This file is indexed.

/usr/share/scsh-0.6/scsh/ccp.scm is in scsh-common-0.6 0.6.7-8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
;;; Char->char partial maps					-*- Scheme -*-
;;; Copyright (C) 1998 by Olin Shivers.

;;; CCPs are an efficient data structure for doing simple string transforms,
;;; similar to the kinds of things you would do with the tr(1) program.
;;;
;;; This code is tuned for a 7- or 8-bit character type. Large, 16-bit
;;; character types would need a more sophisticated data structure, tuned
;;; for sparseness. I would suggest something like this:
;;;     (define-record ccp
;;; 	    domain		; The domain char-set
;;; 	    map			; Sorted vector of (char . string) pairs 
;;; 				;   specifying the map.
;;; 	    id?)		; If true, mappings not specified by MAP are 
;;; 	    			;   identity mapping. If false, MAP must 
;;; 				;   specify a mapping for every char in DOMAIN.
;;; 
;;; A (char . string) elements in MAP specifies a mapping for the contiguous
;;; sequence of L chars beginning with CHAR (in the sequence of the underlying
;;; char type representation), where L is the length of STRING. These MAP elements
;;; are sorted by CHAR, so that binary search can be used to get from an input
;;; character C to the right MAP element quickly.
;;; 
;;; This representation should be reasonably compact for standard mappings on,
;;; say, a Unicode CCP. An implementation might wish to have a cache field
;;; in the record for storing the full 8kb bitset when performing ccp-map
;;; operations. Or, an implementation might want to store the Latin-1 subset
;;; of the map in a dense format, and keep the remainder in a sparse format.

(define num-chars (char-set-size char-set:full)) ; AKA 256.

(define-record ccp
  domain		; The domain char-set
  dshared?		; Is the domain value shared or linear?
  map			; 256-elt string
  mshared?)		; Is the map string shared or linear?


;;; Accessors and setters that manage the linear bookkeeping
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define (ccp-domain ccp)
  (set-ccp:dshared? ccp #t)
  (ccp:domain ccp))

;;; CCP is a linear ccp. PROC is a domain->domain function; it must be
;;; linear in its parameter and result.
;;;
;;; Updates the domain of the CCP with PROC, returns the resulting
;;; CCP; reuses the old one to construct the new one.

(define (restrict-linear-ccp-domain ccp proc)
  (let ((new-d (proc (if (ccp:dshared? ccp)
			 (begin (set-ccp:dshared? ccp #f)
				(char-set-copy (ccp:domain ccp)))
			 (ccp:domain ccp)))))
    (set-ccp:domain ccp new-d)
    ccp))

;;; CCP is a linear CCP. PROC is a domain x cmap -> domain function.
;;; It is passed a linear domain and cmap string. It may side-effect
;;; the cmap string, and returns the resulting updated domain.
;;; We return the resulting CCP, reusing the parameter to construct it.

(define (linear-update-ccp ccp proc)
  (let* ((cmap (if (ccp:mshared? ccp)
		   (begin (set-ccp:mshared? ccp #f)
			  (string-copy (ccp:map ccp)))
		   (ccp:map ccp)))

	 (new-d (proc (if (ccp:dshared? ccp)
			  (begin (set-ccp:dshared? ccp #f)
				 (char-set-copy (ccp:domain ccp)))
			  (ccp:domain ccp))
		      cmap)))
    (set-ccp:domain ccp new-d)
    ccp))



;;; Return CCP's map field, and mark it as shared. CCP functions that
;;; restrict a ccp's domain share map strings, so they use this guy.
(define (ccp:map/shared ccp)
  (set-ccp:mshared? ccp #t)
  (ccp:map ccp))

(define (ccp-copy ccp) (make-ccp (char-set-copy (ccp:domain ccp)) #f
				 (string-copy (ccp:map ccp))      #f))

;;; N-ary equality relation for partial maps

(define (ccp= ccp1 . rest)
  (let ((domain (ccp:domain ccp1))
	(cmap (ccp:map ccp1)))
    (every (lambda (ccp2)
	     (and (char-set= domain (ccp:domain ccp2))
		  (let ((cmap2 (ccp:map ccp2)))
		    (char-set-every (lambda (c)
				      (let ((i (char->ascii c)))
					(char=? (string-ref cmap  i)
						(string-ref cmap2 i))))
				    domain))))
	   rest)))


;;; N-ary subset relation for partial maps

(define (ccp<= ccp1 . rest)
  (let lp ((domain1 (ccp:domain ccp1))
	   (cmap1 (ccp:map ccp1))
	   (rest rest))
    (or (not (pair? rest))
	(let* ((ccp2 (car rest))
	       (domain2 (ccp:domain ccp2))
	       (cmap2   (ccp:map    ccp2))
	       (rest (cdr rest)))
	  (and (char-set<= domain1 domain2)
	       (let ((cmap2 (ccp:map ccp2)))
		 (char-set-every (lambda (c)
				   (let ((i (char->ascii c)))
				     (char=? (string-ref cmap1 i)
					     (string-ref cmap2 i))))
				 domain1))
	       (lp domain2 cmap2 rest))))))


;;; CCP iterators
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define (ccp-fold kons knil ccp)
  (let ((cmap (ccp:map ccp)))
    (char-set-fold (lambda (c v) (kons c (string-ref cmap (char->ascii c)) v))
		   knil
		   (ccp:domain ccp))))

(define (ccp-for-each proc ccp)
  (let ((cmap (ccp:map ccp)))
    (char-set-for-each (lambda (c) (proc c (string-ref cmap (char->ascii c))))
		       (ccp:domain ccp))))

(define (ccp->alist ccp)
  (ccp-fold (lambda (from to alist) (cons (cons from to) alist))
	    '()
	    ccp))


;;; CCP-RESTRICT
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Restrict a ccp's domain.

(define (ccp-restrict ccp cset)
  (make-ccp (char-set-intersection cset (ccp:domain ccp))
	    #f
	    (ccp:map/shared ccp)
	    #t))

(define (ccp-restrict! ccp cset)
  (restrict-linear-ccp-domain ccp (lambda (d) (char-set-intersection! d cset))))
					      

;;; CCP-ADJOIN ccp from-char1 to-char1 ... 
;;; CCP-DELETE ccp char1 ...
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Add & delete mappings to/from a ccp.

(define (ccp-delete ccp . chars)
  (make-ccp (apply char-set-delete (ccp:domain ccp) chars)
	    #f
	    (ccp:map/shared ccp)
	    #t))

(define (ccp-delete! ccp . chars)
  (restrict-linear-ccp-domain ccp (lambda (d) (apply char-set-delete! d chars))))


(define (ccp-adjoin ccp . chars)
  (let ((cmap (string-copy (ccp:map ccp))))
    (make-ccp (install-ccp-adjoin! cmap (char-set-copy (ccp:domain ccp)) chars)
	      #f
	      cmap
	      #f)))

(define (ccp-adjoin! ccp . chars)
  (linear-update-ccp ccp (lambda (d cmap) (install-ccp-adjoin! cmap d chars))))

(define (install-ccp-adjoin! cmap domain chars)
  (let lp ((chars chars) (d domain))
    (if (pair? chars)
	(let ((from  (car  chars))
	      (to    (cadr chars))
	      (chars (cddr chars)))
	  (string-set! cmap (char->ascii from) to)
	  (lp chars (char-set-adjoin! d from)))
	d)))


;;; CCP-EXTEND ccp1 ...
;;; CCP-EXTEND! ccp1 ccp2 ...
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Extend ccp1 with ccp2, etc.

(define (ccp-extend . ccps)
  (if (pair? ccps)
      (let ((ccp0 (car ccps))
	    (ccps (cdr ccps)))
	(if (pair? ccps)
	    (let ((cmap (string-copy (ccp:map ccp0)))) ; Copy cmap.
	      ;; The FOLD installs each ccp in CCPS into CMAP and produces
	      ;; the new domain.
	      (make-ccp (fold (lambda (ccp d)
				(install-ccp-extension! cmap d ccp))
			      (char-set-copy (ccp:domain ccp0))
			      ccps)
			#f cmap #f))

	    ccp0))	; Only 1 parameter

      ccp:0))	; 0 parameters

(define (ccp-extend! ccp0 . ccps)
  (linear-update-ccp ccp0
    (lambda (domain cmap)
      (fold (lambda (ccp d) (install-ccp-extension! cmap d ccp))
	    domain
	    ccps))))


;;; Side-effect CMAP, linear-update and return DOMAIN.
(define (install-ccp-extension! cmap domain ccp)
  (let ((cmap1 (ccp:map ccp))
	(domain1 (ccp:domain ccp)))
    (char-set-for-each (lambda (c)
			 (let ((i (char->ascii c)))
			   (string-set! cmap i (string-ref cmap1 i))))
		       domain1)
    (char-set-union! domain domain1)))


;;; Compose the CCPs. 0-ary case: (ccp-compose) = ccp:1.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; For each character C-IN in the original domain, we push it
;;; through the pipeline of CCPs. If we ever land outside the
;;; domain of a ccp, we punt C-IN. If we push it all the way
;;; through, we add C-IN to our result domain, and add the mapping
;;; into the cmap we are assembling.
;;;
;;; Looping this way avoids building up intermediate temporary
;;; CCPs.  If CCP's were small bitsets, we might be better off
;;; slicing the double-nested loops the other way around.

(define (ccp-compose . ccps)
  (cond ((not (pair? ccps))       ccp:1)	; 0 args => ccp:1
	((not (pair? (cdr ccps))) (car ccps))	; 1 arg
	(else
	 (let* ((v (list->vector ccps))
		(vlen-2 (- (vector-length v) 2))
		(cmap (make-string num-chars))
		(d1 (ccp:domain (vector-ref v (+ vlen-2 1))))
		(d (char-set-fold (lambda (c-in d)
				    (let lp ((c c-in) (i vlen-2))
				      (if (>= i 0)
					  (let ((ccp (vector-ref v i)))
					    (if (char-set-contains? (ccp:domain ccp) c)
						(lp (string-ref (ccp:map ccp)
								(char->ascii c))
						    (- i 1))

						;; Lose: remove c-in from d.
						(char-set-delete! d c-in)))

					  ;; Win: C-IN -> C
					  (begin (string-set! cmap
							      (char->ascii c-in)
							      c)
						 d))))
				  (char-set-copy d1)
				  d1)))
	   (make-ccp d #f cmap #f)))))



;;; ALIST->CPP
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define (alist->ccp cc-alist . maybe-base-ccp)
  (let ((base (:optional maybe-base-ccp ccp:0)))
    (if (pair? cc-alist)
	(let ((cmap (string-copy (ccp:map base))))
	  (make-ccp (install-ccp-alist! cmap
					(char-set-copy (ccp:domain base))
					cc-alist)
		    #f cmap #f))
	base)))

(define (alist->ccp! alist base)
  (linear-update-ccp base (lambda (d cmap) (install-ccp-alist! cmap d alist))))

;;; Side-effect CMAP, linear-update and return DOMAIN.
(define (install-ccp-alist! cmap domain alist)
  (fold (lambda (from/to d) (let ((from (car from/to))
				  (to (cdr from/to)))
			      (string-set! cmap (char->ascii from) to)
			      (char-set-adjoin! domain from)))
	domain
	alist))


;;; PROC->CCP
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; (proc->ccp proc [domain base-ccp])

(define (proc->ccp proc . args)
  (let-optionals args ((proc-domain char-set:full)
		       (base ccp:0))
    (let ((cmap (string-copy (ccp:map base))))
      (make-ccp (install-ccp-proc! cmap (char-set-copy (ccp:domain base))
				   proc proc-domain)
		#f cmap #f))))

(define (proc->ccp! proc proc-domain base)
  (linear-update-ccp base
    (lambda (d cmap) (install-ccp-proc! cmap d proc proc-domain))))

(define (install-ccp-proc! cmap domain proc proc-domain)
  (char-set-for-each (lambda (c) (string-set! cmap (char->ascii c) (proc c)))
		     proc-domain)
  (char-set-union! domain proc-domain))


;;; CONSTANT-CCP
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; (constant-ccp char [domain base-ccp])
;;; Extend BASE-CCP with the a map taking every char in DOMAIN to CHAR.
;;; DOMAIN defaults to char-set:full. BASE-CCP defaults to CCP:0.

(define (constant-ccp char . args)
  (let-optionals args ((char-domain char-set:full) (base ccp:0))
    (let ((cmap (string-copy (ccp:map base))))
      (make-ccp (install-constant-ccp! cmap (char-set-copy (ccp:domain base))
				       char char-domain)
		#f cmap #f))))

(define (constant-ccp! char char-domain base)
  (linear-update-ccp base
    (lambda (d cmap) (install-constant-ccp! cmap d char char-domain))))

;;; Install the constant mapping into CMAP0 by side-effect,
;;; linear-update & return DOMAIN0 with the constant-mapping's domain.
(define (install-constant-ccp! cmap0 domain0 char char-domain)
  (char-set-for-each (lambda (c) (string-set! cmap0 (char->ascii c) char))
		     char-domain)
  (char-set-union! domain0 char-domain))


;;; CCP/MAPPINGS
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; (ccp/mappings from1 to1 from2 to2 ...) -> ccp
;;; (extend-ccp/mappings  base-ccp from1 to1 from2 to2 ...) -> ccp
;;; (extend-ccp/mappings! base-ccp from1 to1 from2 to2 ...) -> ccp
;;; Each FROM element is either a string or a (lo-char . hi-char) range.
;;; Each TO element is either a string or a lo-char. Strings are replicated
;;;     to match the length of the corresponding FROM element.
;;; CCP/MAPPINGS's base CCP is CCP:0
;;;
;;; Tedious code.

;;; Internal utility.
;;; Install the FROM->TO mapping pair into DOMAIN & CMAP by side-effect.
;;; Return the new domain.

(define (install-ccp-mapping-pair! cmap domain from to)
  ;; Tedium -- four possibilities here:
  ;;   str->str, str->lo-char,
  ;;   range->str, range->lo-char.
  (if (string? from)
      (if (string? to)
	  ;; "abc" -> "ABC"
	  (let ((len1 (string-length from))
		(len2 (string-length to)))
	    (let lp2 ((i (- len1 1))
		      (j (modulo (- len2 1) len1))
		      (d domain))
	      (if (>= i 0)
		  (let ((c (string-ref from i)))
		    (string-set! cmap
				 (char->ascii c)
				 (string-ref to i))
		    (lp2 (- i 1)
			 (- (if (> j 0) j len2) 1)
			 (char-set-adjoin! d c)))
		  d)))

	  ;; "abc" -> #\A
	  (let lp2 ((i (- (string-length from) 1))
		    (j (char->ascii to))
		    (d domain))
	    (if (>= i 0)
		(let ((c (string-ref from i)))
		  (string-set! cmap
			       (char->ascii c)
			       (ascii->char j))
		  (lp2 (- i 1)
		       (- j 1)
		       (char-set-adjoin! d c)))
		d)))

      (let ((from-start (char->ascii (car from)))
	    (from-end   (char->ascii (cdr from))))
	(if (string? to)
	    (let ((len2-1 (- (string-length to) 1)))
	      ;; (#\a . #\c) -> "ABC"
	      (let lp2 ((i from-start) (j 0) (d domain))
		(if (<= i from-end)
		    (let ((c (string-ref to j)))
		      (string-set! cmap i c)
		      (lp2 (+ i 1)
			   (if (= j len2-1) 0 (+ j 1))
			   (char-set-adjoin! d c)))
		    d)))
				  
	    ;; (#\a . #\c) -> #\A
	    (do ((i from-start       (+ i 1))
		 (j (char->ascii to) (+ j 1))
		 (d domain (begin (string-set! cmap i (ascii->char j))
				  (char-set-adjoin d (ascii->char i)))))
		((> i from-end) d))))))

;;; Internal utility -- side-effects CMAP; linear-updates & returns DOMAIN.
(define (install-mapping-pairs cmap domain args)
  (let lp ((domain domain) (args args))
    (if (pair? args)
	(lp (install-ccp-mapping-pair! cmap domain (car args) (cadr args))
	    (cddr args))
	domain)))

(define (ccp/mappings . args)
  (let ((cmap (make-string num-chars)))
    (make-ccp (install-mapping-pairs (make-string num-chars)
				     (char-set-copy char-set:empty)
				     args)
	      #f cmap #f)))

(define (extend-ccp/mappings base . args)
  (let ((cmap (string-copy (ccp:map base))))
    (make-ccp (install-mapping-pairs cmap (char-set-copy (ccp:domain base)) args)
	      #f cmap #f)))

(define (extend-ccp/mappings! base . args)
  (linear-update-ccp base (lambda (d cmap) (install-mapping-pairs cmap d args))))
  

;;; CONSTRUCT-CCP! ccp elt ...
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; The kitchen-sink constructor; static typing be damned. 
;;; ELTS are interpreted as follows:
;;;	(lo-char . hi-char) to-string|lo-char		; ccp/range
;;; 	from-string to-string|lo-char			; ccp/range
;;; 	ccp						; ccp-extend
;;; 	alist						; alist->ccp
;;; 	domain char					; ccp-constant
;;; 	domain proc					; proc->ccp

(define (construct-ccp! ccp . elts)
  (linear-update-ccp ccp (lambda (d cmap) (install-ccp-construct! cmap d elts))))

(define (construct-ccp base . elts)
  (let ((cmap (string-copy (ccp:map base))))
    (make-ccp (install-ccp-construct! cmap (char-set-copy (ccp:domain base)) elts)
	      #f cmap #f)))

;;; Install the mappings into CMAP by side-effect,
;;; linear-update & return DOMAIN with the final domain.

(define (install-ccp-construct! cmap domain elts)
  (let lp ((d domain) (elts elts))
    ;(format #t "d=~s elts=~s\n" d elts)
    (if (not (pair? elts)) d
	(let ((elt (car elts))
	      (elts (cdr elts)))
	  (cond ((pair? elt)
		 (cond ((pair? (car elt)) ; ELT is an alist.
			(lp (install-ccp-alist! cmap d elt) elts))
		       ((char? (car elt)) ; ELT is (lo-char . hi-char) range.
			(lp (install-ccp-mapping-pair! cmap d elt (car elts))
			    (cdr elts)))
		       (else (error "Illegal elt to construct-ccp" elt))))

		((string? elt)
		 (lp (install-ccp-mapping-pair! cmap d elt (car elts))
		     (cdr elts)))

		((ccp? elt) (lp (install-ccp-extension! cmap d elt) elts))

		((char-set? elt)
		 (let ((elt2 (car elts))
		       (elts (cdr elts)))
		   (lp (cond ((char? elt2)
			      (install-constant-ccp! cmap d elt2 elt))
			     ((procedure? elt2)
			      (install-ccp-proc! cmap d elt2 elt))
			     (else (error "Illegal elt-pair to construct-ccp"
					  elt elt2)))
		       elts)))

		(else (error "Illegal elt to construct-ccp" elt)))))))


;;; CCP unfold

(define (ccp-unfold p f g seed)
  (let lp ((seed seed) (ccp (ccp-copy ccp:0)))
    (if (p seed) ccp
	(lp (g seed)
	    (receive (from to) (f seed)
	      (lp (g seed) (ccp-adjoin! ccp from to)))))))
      


;;; Using CCPs
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; TR ccp string [start end] -> string
;;; CCP-MAP  ccp string [start end] -> string
;;; CCP-MAP! ccp string [start end] -> undefined
;;; CCP-APP  ccp char -> char or false

;;; If a char in S is not in CCP's domain, it is dropped from the result.
;;; You can use this to map and delete chars from a string.

(define (tr ccp s . maybe-start+end)
  (let-optionals maybe-start+end ((start 0) (end (string-length s)))
    ;; Count up the chars in S that are in the domain,
    ;; and allocate the answer string ANS:
    (let* ((len (- end start))
	   (domain (ccp:domain ccp))
	   (ans-len (string-fold (lambda (c numchars)
				   (if (char-set-contains? domain c)
				       (+ numchars 1)
				       numchars))
				 0 s start end))
	   (ans (make-string ans-len)))

      ;; Apply the map, installing the resulting chars into ANS:
      (string-fold (lambda (c i) (cond ((ccp-app ccp c) =>
					(lambda (c)
					  (string-set! ans i c)
					  (+ i 1)))
				       (else i))) ; Not in domain -- drop it.
		   0 s start end)
      ans)))

(define (ccp-map  ccp s . maybe-start+end)
  (apply string-map (lambda (c) (ccp-app ccp c)) s maybe-start+end))

(define (ccp-map! ccp s . maybe-start+end)
  (apply string-map! (lambda (c) (ccp-app ccp c)) s maybe-start+end))

(define (ccp-app ccp char)
  (and (char-set-contains? (ccp:domain ccp) char)
       (string-ref (ccp:map ccp) (char->ascii char))))


;;; Primitive CCPs
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define id-cmap
  (let ((m (make-string num-chars)))
    (do ((i (- num-chars 1) (- i 1)))
	((< i 0))
      (string-set! m i (ascii->char i)))
    m))
  
(define ccp:0 (make-ccp char-set:empty #t id-cmap #t))
(define ccp:1 (make-ccp char-set:full  #t id-cmap #t))

(define ccp:upcase   (proc->ccp char-upcase  char-set:full))
(define ccp:downcase (proc->ccp char-downcase char-set:full))