/usr/share/scsh-0.6/big/lu-decomp.scm is in scsh-common-0.6 0.6.7-8.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 | ; Copyright (c) 1993-1999 by Richard Kelsey and Jonathan Rees. See file COPYING.
; LU Decomposition (a rewriting of a Pascal program from `Numerical Recipes
; in Pascal'; look there for a detailed description of what is going on).
; A is an NxN matrix that is updated in place.
; This returns a row permutation vector and the sign of that vector.
(define *lu-decomposition-epsilon* 1.0e-20)
(define (lu-decomposition a)
(let* ((n (car (array-shape a)))
(indx (make-vector n))
(sign 1.0)
(vv (make-vector n)))
(do ((i 0 (+ i 1)))
((>= i n))
(do ((j 0 (+ j 1))
(big 0.0 (max big (abs (array-ref a i j)))))
((>= j n)
(if (= big 0.0)
(error "lu-decomposition matrix has a zero row" a i))
(vector-set! vv i (/ big)))))
(do ((j 0 (+ j 1)))
((>= j n))
(let ()
(define (sum-elts i end)
(do ((k 0 (+ k 1))
(sum (array-ref a i j)
(- sum (* (array-ref a i k)
(array-ref a k j)))))
((>= k end)
sum)))
(do ((i 0 (+ i 1)))
((>= i j))
(array-set! a (sum-elts i i) i j))
(receive (big imax)
(let loop ((i j) (big 0.0) (imax 0))
(if (>= i n)
(values big imax)
(let ((sum (sum-elts i j)))
(array-set! a sum i j)
(let ((temp (* (vector-ref vv i) (abs sum))))
(if (>= temp big)
(loop (+ i 1) temp i)
(loop (+ i 1) big imax))))))
(if (not (= j imax))
(begin
(do ((k 0 (+ k 1)))
((>= k n))
(let ((temp (array-ref a imax k)))
(array-set! a (array-ref a j k) imax k)
(array-set! a temp j k)))
(set! sign (- sign))
(vector-set! vv imax (vector-ref vv j))))
(vector-set! indx j imax)
(if (= (array-ref a j j) 0.0)
(array-set! a *lu-decomposition-epsilon* j j))
(if (not (= j (- n 1)))
(let ((temp (/ (array-ref a j j))))
(do ((i (+ j 1) (+ i 1)))
((>= i n))
(array-set! a (* (array-ref a i j) temp) i j)))))))
(values indx sign)))
(define (lu-back-substitute a indx b)
(let ((n (car (array-shape a))))
(let loop ((i 0) (ii #f))
(if (< i n)
(let* ((ip (vector-ref indx i))
(temp (vector-ref b ip)))
(vector-set! b ip (vector-ref b i))
(let ((new (if ii
(do ((j ii (+ j 1))
(sum temp (- sum (* (array-ref a i j)
(vector-ref b j)))))
((>= j i)
sum))
temp)))
(vector-set! b i new)
(loop (+ i 1)
(if (or ii (= temp 0.0)) ii i))))))
(do ((i (- n 1) (- i 1)))
((< i 0))
(do ((j (+ i 1) (+ j 1))
(sum (vector-ref b i) (- sum (* (array-ref a i j)
(vector-ref b j)))))
((>= j n)
(vector-set! b i (/ sum (array-ref a i i))))))))
;(define m
; (array '(4 4)
; 1.0 2.0 3.0 -2.0
; 8.0 -6.0 6.0 1.0
; 3.0 -2.0 0.0 -7.0
; 4.0 7.0 2.0 -1.0))
;
;(define b '#(2.0 1.0 3.0 -2.0))
;
;(define (test m b)
; (let* ((a (copy-array m))
; (n (car (array-shape m)))
; (x (make-vector n)))
;
; (do ((i 0 (+ i 1)))
; ((>= i n))
; (vector-set! x i (vector-ref b i)))
;
; (display "b = ")
; (display b)
; (newline)
;
; (call-with-values
; (lambda ()
; (lu-decomposition a))
; (lambda (indx sign)
; (lu-back-substitute a indx x)
;
; (display "x = ")
; (display x)
; (newline)
;
; (let ((y (make-vector (vector-length b))))
; (do ((i 0 (+ i 1)))
; ((>= i n))
; (do ((j 0 (+ j 1))
; (t 0.0 (+ t (* (array-ref m i j) (vector-ref x j)))))
; ((>= j n)
; (vector-set! y i t))))
;
; (display "a * x =")
; (display y)
; (newline))))))
|