This file is indexed.

/usr/share/pythoncad/PythonCAD/Generic/printing.py is in pythoncad 0.1.37.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
#
# Copyright (c) 2004 Art Haas
#
# This file is part of PythonCAD.
#
# PythonCAD is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# PythonCAD is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with PythonCAD; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
#

import time

from PythonCAD.Generic import plotfile
from PythonCAD.Generic import units

papersizes = { # see 'gs_statd.ps' from Ghostscript
    'letter' : (612, 792),
    'legal' : (612, 1008),
    'tabloid' : (792, 1224),
    'csheet' : (1224, 1584),
    'dsheet' : (1584, 2448),
    'esheet' : (2448, 3168),
    'a0' : (2384, 3370),
    'a1' : (1684, 2384),
    'a2' : (1191, 1684),
    'a3' : (842, 1191),
    'a4' : (595, 842),
    'a5' : (420, 595),
    'b0' : (2835, 4008),
    'b1' : (2004, 2835),
    'b2' : (1417, 2004),
    'b3' : (1001, 1417),
    'b4' : (709, 1001),
    'b5' : (499, 709),
    'b6' : (354, 499),
    'jisb0' : (2920, 4127),
    'jisb1' : (2064, 2920),
    'jisb2' : (1460, 2064),
    'jisb3' : (1032, 1460),
    'jisb4' : (729, 1032),
    'jisb5' : (516, 729),
    'jisb6' : (363, 516),
    'c0' : (2599, 3677),
    'c1' : (1837, 2599),
    'c2' : (1298, 1837),
    'c3' : (918, 1298),
    'c4' : (649, 918),
    'c5' : (459, 649),
    'c6' : (323, 459),
    'archE' : (2592, 3456),
    'archD' : (1728, 2592),
    'archC' : (1296, 1728),
    'archB' : (864, 1296),
    'archA' : (648, 864),
    }

class PSPlot(object):
    """A class for generating PostScript output
    """
    #
    # all papersizes below are defined for portrait printing
    #
    # some sizes taken from 'gs_statd.ps' Ghostscript file
    #
    __papersizes = {
        'exact' : (0, 0),
        'letter' : (612, 792),
        'legal' : (612, 1008),
        'tabloid' : (792, 1224),
        'csheet' : (1224, 1584),
        'dsheet' : (1584, 2448),
        'esheet' : (2448, 3168),
        'a0' : (2384, 3370),
        'a1' : (1684, 2384),
        'a2' : (1191, 1684),
        'a3' : (842, 1191),
        'a4' : (595, 842),
        'a5' : (420, 595),
        'b0' : (2835, 4008),
        'b1' : (2004, 2835),
        'b2' : (1417, 2004),
        'b3' : (1001, 1417),
        'b4' : (709, 1001),
        'b5' : (499, 709),
        'b6' : (354, 499),
        'jisb0' : (2920, 4127),
        'jisb1' : (2064, 2920),
        'jisb2' : (1460, 2064),
        'jisb3' : (1032, 1460),
        'jisb4' : (729, 1032),
        'jisb5' : (516, 729),
        'jisb6' : (363, 516),
        'c0' : (2599, 3677),
        'c1' : (1837, 2599),
        'c2' : (1298, 1837),
        'c3' : (918, 1298),
        'c4' : (649, 918),
        'c5' : (459, 649),
        'c6' : (323, 459),
        'archE' : (2592, 3456),
        'archD' : (1728, 2592),
        'archC' : (1296, 1728),
        'archB' : (864, 1296),
        'archA' : (648, 864),
    }

    #
    # PostScript units are points : 72 points per inch
    #
    # note: 25.4 mm/inch
    __scale = {
        units.MILLIMETERS : '72 25.4 div',
        units.MICROMETERS : '72 25.4 1000 mul div',
        units.METERS : '72 25.4 1000 div div',
        units.KILOMETERS : '72 25.4 1000 1000 mul mul div',
        units.INCHES : '72',
        units.FEET : '72 12 mul',
        units.YARDS : '72 36 mul',
        units.MILES : '72 12 5280 mul mul'
        }

    def __init__(self, plot):
        if not isinstance(plot, plotfile.Plot):
            raise TypeError, "Invalid Plot object: " + `plot`
        self.__plot = plot
        self.__bounds = None
        self.__size = None
        self.__scale = None
        self.__factor = None

    def finish(self):
        self.__plot = None

    def _getBounds(self):
        if self.__bounds is not None:
            return
        _bounds = self.__plot.getBounds()
        if _bounds is None:
            raise ValueError, "Plot boundary not defined."
        self.__bounds = _bounds

    def setSize(self, size):
        if self.__size is not None:
            return
        if not isinstance(size, str):
            raise TypeError, "Invalid plot size string: " + `size`
        if size not in PSPlot.__papersizes:
            raise KeyError, "Invalid plot size: %s" % size
        self.__size = size

    def getPaperSizes(self):
        return PSPlot.__papersizes.keys()

    def getPaperSize(self):
        if self.__size is None:
            raise ValueError, "Paper size not defined."
        return PSPlot.__papersizes[self.__size]

    def _calcScale(self):
        if self.__scale is not None:
            return
        if self.__size is None:
            raise ValueError, "Paper size not defined."
        _plot = self.__plot
        _bounds = self.__bounds
        if _bounds is None:
            _bounds = _plot.getBounds()
            if _bounds is None:
                raise ValueError, "Plot boundary not defined."
        _xmin, _ymin, _xmax, _ymax = _bounds
        # print "xmin: %g" % _xmin
        #  print "ymin: %g" % _ymin
        # print "xmax: %g" % _xmax
        # print "ymax: %g" % _ymax
        _w, _h = PSPlot.__papersizes[self.__size]
        if _plot.getLandscapeMode():
            _w, _h = _h, _w
        # print "w: %d; h: %d" % (_w, _h)
        _units = _plot.getUnits()
        # print "units: %d" % _units
        if _units == units.MILLIMETERS:
            _fac = 72.0/25.4
        elif _units == units.MICROMETERS:
            _fac = 72.0/(25.4 * 1000.0)
        elif _units == units.METERS:
            _fac = 72.0/(25.4/1000.0)
        elif _units == units.INCHES:
            _fac = 72.0
        elif _units == units.FEET:
            _fac = 72.0 * 12
        elif _units == units.YARDS:
            _fac = 72.0 * 36
        elif _units == units.MILES:
            _fac = 72.0 * 12 * 5280
        else:
            raise ValueError, "Unexpected unit: %s" % _units
        self.__factor = _fac
        # print "factor: %g" % _fac

        if _w == 0 and _h == 0:
            _ymin = 0
            _xmin = 0
            _s = 1
        else:
            _xs = _fac * ((_xmax - _xmin)/float(_w))
            _ys = _fac * ((_ymax - _ymin)/float(_h))
            # print "xs: %g; ys: %g" % (_xs, _ys)
            _s = 1.0/max(_xs, _ys)
        self.__scale = _s
        # print "scale: %g" % self.__scale
        self.__matrix = ((_s * _fac),
                         -(_xmin * _s * _fac),
                         -(_ymin * _s * _fac))
        # print "matrix: " + str(self.__matrix)

    def write(self, f):
        if False and not isinstance(f, file):
            raise TypeError, "Invalid file object: " + `f`
        if self.__size is None:
            raise ValueError, "Plot size not defined"
        self._getBounds()
        _xmin, _ymin, _xmax, _ymax = self.__bounds
        self._calcScale()
        _w, _h = PSPlot.__papersizes[self.__size]
        _plot = self.__plot
        if _plot.getLandscapeMode():
            _w, _h = _h, _w
        #
        # header
        #
        f.write("%!PS-Adobe-1.0\n")
        f.write("%%Creator: PythonCAD\n")
        f.write("%%CreationDate: %s\n" % time.asctime())
        f.write("%%BoundingBox: 0 0 %d %d\n" % (_w, _h))
        f.write("%%EndComments\n")
        # add in Prologue
        _funcs = """%
/m {transform round exch round exch itransform moveto} bind def
/l {transform round exch round exch itransform lineto} bind def
%
/ljust
  { 0 begin
      /s exch def
      /y exch def
      /x exch def
      x y m
      s show
    end
  } def
/ljust load 0 3 dict put
%
/cjust
  { 0 begin
      /s exch def
      /w exch def
      /y exch def
      /x exch def
      /dx {w s stringwidth pop 2 div sub} def
      x dx add y m
      s show
    end
  } def
/cjust load 0 5 dict put
%
/rjust
  { 0 begin
      /s exch def
      /w exch def
      /y exch def
      /x exch def
      /dx {w s stringwidth pop sub} def
      x dx add y m
      s show
    end
  } def
/rjust load 0 5 dict put
"""
        f.write("%s" % _funcs)
        f.write("%\n% Plot specs\n%\n")
        f.write("%% (xmin, ymin): (%g, %g)\n" % (_xmin, _ymin))
        f.write("%% (xmax, ymax): (%g, %g)\n" % (_xmax, _ymax))
        f.write("%%\n%% unit scale factor: %g\n" % self.__factor)
        f.write("%% fit factor: %g\n" % self.__scale)
        f.write("%%EndProlog\n")
        f.write("%\n% Line defaults\n%\n")
        f.write("1 setlinecap\n")
        f.write("1 setlinejoin\n")
        if _plot.getLandscapeMode():
            f.write("%\n% Landscape mode transformation\n%\n")
            f.write("90 rotate\n0 -%d translate\n" % _h)

        #
        # draw entities
        #
        if 'segments' in _plot:
            self._write_segments(f, _plot)
        if 'circles' in _plot:
            self._write_circles(f, _plot)
        if 'arcs' in _plot:
            self._write_arcs(f, _plot)
        if 'leaders' in _plot:
            self._write_leaders(f, _plot)
        if 'polylines' in _plot:
            self._write_polylines(f, _plot)
        if 'chamfers' in _plot:
            self._write_chamfers(f, _plot)
        if 'fillets' in _plot:
            self._write_fillets(f, _plot)
        if 'textblocks' in _plot:
            self._write_textblocks(f, _plot)
        if 'ldims' in _plot:
            self._write_ldims(f, _plot)
        if 'rdims' in _plot:
            self._write_rdims(f, _plot)
        if 'adims' in _plot:
            self._write_adims(f, _plot)
        f.write("showpage\n")
        f.flush()

    def _write_graphic_data(self, f, c, l, t):
        if c is not None:
            if not isinstance(c, tuple):
                raise TypeError, "Color argument not a tuple: " + str(c)
            if len(c) != 3:
                raise ValueError, "Unexpected color tuple length: " + str(c)
            if c[0] != 0 or c[1] != 0 or c[2] != 0:
                _r = c[0]/255.0
                _g = c[1]/255.0
                _b = c[2]/255.0
                f.write("%.06f %.06f %.06f setrgbcolor\n" % (_r, _g, _b))
        if l is not None:
            if not isinstance(l, list):
                raise TypeError, "Linetype argument not a list: " + str(l)
            f.write("[")
            for _i in l:
                if not isinstance(_i, int):
                    raise TypeError, "Invalid dash list type: " + str(_i)
                f.write(" %d " % _i)
            f.write("] 0 setdash\n")
        _th = int(t * self.__factor * self.__scale)
        if _th < 1:
            _th = 1
        f.write("%d setlinewidth\n" % _th)

    def _write_segments(self, f, plot):
        f.write("%\n% segments\n%\n")
        _sf, _dx, _dy = self.__matrix
        for _s in plot.getPlotEntities('segments'):
            _x1, _y1, _x2, _y2, _c, _lt, _t = _s
            f.write("%\n% data:\n")
            f.write("%% (x1, y1): (%g, %g)\n" % (_x1, _y1))
            f.write("%% (x2, y2): (%g, %g)\n" % (_x2, _y2))
            f.write("gsave\n")
            self._write_graphic_data(f, _c, _lt, _t)
            _xt = (_x1 * _sf) + _dx
            _yt = (_y1 * _sf) + _dy
            f.write("%g %g m\n" % (_xt, _yt))
            _xt = (_x2 * _sf) + _dx
            _yt = (_y2 * _sf) + _dy
            f.write("%g %g l\n" % (_xt, _yt))
            f.write("stroke\ngrestore\n")

    def _write_circles(self, f, plot):
        f.write("%\n% circles\n%\n")
        _sf, _dx, _dy = self.__matrix
        for _c in plot.getPlotEntities('circles'):
            _x, _y, _r, _c, _lt, _t = _c
            f.write("%\n% data:\n")
            f.write("%% (xc, yc): (%g, %g)\n" % (_x, _y))
            f.write("%% radius: %g\n" % _r)
            f.write("gsave\n")
            self._write_graphic_data(f, _c, _lt, _t)
            _xt = (_x * _sf) + _dx
            _yt = (_y * _sf) + _dy
            _rt = _r * _sf
            f.write("%g %g %g 0 360 arc\n" % (_xt, _yt, _rt))
            f.write("stroke\ngrestore\n")

    def _write_arcs(self, f, plot):
        f.write("%\n% arcs\n%\n")
        _sf, _dx, _dy = self.__matrix
        for _a in plot.getPlotEntities('arcs'):
            _x, _y, _r, _sa, _ea, _c, _lt, _t = _a
            f.write("%\n% data:\n")
            f.write("%% (xc, yc): (%g, %g)\n" % (_x, _y))
            f.write("%% radius: %g\n" % _r)
            f.write("%% start angle: %g\n" % _sa)
            f.write("%% end angle: %g\n" % _ea)
            f.write("gsave\n")
            self._write_graphic_data(f, _c, _lt, _t)
            _xt = (_x * _sf) + _dx
            _yt = (_y * _sf) + _dy
            _rt = _r * _sf
            f.write("%g %g %g %g %g arc\n" % (_xt, _yt, _rt, _sa, _ea))
            f.write("stroke\ngrestore\n")

    def _write_leaders(self, f, plot):
        f.write("%\n% leaders\n%\n")
        _sf, _dx, _dy = self.__matrix
        for _l in plot.getPlotEntities('leaders'):
            _x1, _y1, _x2, _y2, _x3, _y3, _ax1, _ay1, _ax2, _ay2, _c, _lt, _t = _l
            f.write("%\n% data:\n")
            f.write("%% (x1, y1): (%g, %g)\n" % (_x1, _y1))
            f.write("%% (x2, y2): (%g, %g)\n" % (_x2, _y2))
            f.write("%% (x3, y3): (%g, %g)\n" % (_x3, _y3))
            f.write("%\n% arrow pts:%\n")
            f.write("%% (x1, y1): (%g, %g)\n" % (_ax1, _ay1))
            f.write("%% (x2, y2): (%g, %g)\n" % (_ax2, _ay2))
            f.write("gsave\n")
            self._write_graphic_data(f, _c, _lt, _t)
            _xt = (_x1 * _sf) + _dx
            _yt = (_y1 * _sf) + _dy
            f.write("%g %g m\n" % (_xt, _yt))
            _xt = (_x2 * _sf) + _dx
            _yt = (_y2 * _sf) + _dy
            f.write("%g %g l\n" % (_xt, _yt))
            _xt = (_x3 * _sf) + _dx
            _yt = (_y3 * _sf) + _dy
            f.write("%g %g l\n" % (_xt, _yt))
            f.write("currentpoint\nstroke\nmoveto\n")
            _xt = (_ax1 * _sf) + _dx
            _yt = (_ay1 * _sf) + _dy
            f.write("%g %g l\n" % (_xt, _yt))
            _xt = (_ax2 * _sf) + _dx
            _yt = (_ay2 * _sf) + _dy
            f.write("%g %g l\n" % (_xt, _yt))
            f.write("closepath\nfill\ngrestore\n")

    def _write_polylines(self, f, plot):
        f.write("%\n% polylines\n%\n")
        _sf, _dx, _dy = self.__matrix
        for _p in plot.getPlotEntities('polylines'):
            _pts, _c, _lt, _t = _p
            f.write("%\n% data:\n")
            f.write("%% length: %d\n" % len(_pts))
            for _pt in _pts:
                f.write("%% (x, y): (%g, %g)\n" % (_pt[0], _pt[1]))
            f.write("gsave\n")
            self._write_graphic_data(f, _c, _lt, _t)
            _x, _y = _pts[0]
            _xt = (_x * _sf) + _dx
            _yt = (_y * _sf) + _dy
            f.write("%g %g m\n" % (_xt, _yt))
            for _t in _pts[1:]:
                _x, _y = _t
                _xt = (_x * _sf) + _dx
                _yt = (_y * _sf) + _dy
                f.write("%g %g l\n" % (_xt, _yt))
            f.write("stroke\ngrestore\n")

    def _write_chamfers(self, f, plot):
        f.write("%\n% chamfers\n%\n")
        _sf, _dx, _dy = self.__matrix
        for _c in plot.getPlotEntities('chamfers'):
            _x1, _y1, _x2, _y2, _c, _lt, _t = _c
            f.write("%\n% data:\n")
            f.write("%% (x1, y1): (%g, %g)\n" % (_x1, _y1))
            f.write("%% (x2, y2): (%g, %g)\n" % (_x2, _y2))
            f.write("gsave\n")
            self._write_graphic_data(f, _c, _lt, _t)
            _xt = (_x1 * _sf) + _dx
            _yt = (_y1 * _sf) + _dy
            f.write("%g %g m\n" % (_xt, _yt))
            _xt = (_x2 * _sf) + _dx
            _yt = (_y2 * _sf) + _dy
            f.write("%g %g l\n" % (_xt, _yt))
            f.write("stroke\ngrestore\n")

    def _write_fillets(self, f, plot):
        f.write("%\n% fillets\n%\n")
        _sf, _dx, _dy = self.__matrix
        for _f in plot.getPlotEntities('fillets'):
            _x, _y, _r, _sa, _ea, _c, _lt, _t = _f
            f.write("%\n% data:\n")
            f.write("%% (xc, yc): (%g, %g)\n" % (_x, _y))
            f.write("%% radius: %g\n" % _r)
            f.write("%% start angle: %g\n" % _sa)
            f.write("%% end angle: %g\n" % _ea)
            f.write("gsave\n")
            self._write_graphic_data(f, _c, _lt, _t)
            _xt = (_x * _sf) + _dx
            _yt = (_y * _sf) + _dy
            _rt = _r * _sf
            f.write("%g %g %g %g %g arc\n" % (_xt, _yt, _rt, _sa, _ea))
            f.write("stroke\ngrestore\n")

    def _write_tblock(self, f, tbdata):
        _sf, _dx, _dy = self.__matrix
        _font = tbdata['font']
        _size = tbdata['size']
        _fontsize = _size * _sf
        f.write("/%s findfont %g scalefont setfont\n" % (_font, _fontsize))
        _c = tbdata['color']
        if _c is not None:
            if not isinstance(_c, tuple):
                raise TypeError, "Color argument not a tuple: " + str(_c)
            if len(_c) != 3:
                raise ValueError, "Unexpected color tuple length: " + str(_c)
            if _c[0] != 0 or _c[1] != 0 or _c[2] != 0:
                _r = _c[0]/255.0
                _g = _c[1]/255.0
                _b = _c[2]/255.0
                f.write("%.06f %.06f %.06f setrgbcolor\n" % (_r, _g, _b))
        _text = tbdata['text']
        _align = tbdata['align']
        _x, _y = tbdata['location']
        _xt = (_x * _sf) + _dx
        _i = 1
        if len(_text) == 1 or _align == 'left':
            for _t in _text:
                _yt = ((_y - (_i * _size)) * _sf) + _dy
                f.write("%g %g (%s) ljust\n" % (_xt, _yt, _t))
                _i = _i + 1
        else:
            _w, _h = tbdata['bounds']
            _pw = _w * _sf # bounds width in points
            for _t in _text:
                _yt = ((_y - (_i * _size)) * _sf) + _dy
                if _align == 'center':
                    f.write("%g %g %g (%s) cjust\n" % (_xt, _yt, _pw, _t))
                else:
                    f.write("%g %g %g (%s) rjust\n" % (_xt, _yt, _pw, _t))
                _i = _i + 1

    def _write_textblocks(self, f, plot):
        f.write("%\n% textblocks\n%\n")
        _sf, _dx, _dy = self.__matrix
        for _tbdata in plot.getPlotEntities('textblocks'):
            f.write("%\n% TextBlock:\n")
            f.write("%% (x, y): %s\n" % str(_tbdata['location']))
            f.write("%% bounds: %s\n" % str(_tbdata['bounds']))
            f.write("%% font: %s\n" % _tbdata['font'])
            f.write("%% color: %s\n" % str(_tbdata['color']))
            f.write("%% alignment: %s\n" % _tbdata['align'])
            f.write("%% size: %g\n" % _tbdata['size'])
            f.write("%% text\n")
            for _t in _tbdata['text']:
                f.write("%%\t%s\n" % _t)
            f.write("%\n")
            f.write("gsave\n")
            self._write_tblock(f, _tbdata)
            f.write("grestore\n")

    def _write_dim_markers(self, f, mdata):
        _mtype = mdata['type']
        _sf, _dx, _dy = self.__matrix
        if _mtype is not None:
            #
            # if 'rdim' is in the mdata dictionary, then the data
            # is for a RadialDimension and only the second marker
            # should be printed
            #
            _rdim = mdata.get('rdim')
            f.write("%%\n%% marker: %s\n" % _mtype)
            if _mtype == 'arrow':
                f.write("%% p1: %s\n" % str(mdata['p1']))
                f.write("%% p2: %s\n" % str(mdata['p2']))
                f.write("%% v1: %s\n" % str(mdata['v1']))
                f.write("%% p3: %s\n" % str(mdata['p3']))
                f.write("%% p4: %s\n" % str(mdata['p4']))
                f.write("%% v2: %s\n" % str(mdata['v2']))
                if _rdim is None:
                    _x, _y = mdata['p1']
                    _xt = (_x * _sf) + _dx
                    _yt = (_y * _sf) + _dy
                    f.write("%g %g m\n" % (_xt, _yt))
                    _x, _y = mdata['v1']
                    _xt = (_x * _sf) + _dx
                    _yt = (_y * _sf) + _dy
                    f.write("%g %g l\n" % (_xt, _yt))
                    _x, _y = mdata['p2']
                    _xt = (_x * _sf) + _dx
                    _yt = (_y * _sf) + _dy
                    f.write("%g %g l\nstroke\n" % (_xt, _yt))
                #
                _x, _y = mdata['p3']
                _xt = (_x * _sf) + _dx
                _yt = (_y * _sf) + _dy
                f.write("%g %g m\n" % (_xt, _yt))
                _x, _y = mdata['v2']
                _xt = (_x * _sf) + _dx
                _yt = (_y * _sf) + _dy
                f.write("%g %g l\n" % (_xt, _yt))
                _x, _y = mdata['p4']
                _xt = (_x * _sf) + _dx
                _yt = (_y * _sf) + _dy
                f.write("%g %g l\nstroke\n" % (_xt, _yt))
            elif _mtype == 'filled_arrow':
                f.write("%% p1: %s\n" % str(mdata['p1']))
                f.write("%% p2: %s\n" % str(mdata['p2']))
                f.write("%% v1: %s\n" % str(mdata['v1']))
                f.write("%% p3: %s\n" % str(mdata['p3']))
                f.write("%% p4: %s\n" % str(mdata['p4']))
                f.write("%% v2: %s\n" % str(mdata['v2']))
                if _rdim is None:
                    _x, _y = mdata['p1']
                    _xt = (_x * _sf) + _dx
                    _yt = (_y * _sf) + _dy
                    f.write("%g %g m\n" % (_xt, _yt))
                    _x, _y = mdata['p2']
                    _xt = (_x * _sf) + _dx
                    _yt = (_y * _sf) + _dy
                    f.write("%g %g l\n" % (_xt, _yt))
                    _x, _y = mdata['v1']
                    _xt = (_x * _sf) + _dx
                    _yt = (_y * _sf) + _dy
                    f.write("%g %g l\nclosepath\nfill\n" % (_xt, _yt))
                #
                _x, _y = mdata['p3']
                _xt = (_x * _sf) + _dx
                _yt = (_y * _sf) + _dy
                f.write("%g %g m\n" % (_xt, _yt))
                _x, _y = mdata['p4']
                _xt = (_x * _sf) + _dx
                _yt = (_y * _sf) + _dy
                f.write("%g %g l\n" % (_xt, _yt))
                _x, _y = mdata['v2']
                _xt = (_x * _sf) + _dx
                _yt = (_y * _sf) + _dy
                f.write("%g %g l\nclosepath\nfill\n" % (_xt, _yt))
            elif _mtype == 'slash':
                f.write("%% p1: %s\n" % str(mdata['p1']))
                f.write("%% p2: %s\n" % str(mdata['p2']))
                f.write("%% p3: %s\n" % str(mdata['p3']))
                f.write("%% p4: %s\n" % str(mdata['p4']))
                if _rdim is None:
                    _x, _y = mdata['p1']
                    _xt = (_x * _sf) + _dx
                    _yt = (_y * _sf) + _dy
                    f.write("%g %g m\n" % (_xt, _yt))
                    _x, _y = mdata['p2']
                    _xt = (_x * _sf) + _dx
                    _yt = (_y * _sf) + _dy
                    f.write("%g %g l\nstroke\n" % (_xt, _yt))
                #
                _x, _y = mdata['p3']
                _xt = (_x * _sf) + _dx
                _yt = (_y * _sf) + _dy
                f.write("%g %g m\n" % (_xt, _yt))
                _x, _y = mdata['p4']
                _xt = (_x * _sf) + _dx
                _yt = (_y * _sf) + _dy
                f.write("%g %g l\nstroke\n" % (_xt, _yt))
            elif _mtype == 'circle':
                f.write("%% radius: %g\n" % mdata['radius'])
                f.write("%% c1: %s\n" % str(mdata['c1']))
                f.write("%% c2: %s\n" % str(mdata['c2']))
                _r = mdata['radius']
                if _rdim is None:
                    _x, _y = mdata['c1']
                    _xt = (_x * _sf) + _dx
                    _yt = (_y * _sf) + _dy
                    _rt = _r * _sf
                    f.write("%g %g %g 0 360 arc\nfill\n" % (_xt, _yt, _rt))
                #
                _x, _y = mdata['c2']
                _xt = (_x * _sf) + _dx
                _yt = (_y * _sf) + _dy
                _rt = _r * _sf
                f.write("%g %g %g 0 360 arc\nfill\n" % (_xt, _yt, _rt))
            else:
                raise ValueError, "Unexpected marker type: %s" % _mtype

    def _write_dimstrings(self, f, dimdata):
        _sf, _dx, _dy = self.__matrix
        #
        # erase where the dim text will go
        #
        f.write("gsave\n")
        _tb1 = dimdata['ds1']
        _tb2 = dimdata.get('ds2')
        _x, _y = _tb1['location']
        _w, _h = _tb1['bounds']
        if _tb2 is None:
            _xt = (_x * _sf) + _dx
            _yt = (_y * _sf) + _dy
            _pw = _w * _sf
            _ph = _h * _sf
            f.write("%g %g m\n" % (_xt, _yt))
            f.write("0 -%g rlineto\n" % _ph)
            f.write("%g 0 rlineto\n" % _pw)
            f.write("0 %g rlineto\n" % _ph)
        else:
            _x2, _y2 = _tb2['location']
            _w2, _h2 = _tb2['bounds']
            _xmin = min(_x, _x2)
            _xmax = max((_x + _w), (_x2 + _w2))
            _ymin = _y2 - _h2
            _ymax = _y
            _xt = (_xmin * _sf) + _dx
            _yt = (_ymin * _sf) + _dy
            f.write("%g %g m\n" % (_xt, _yt))
            _xt = (_xmax * _sf) + _dx
            _yt = (_ymin * _sf) + _dy
            f.write("%g %g l\n" % (_xt, _yt))
            _xt = (_xmax * _sf) + _dx
            _yt = (_ymax * _sf) + _dy
            f.write("%g %g l\n" % (_xt, _yt))
            _xt = (_xmin * _sf) + _dx
            _yt = (_ymax * _sf) + _dy
            f.write("%g %g l\n" % (_xt, _yt))
        f.write("closepath\n1 setgray fill\ngrestore\n")
        #
        # print ds1 dimension
        #
        f.write("%\n% DimString 1:\n")
        f.write("%% (x, y): %s\n" % str(_tb1['location']))
        f.write("%% bounds: %s\n" % str(_tb1['bounds']))
        f.write("%% font: %s\n" % _tb1['font'])
        f.write("%% color: %s\n" % str(_tb1['color']))
        f.write("%% alignment: %s\n" % _tb1['align'])
        f.write("%% size: %g\n" % _tb1['size'])
        f.write("%% text\n")
        for _t in _tb1['text']:
            f.write("%%\t%s\n" % _t)
        f.write("gsave\n")
        self._write_tblock(f, _tb1)
        f.write("grestore\n")
        if _tb2 is not None:
            f.write("%\n% DimString 2:\n")
            f.write("%% (x, y): %s\n" % str(_tb2['location']))
            f.write("%% bounds: %s\n" % str(_tb2['bounds']))
            f.write("%% font: %s\n" % _tb2['font'])
            f.write("%% color: %s\n" % str(_tb2['color']))
            f.write("%% alignment: %s\n" % _tb2['align'])
            f.write("%% size: %g\n" % _tb2['size'])
            f.write("%% text\n")
            for _t in _tb1['text']:
                f.write("%%\t%s\n" % _t)
            f.write("gsave\n")
            self._write_tblock(f, _tb2)
            f.write("grestore\n")

    def _write_ldims(self, f, plot):
        f.write("%\n% linear dimensions\n%\n")
        _sf, _dx, _dy = self.__matrix
        for _dimdata in plot.getPlotEntities('ldims'):
            f.write("%\n% data:\n")
            f.write("% first dimbar:\n")
            f.write("%% (x1, y1): %s\n" % str(_dimdata['ep1']))
            f.write("%% (x2, y2): %s\n" % str(_dimdata['ep2']))
            f.write("% second dimbar:\n")
            f.write("%% (x1, y1): %s\n" % str(_dimdata['ep3']))
            f.write("%% (x2, y2): %s\n" % str(_dimdata['ep4']))
            f.write("% crossbar:\n")
            f.write("%% (x1, y1): %s\n" % str(_dimdata['ep5']))
            f.write("%% (x2, y2): %s\n" % str(_dimdata['ep6']))
            f.write("gsave\n")
            _c = _dimdata['color']
            _t = _dimdata['thickness']
            self._write_graphic_data(f, _c, None, _t)
            _x, _y = _dimdata['ep1']
            _xt = (_x * _sf) + _dx
            _yt = (_y * _sf) + _dy
            f.write("%g %g m\n" % (_xt, _yt))
            _x, _y = _dimdata['ep2']
            _xt = (_x * _sf) + _dx
            _yt = (_y * _sf) + _dy
            f.write("%g %g l\nstroke\n" % (_xt, _yt))
            _x, _y = _dimdata['ep3']
            _xt = (_x * _sf) + _dx
            _yt = (_y * _sf) + _dy
            f.write("%g %g m\n" % (_xt, _yt))
            _x, _y = _dimdata['ep4']
            _xt = (_x * _sf) + _dx
            _yt = (_y * _sf) + _dy
            f.write("%g %g l\nstroke\n" % (_xt, _yt))
            _x, _y = _dimdata['ep5']
            _xt = (_x * _sf) + _dx
            _yt = (_y * _sf) + _dy
            f.write("%g %g m\n" % (_xt, _yt))
            _x, _y = _dimdata['ep6']
            _xt = (_x * _sf) + _dx
            _yt = (_y * _sf) + _dy
            f.write("%g %g l\nstroke\n" % (_xt, _yt))
            self._write_dim_markers(f, _dimdata['markers'])
            f.write("grestore\n")
            self._write_dimstrings(f, _dimdata)

    def _write_rdims(self, f, plot):
        f.write("%\n% radial dimensions\n%\n")
        _sf, _dx, _dy = self.__matrix
        for _dimdata in plot.getPlotEntities('rdims'):
            f.write("%\n% data:\n")
            f.write("% dimbar:\n")
            f.write("%% (x1, y1): %s)\n" % str(_dimdata['ep1']))
            f.write("%% (x2, y2): %s)\n" % str(_dimdata['ep2']))
            f.write("gsave\n")
            _c = _dimdata['color']
            _t = _dimdata['thickness']
            self._write_graphic_data(f, _c, None, _t)
            _x, _y = _dimdata['ep1']
            _xt = (_x * _sf) + _dx
            _yt = (_y * _sf) + _dy
            f.write("%g %g m\n" % (_xt, _yt))
            _x, _y = _dimdata['ep2']
            _xt = (_x * _sf) + _dx
            _yt = (_y * _sf) + _dy
            f.write("%g %g l\nstroke\n" % (_xt, _yt))
            self._write_dim_markers(f, _dimdata['markers'])
            f.write("grestore\n")
            self._write_dimstrings(f, _dimdata)

    def _write_adims(self, f, plot):
        f.write("%\n% angular dimensions\n%\n")
        _sf, _dx, _dy = self.__matrix
        for _dimdata in plot.getPlotEntities('adims'):
            f.write("%\n% data:\n")
            f.write("% first dimbar:\n")
            f.write("%% (x1, y1): %s\n" % str(_dimdata['ep1']))
            f.write("%% (x2, y2): %s\n" % str(_dimdata['ep2']))
            f.write("% second dimbar:\n")
            f.write("%% (x1, y1): %s\n" % str(_dimdata['ep3']))
            f.write("%% (x2, y2): %s\n" % str(_dimdata['ep4']))
            f.write("% crossarc:\n")
            f.write("%% (xc, yc): %s\n" % str(_dimdata['vp']))
            f.write("%% radius: %g\n" % _dimdata['r'])
            f.write("%% start angle: %g\n" % _dimdata['sa'])
            f.write("%% end angle: %g\n" % _dimdata['ea'])
            f.write("gsave\n")
            _c = _dimdata['color']
            _t = _dimdata['thickness']
            self._write_graphic_data(f, _c, None, _t)
            _x, _y = _dimdata['ep1']
            _xt = (_x * _sf) + _dx
            _yt = (_y * _sf) + _dy
            f.write("%g %g m\n" % (_xt, _yt))
            _x, _y = _dimdata['ep2']
            _xt = (_x * _sf) + _dx
            _yt = (_y * _sf) + _dy
            f.write("%g %g l\nstroke\n" % (_xt, _yt))
            _x, _y = _dimdata['ep3']
            _xt = (_x * _sf) + _dx
            _yt = (_y * _sf) + _dy
            f.write("%g %g m\n" % (_xt, _yt))
            _x, _y = _dimdata['ep4']
            _xt = (_x * _sf) + _dx
            _yt = (_y * _sf) + _dy
            f.write("%g %g l\nstroke\n" % (_xt, _yt))
            _x, _y = _dimdata['vp']
            _xt = (_x * _sf) + _dx
            _yt = (_y * _sf) + _dy
            _r = _dimdata['r']
            _rt = _r * _sf
            _sa = _dimdata['sa']
            _ea = _dimdata['ea']
            f.write("%g %g %g %g %g arc\nstroke\n" % (_xt, _yt, _rt, _sa, _ea))
            self._write_dim_markers(f, _dimdata['markers'])
            f.write("grestore\n")
            self._write_dimstrings(f, _dimdata)