This file is indexed.

/usr/share/pyshared/tlslite/utils/RSAKey.py is in python-tlslite 0.3.8-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
"""Abstract class for RSA."""

from cryptomath import *


class RSAKey:
    """This is an abstract base class for RSA keys.

    Particular implementations of RSA keys, such as
    L{OpenSSL_RSAKey.OpenSSL_RSAKey},
    L{Python_RSAKey.Python_RSAKey}, and
    L{PyCrypto_RSAKey.PyCrypto_RSAKey},
    inherit from this.

    To create or parse an RSA key, don't use one of these classes
    directly.  Instead, use the factory functions in
    L{tlslite.utils.keyfactory}.
    """

    def __init__(self, n=0, e=0):
        """Create a new RSA key.

        If n and e are passed in, the new key will be initialized.

        @type n: int
        @param n: RSA modulus.

        @type e: int
        @param e: RSA public exponent.
        """
        raise NotImplementedError()

    def __len__(self):
        """Return the length of this key in bits.

        @rtype: int
        """
        return numBits(self.n)

    def hasPrivateKey(self):
        """Return whether or not this key has a private component.

        @rtype: bool
        """
        raise NotImplementedError()

    def hash(self):
        """Return the cryptoID <keyHash> value corresponding to this
        key.

        @rtype: str
        """
        raise NotImplementedError()

    def getSigningAlgorithm(self):
        """Return the cryptoID sigAlgo value corresponding to this key.

        @rtype: str
        """
        return "pkcs1-sha1"

    def hashAndSign(self, bytes):
        """Hash and sign the passed-in bytes.

        This requires the key to have a private component.  It performs
        a PKCS1-SHA1 signature on the passed-in data.

        @type bytes: str or L{array.array} of unsigned bytes
        @param bytes: The value which will be hashed and signed.

        @rtype: L{array.array} of unsigned bytes.
        @return: A PKCS1-SHA1 signature on the passed-in data.
        """
        if not isinstance(bytes, type("")):
            bytes = bytesToString(bytes)
        hashBytes = stringToBytes(sha.sha(bytes).digest())
        prefixedHashBytes = self._addPKCS1SHA1Prefix(hashBytes)
        sigBytes = self.sign(prefixedHashBytes)
        return sigBytes

    def hashAndVerify(self, sigBytes, bytes):
        """Hash and verify the passed-in bytes with the signature.

        This verifies a PKCS1-SHA1 signature on the passed-in data.

        @type sigBytes: L{array.array} of unsigned bytes
        @param sigBytes: A PKCS1-SHA1 signature.

        @type bytes: str or L{array.array} of unsigned bytes
        @param bytes: The value which will be hashed and verified.

        @rtype: bool
        @return: Whether the signature matches the passed-in data.
        """
        if not isinstance(bytes, type("")):
            bytes = bytesToString(bytes)
        hashBytes = stringToBytes(sha.sha(bytes).digest())
        prefixedHashBytes = self._addPKCS1SHA1Prefix(hashBytes)
        return self.verify(sigBytes, prefixedHashBytes)

    def sign(self, bytes):
        """Sign the passed-in bytes.

        This requires the key to have a private component.  It performs
        a PKCS1 signature on the passed-in data.

        @type bytes: L{array.array} of unsigned bytes
        @param bytes: The value which will be signed.

        @rtype: L{array.array} of unsigned bytes.
        @return: A PKCS1 signature on the passed-in data.
        """
        if not self.hasPrivateKey():
            raise AssertionError()
        paddedBytes = self._addPKCS1Padding(bytes, 1)
        m = bytesToNumber(paddedBytes)
        if m >= self.n:
            raise ValueError()
        c = self._rawPrivateKeyOp(m)
        sigBytes = numberToBytes(c)
        return sigBytes

    def verify(self, sigBytes, bytes):
        """Verify the passed-in bytes with the signature.

        This verifies a PKCS1 signature on the passed-in data.

        @type sigBytes: L{array.array} of unsigned bytes
        @param sigBytes: A PKCS1 signature.

        @type bytes: L{array.array} of unsigned bytes
        @param bytes: The value which will be verified.

        @rtype: bool
        @return: Whether the signature matches the passed-in data.
        """
        paddedBytes = self._addPKCS1Padding(bytes, 1)
        c = bytesToNumber(sigBytes)
        if c >= self.n:
            return False
        m = self._rawPublicKeyOp(c)
        checkBytes = numberToBytes(m)
        return checkBytes == paddedBytes

    def encrypt(self, bytes):
        """Encrypt the passed-in bytes.

        This performs PKCS1 encryption of the passed-in data.

        @type bytes: L{array.array} of unsigned bytes
        @param bytes: The value which will be encrypted.

        @rtype: L{array.array} of unsigned bytes.
        @return: A PKCS1 encryption of the passed-in data.
        """
        paddedBytes = self._addPKCS1Padding(bytes, 2)
        m = bytesToNumber(paddedBytes)
        if m >= self.n:
            raise ValueError()
        c = self._rawPublicKeyOp(m)
        encBytes = numberToBytes(c)
        return encBytes

    def decrypt(self, encBytes):
        """Decrypt the passed-in bytes.

        This requires the key to have a private component.  It performs
        PKCS1 decryption of the passed-in data.

        @type encBytes: L{array.array} of unsigned bytes
        @param encBytes: The value which will be decrypted.

        @rtype: L{array.array} of unsigned bytes or None.
        @return: A PKCS1 decryption of the passed-in data or None if
        the data is not properly formatted.
        """
        if not self.hasPrivateKey():
            raise AssertionError()
        c = bytesToNumber(encBytes)
        if c >= self.n:
            return None
        m = self._rawPrivateKeyOp(c)
        decBytes = numberToBytes(m)
        if (len(decBytes) != numBytes(self.n)-1): #Check first byte
            return None
        if decBytes[0] != 2: #Check second byte
            return None
        for x in range(len(decBytes)-1): #Scan through for zero separator
            if decBytes[x]== 0:
                break
        else:
            return None
        return decBytes[x+1:] #Return everything after the separator

    def _rawPrivateKeyOp(self, m):
        raise NotImplementedError()

    def _rawPublicKeyOp(self, c):
        raise NotImplementedError()

    def acceptsPassword(self):
        """Return True if the write() method accepts a password for use
        in encrypting the private key.

        @rtype: bool
        """
        raise NotImplementedError()

    def write(self, password=None):
        """Return a string containing the key.

        @rtype: str
        @return: A string describing the key, in whichever format (PEM
        or XML) is native to the implementation.
        """
        raise NotImplementedError()

    def writeXMLPublicKey(self, indent=''):
        """Return a string containing the key.

        @rtype: str
        @return: A string describing the public key, in XML format.
        """
        return Python_RSAKey(self.n, self.e).write(indent)

    def generate(bits):
        """Generate a new key with the specified bit length.

        @rtype: L{tlslite.utils.RSAKey.RSAKey}
        """
        raise NotImplementedError()
    generate = staticmethod(generate)


    # **************************************************************************
    # Helper Functions for RSA Keys
    # **************************************************************************

    def _addPKCS1SHA1Prefix(self, bytes):
        prefixBytes = createByteArraySequence(\
            [48,33,48,9,6,5,43,14,3,2,26,5,0,4,20])
        prefixedBytes = prefixBytes + bytes
        return prefixedBytes

    def _addPKCS1Padding(self, bytes, blockType):
        padLength = (numBytes(self.n) - (len(bytes)+3))
        if blockType == 1: #Signature padding
            pad = [0xFF] * padLength
        elif blockType == 2: #Encryption padding
            pad = createByteArraySequence([])
            while len(pad) < padLength:
                padBytes = getRandomBytes(padLength * 2)
                pad = [b for b in padBytes if b != 0]
                pad = pad[:padLength]
        else:
            raise AssertionError()

        #NOTE: To be proper, we should add [0,blockType].  However,
        #the zero is lost when the returned padding is converted
        #to a number, so we don't even bother with it.  Also,
        #adding it would cause a misalignment in verify()
        padding = createByteArraySequence([blockType] + pad + [0])
        paddedBytes = padding + bytes
        return paddedBytes