair? maybe-to+start+end)
	       (let-string-start+end (start end) xsubstring s (cdr maybe-to+start+end)
		 (let ((to (car maybe-to+start+end)))
		   (check-arg (lambda (val) (and (integer? val)
						 (exact? val)
						 (<= from val)))
			      to xsubstring)
		   (values to start end)))
	       (let ((slen (string-length (check-arg string? s xsubstring))))
		 (values (+ from slen) 0 slen)))
    (let ((slen   (- end start))
	  (anslen (- to  from)))
      (cond ((zero? anslen) "")
	    ((zero? slen) (error "Cannot replicate empty (sub)string"
				  xsubstring s from to start end))

	    ((= 1 slen)		; Fast path for 1-char replication.
	     (make-string anslen (string-ref s start)))

	    ;; Selected text falls entirely within one span.
	    ((= (floor (/ from slen)) (floor (/ to slen)))
	     (substring s (+ start (modulo from slen))
			  (+ start (modulo to   slen))))

	    ;; Selected text requires multiple spans.
	    (else (let ((ans (make-string anslen)))
		    (%multispan-repcopy! ans 0 s from to start end)
		    ans))))))


;;; string-xcopy! target tstart s sfrom [sto start end] -> unspecific
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Exactly the same as xsubstring, but the extracted text is written
;;; into the string TARGET starting at index TSTART.
;;; This operation is not defined if (EQ? TARGET S) -- you cannot copy
;;; a string on top of itself.

(define (string-xcopy! target tstart s sfrom . maybe-sto+start+end)
  (check-arg (lambda (val) (and (integer? val) (exact? val)))
	     sfrom string-xcopy!)
  (receive (sto start end)
           (if (pair? maybe-sto+start+end)
	       (let-string-start+end (start end) string-xcopy! s (cdr maybe-sto+start+end)
		 (let ((sto (car maybe-sto+start+end)))
		   (check-arg (lambda (val) (and (integer? val) (exact? val)))
			      sto string-xcopy!)
		   (values sto start end)))
	       (let ((slen (string-length s)))
		 (values (+ sfrom slen) 0 slen)))

    (let* ((tocopy (- sto sfrom))
	   (tend (+ tstart tocopy))
	   (slen (- end start)))
      (check-substring-spec string-xcopy! target tstart tend)
      (cond ((zero? tocopy))
	    ((zero? slen) (error "Cannot replicate empty (sub)string"
				 string-xcopy!
				 target tstart s sfrom sto start end))

	    ((= 1 slen)			; Fast path for 1-char replication.
	     (string-fill! target (string-ref s start) tstart tend))

	    ;; Selected text falls entirely within one span.
	    ((= (floor (/ sfrom slen)) (floor (/ sto slen)))
	     (%string-copy! target tstart s 
			    (+ start (modulo sfrom slen))
			    (+ start (modulo sto   slen))))

	    ;; Multi-span copy.
	    (else (%multispan-repcopy! target tstart s sfrom sto start end))))))

;;; This is the core copying loop for XSUBSTRING and STRING-XCOPY!
;;; Internal -- not exported, no careful arg checking.
(define (%multispan-repcopy! target tstart s sfrom sto start end)
  (let* ((slen (- end start))
	 (i0 (+ start (modulo sfrom slen)))
	 (total-chars (- sto sfrom)))

    ;; Copy the partial span @ the beginning
    (%string-copy! target tstart s i0 end)
		    
    (let* ((ncopied (- end i0))			; We've copied this many.
	   (nleft (- total-chars ncopied))	; # chars left to copy.
	   (nspans (quotient nleft slen)))	; # whole spans to copy
			   
      ;; Copy the whole spans in the middle.
      (do ((i (+ tstart ncopied) (+ i slen))	; Current target index.
	   (nspans nspans (- nspans 1)))	; # spans to copy
	  ((zero? nspans)
	   ;; Copy the partial-span @ the end & we're done.
	   (%string-copy! target i s start (+ start (- total-chars (- i tstart)))))

	(%string-copy! target i s start end))))); Copy a whole span.



;;; (string-join string-list [delimiter grammar]) => string
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Paste strings together using the delimiter string.
;;;
;;; (join-strings '("foo" "bar" "baz") ":") => "foo:bar:baz"
;;;
;;; DELIMITER defaults to a single space " "
;;; GRAMMAR is one of the symbols {prefix, infix, strict-infix, suffix} 
;;; and defaults to 'infix.
;;;
;;; I could rewrite this more efficiently -- precompute the length of the
;;; answer string, then allocate & fill it in iteratively. Using 
;;; STRING-CONCATENATE is less efficient.

(define (string-join strings . delim+grammar)
  (let-optionals* delim+grammar ((delim " " (string? delim))
				 (grammar 'infix))
    (let ((buildit (lambda (lis final)
		     (let recur ((lis lis))
		       (if (pair? lis)
			   (cons delim (cons (car lis) (recur (cdr lis))))
			   final)))))

      (cond ((pair? strings)
	     (string-concatenate
	      (case grammar

		((infix strict-infix)
		 (cons (car strings) (buildit (cdr strings) '())))

		((prefix) (buildit strings '()))

		((suffix)
		 (cons (car strings) (buildit (cdr strings) (list delim))))

		(else (error "Illegal join grammar"
			     grammar string-join)))))

	     ((not (null? strings))
	      (error "STRINGS parameter not list." strings string-join))

	     ;; STRINGS is ()

	     ((eq? grammar 'strict-infix)
	      (error "Empty list cannot be joined with STRICT-INFIX grammar."
		     string-join))

	     (else "")))))		; Special-cased for infix grammar.


;;; Porting & performance-tuning notes
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; See the section at the beginning of this file on external dependencies.
;;;
;;; The biggest issue with respect to porting is the LET-OPTIONALS* macro.
;;; There are many, many optional arguments in this library; the complexity
;;; of parsing, defaulting & type-testing these parameters is handled with the
;;; aid of this macro. There are about 15 uses of LET-OPTIONALS*. You can
;;; rewrite the uses, port the hairy macro definition (which is implemented
;;; using a Clinger-Rees low-level explicit-renaming macro system), or port
;;; the simple, high-level definition, which is less efficient.
;;;
;;; There is a fair amount of argument checking. This is, strictly speaking,
;;; unnecessary -- the actual body of the procedures will blow up if, say, a
;;; START/END index is improper. However, the error message will not be as
;;; good as if the error were caught at the "higher level." Also, a very, very
;;; smart Scheme compiler may be able to exploit having the type checks done
;;; early, so that the actual body of the procedures can assume proper values.
;;; This isn't likely; this kind of compiler technology isn't common any 
;;; longer.
;;; 
;;; The overhead of optional-argument parsing is irritating. The optional
;;; arguments must be consed into a rest list on entry, and then parsed out.
;;; Function call should be a matter of a few register moves and a jump; it
;;; should not involve heap allocation! Your Scheme system may have a superior
;;; non-R5RS optional-argument system that can eliminate this overhead. If so,
;;; then this is a prime candidate for optimising these procedures,
;;; *especially* the many optional START/END index parameters.
;;;
;;; Note that optional arguments are also a barrier to procedure integration.
;;; If your Scheme system permits you to specify alternate entry points
;;; for a call when the number of optional arguments is known in a manner
;;; that enables inlining/integration, this can provide performance 
;;; improvements.
;;;
;;; There is enough *explicit* error checking that *all* string-index
;;; operations should *never* produce a bounds error. Period. Feel like
;;; living dangerously? *Big* performance win to be had by replacing
;;; STRING-REF's and STRING-SET!'s with unsafe equivalents in the loops. 
;;; Similarly, fixnum-specific operators can speed up the arithmetic done on 
;;; the index values in the inner loops. The only arguments that are not
;;; completely error checked are
;;;   - string lists (complete checking requires time proportional to the
;;;     length of the list)
;;;   - procedure arguments, such as char->char maps & predicates.
;;;     There is no way to check the range & domain of procedures in Scheme.
;;; Procedures that take these parameters cannot fully check their
;;; arguments. But all other types to all other procedures are fully
;;; checked.
;;;
;;; This does open up the alternate possibility of simply *removing* these 
;;; checks, and letting the safe primitives raise the errors. On a dumb
;;; Scheme system, this would provide speed (by eliminating the redundant
;;; error checks) at the cost of error-message clarity.
;;;
;;; See the comments preceding the hash function code for notes on tuning
;;; the default bound so that the code never overflows your implementation's
;;; fixnum size into bignum calculation.
;;;
;;; In an interpreted Scheme, some of these procedures, or the internal
;;; routines with % prefixes, are excellent candidates for being rewritten
;;; in C. Consider STRING-HASH, %STRING-COMPARE, the 
;;; %STRING-{SUF,PRE}FIX-LENGTH routines, STRING-COPY!, STRING-INDEX &
;;; STRING-SKIP (char-set & char cases), SUBSTRING and SUBSTRING/SHARED,
;;; %KMP-SEARCH, and %MULTISPAN-REPCOPY!.
;;;
;;; It would also be nice to have the ability to mark some of these
;;; routines as candidates for inlining/integration.
;;; 
;;; All the %-prefixed routines in this source code are written
;;; to be called internally to this library. They do *not* perform
;;; friendly error checks on the inputs; they assume everything is
;;; proper. They also do not take optional arguments. These two properties
;;; save calling overhead and enable procedure integration -- but they
;;; are not appropriate for exported routines.


;;; Copyright details
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; The prefix/suffix and comparison routines in this code had (extremely
;;; distant) origins in MIT Scheme's string lib, and was substantially
;;; reworked by Olin Shivers (shivers@ai.mit.edu) 9/98. As such, it is
;;; covered by MIT Scheme's open source copyright. See below for details.
;;; 
;;; The KMP string-search code was influenced by implementations written
;;; by Stephen Bevan, Brian Dehneyer and Will Fitzgerald. However, this
;;; version was written from scratch by myself.
;;;
;;; The remainder of this code was written from scratch by myself for scsh.
;;; The scsh copyright is a BSD-style open source copyright. See below for
;;; details.
;;;     -Olin Shivers

;;; The MIT Scheme project gave Olin Shivers the permission to use the
;;; code from this SRFI under the following license:
;;;
;;; Redistribution and use in source and binary forms, with or without
;;; modification, are permitted provided that the following conditions are
;;; met:
;;; 
;;;    1. Redistributions of source code must retain the above copyright
;;;       notice, this list of conditions and the following disclaimer.
;;; 
;;;    2. Redistributions in binary form must reproduce the above
;;;       copyright notice, this list of conditions and the following
;;;       disclaimer in the documentation and/or other materials provided
;;;       with the distribution.
;;; 
;;;    3. The name of the author may not be used to endorse or promote
;;;       products derived from this software without specific prior
;;;       written permission.
;;; 
;;; THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
;;; IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
;;; WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
;;; DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
;;; INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
;;; (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
;;; SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
;;; HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
;;; STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
;;; IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
;;; POSSIBILITY OF SUCH DAMAGE.

;;; Scsh copyright terms
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; All rights reserved.
;;; 
;;; Redistribution and use in source and binary forms, with or without
;;; modification, are permitted provided that the following conditions
;;; are met:
;;; 1. Redistributions of source code must retain the above copyright
;;;    notice, this list of conditions and the following disclaimer.
;;; 2. Redistributions in binary form must reproduce the above copyright
;;;    notice, this list of conditions and the following disclaimer in the
;;;    documentation and/or other materials provided with the distribution.
;;; 3. The name of the authors may not be used to endorse or promote products
;;;    derived from this software without specific prior written permission.
;;; 
;;; THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
;;; IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
;;; OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
;;; IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
;;; INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
;;; NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
;;; DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
;;; THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
;;; (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
;;; THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.