/usr/share/pyshared/sympy/utilities/lambdify.py is in python-sympy 0.7.1.rc1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 | """
This module provides convenient functions to transform sympy expressions to
lambda functions which can be used to calculate numerical values very fast.
"""
from __future__ import division
from sympy.core.sympify import sympify
from sympy.core.compatibility import is_sequence
import inspect
# These are the namespaces the lambda functions will use.
MATH = {}
MPMATH = {}
NUMPY = {}
SYMPY = {}
# Default namespaces, letting us define translations that can't be defined
# by simple variable maps, like I => 1j
# These are separate from the names above because the above names are modified
# throughout this file, whereas these should remain unmodified.
MATH_DEFAULT = {}
MPMATH_DEFAULT = {}
NUMPY_DEFAULT = {"I": 1j}
SYMPY_DEFAULT = {}
# Mappings between sympy and other modules function names.
MATH_TRANSLATIONS = {
"Abs":"fabs",
"ceiling":"ceil",
"E":"e",
"ln":"log",
}
MPMATH_TRANSLATIONS = {
"ceiling":"ceil",
"chebyshevt":"chebyt",
"chebyshevu":"chebyu",
"E":"e",
"I":"j",
"ln":"log",
#"lowergamma":"lower_gamma",
"oo":"inf",
#"uppergamma":"upper_gamma",
"LambertW":"lambertw",
"Matrix":"matrix",
"conjugate":"conj",
}
NUMPY_TRANSLATIONS = {
"acos":"arccos",
"acosh":"arccosh",
"arg":"angle",
"asin":"arcsin",
"asinh":"arcsinh",
"atan":"arctan",
"atan2":"arctan2",
"atanh":"arctanh",
"ceiling":"ceil",
"E":"e",
"im":"imag",
"ln":"log",
"Matrix":"matrix",
"Max":"amax",
"Min":"amin",
"oo":"inf",
"re":"real",
}
# Available modules:
MODULES = {
"math":(MATH, MATH_DEFAULT, MATH_TRANSLATIONS, ("from math import *",)),
"mpmath":(MPMATH, MPMATH_DEFAULT, MPMATH_TRANSLATIONS, ("from sympy.mpmath import *",)),
"numpy":(NUMPY, NUMPY_DEFAULT, NUMPY_TRANSLATIONS, ("from numpy import *",)),
"sympy":(SYMPY, SYMPY_DEFAULT, {}, ("from sympy.functions import *",
"from sympy.matrices import Matrix",
"from sympy import Integral, pi, oo, nan, zoo, E, I",)),
}
def _import(module, reload="False"):
"""
Creates a global translation dictionary for module.
The argument module has to be one of the following strings: "math",
"mpmath", "numpy", "sympy".
These dictionaries map names of python functions to their equivalent in
other modules.
"""
# TODO: rewrite this using import_module from sympy.external
if not module in MODULES:
raise NameError("This module can't be used for lambdification.")
namespace, namespace_default, translations, import_commands = MODULES[module]
# Clear namespace or exit
if namespace != namespace_default:
# The namespace was already generated, don't do it again if not forced.
if reload:
namespace.clear()
namespace.update(namespace_default)
else:
return
# It's possible that numpy is not available.
for import_command in import_commands:
try:
exec import_command in {}, namespace
except ImportError:
raise ImportError("Can't import %s with command %s" % (module, import_command))
# Add translated names to namespace
for sympyname, translation in translations.iteritems():
namespace[sympyname] = namespace[translation]
def lambdify(args, expr, modules=None, printer=None, use_imps=True):
"""
Returns a lambda function for fast calculation of numerical values.
Usage:
>>> from sympy import sqrt, sin
>>> from sympy.utilities.lambdify import lambdify
>>> from sympy.abc import x, y, z
>>> f = lambdify(x, x**2)
>>> f(2)
4
>>> f = lambdify((x,y,z), [z,y,x])
>>> f(1,2,3)
[3, 2, 1]
>>> f = lambdify(x, sqrt(x))
>>> f(4)
2.0
>>> f = lambdify((x,y), sin(x*y)**2)
>>> f(0, 5)
0.0
If not specified differently by the user, Sympy functions are replaced as
far as possible by either python-math, numpy (if available) or mpmath
functions - exactly in this order.
To change this behavior, the "modules" argument can be used.
It accepts:
- the strings "math", "mpmath", "numpy", "sympy"
- any modules (e.g. math)
- dictionaries that map names of sympy functions to arbitrary functions
- lists that contain a mix of the arguments above. (Entries that are first
in the list have higher priority)
Examples:
(1) Use one of the provided modules:
>> f = lambdify(x, sin(x), "math")
Attention: Functions that are not in the math module will throw a name
error when the lambda function is evaluated! So this would
be better:
>> f = lambdify(x, sin(x)*gamma(x), ("math", "mpmath", "sympy"))
(2) Use some other module:
>> import numpy
>> f = lambdify((x,y), tan(x*y), numpy)
Attention: There are naming differences between numpy and sympy. So if
you simply take the numpy module, e.g. sympy.atan will not be
translated to numpy.arctan. Use the modified module instead
by passing the string "numpy":
>> f = lambdify((x,y), tan(x*y), "numpy")
>> f(1, 2)
-2.18503986326
>> from numpy import array
>> f(array([1, 2, 3]), array([2, 3, 5]))
[-2.18503986 -0.29100619 -0.8559934 ]
(3) Use own dictionaries:
>> def my_cool_function(x): ...
>> dic = {"sin" : my_cool_function}
>> f = lambdify(x, sin(x), dic)
Now f would look like:
>> lambda x: my_cool_function(x)
Functions present in `expr` can also carry their own numerical
implementations, in a callable attached to the ``_imp_``
attribute. Usually you attach this using the
``implemented_function`` factory:
>>> from sympy.abc import x, y, z
>>> from sympy.utilities.lambdify import lambdify, implemented_function
>>> from sympy import Function
>>> f = implemented_function(Function('f'), lambda x : x+1)
>>> func = lambdify(x, f(x))
>>> func(4)
5
``lambdify`` always prefers ``_imp_`` implementations to
implementations in other namespaces, unless the ``use_imps`` input
parameter is False.
"""
from sympy.core.symbol import Symbol
# If the user hasn't specified any modules, use what is available.
if modules is None:
# Use either numpy (if available) or python.math where possible.
# XXX: This leads to different behaviour on different systems and
# might be the reason for irreproducible errors.
try:
_import("numpy")
modules = ("math", "numpy", "mpmath", "sympy")
except ImportError:
modules = ("math", "mpmath", "sympy")
# Get the needed namespaces.
namespaces = []
# First find any function implementations
if use_imps:
namespaces.append(_imp_namespace(expr))
# Check for dict before iterating
if isinstance(modules, (dict, str)) or not hasattr(modules, '__iter__'):
namespaces.append(modules)
else:
namespaces += list(modules)
# fill namespace with first having highest priority
namespace = {}
for m in namespaces[::-1]:
buf = _get_namespace(m)
namespace.update(buf)
if hasattr(expr, "atoms"):
#Try if you can extract symbols from the expression.
#Move on if expr.atoms in not implemented.
syms = expr.atoms(Symbol)
for term in syms:
namespace.update({str(term): term})
# Create lambda function.
lstr = lambdastr(args, expr, printer=printer)
return eval(lstr, namespace)
def _get_namespace(m):
"""
This is used by _lambdify to parse its arguments.
"""
if isinstance(m, str):
_import(m)
return MODULES[m][0]
elif isinstance(m, dict):
return m
elif hasattr(m, "__dict__"):
return m.__dict__
else:
raise TypeError("Argument must be either a string, dict or module but it is: %s" % m)
def lambdastr(args, expr, printer=None):
"""
Returns a string that can be evaluated to a lambda function.
>>> from sympy.abc import x, y, z
>>> from sympy.utilities.lambdify import lambdastr
>>> lambdastr(x, x**2)
'lambda x: (x**2)'
>>> lambdastr((x,y,z), [z,y,x])
'lambda x,y,z: ([z, y, x])'
"""
if printer is not None:
if inspect.isfunction(printer):
lambdarepr = printer
else:
if inspect.isclass(printer):
lambdarepr = lambda expr: printer().doprint(expr)
else:
lambdarepr = lambda expr: printer.doprint(expr)
else:
#XXX: This has to be done here because of circular imports
from sympy.printing.lambdarepr import lambdarepr
# Transform everything to strings.
expr = lambdarepr(expr)
if isinstance(args, str):
pass
elif hasattr(args, "__iter__"):
args = ",".join(str(a) for a in args)
else:
args = str(args)
return "lambda %s: (%s)" % (args, expr)
def _imp_namespace(expr, namespace=None):
""" Return namespace dict with function implementations
We need to search for functions in anything that can be thrown at
us - that is - anything that could be passed as `expr`. Examples
include sympy expressions, as well as tuples, lists and dicts that may
contain sympy expressions.
Parameters
----------
expr : object
Something passed to lambdify, that will generate valid code from
``str(expr)``.
namespace : None or mapping
Namespace to fill. None results in new empty dict
Returns
-------
namespace : dict
dict with keys of implemented function names within `expr` and
corresponding values being the numerical implementation of
function
Examples
--------
>>> from sympy.abc import x, y, z
>>> from sympy.utilities.lambdify import implemented_function, _imp_namespace
>>> from sympy import Function
>>> f = implemented_function(Function('f'), lambda x : x+1)
>>> g = implemented_function(Function('g'), lambda x : x*10)
>>> namespace = _imp_namespace(f(g(x)))
>>> sorted(namespace.keys())
['f', 'g']
"""
# Delayed import to avoid circular imports
from sympy.core.function import FunctionClass
if namespace is None:
namespace = {}
# tuples, lists, dicts are valid expressions
if is_sequence(expr):
for arg in expr:
_imp_namespace(arg, namespace)
return namespace
elif isinstance(expr, dict):
for key, val in expr.items():
# functions can be in dictionary keys
_imp_namespace(key, namespace)
_imp_namespace(val, namespace)
return namespace
# sympy expressions may be Functions themselves
func = getattr(expr, 'func', None)
if isinstance(func, FunctionClass):
imp = getattr(func, '_imp_', None)
if not imp is None:
name = expr.func.__name__
if name in namespace and namespace[name] != imp:
raise ValueError('We found more than one '
'implementation with name '
'"%s"' % name)
namespace[name] = imp
# and / or they may take Functions as arguments
if hasattr(expr, 'args'):
for arg in expr.args:
_imp_namespace(arg, namespace)
return namespace
def implemented_function(symfunc, implementation):
""" Add numerical `implementation` to function `symfunc`
`symfunc` can by a Function, or a name, in which case we make an
anonymous function with this name. The function is anonymous in the
sense that the name is not unique in the sympy namespace.
Parameters
----------
symfunc : str or ``sympy.FunctionClass`` instance
If str, then create new anonymous sympy function with this as
name. If `symfunc` is a sympy function, attach implementation to
function
implementation : callable
numerical implementation of function for use in ``lambdify``
Returns
-------
afunc : sympy.FunctionClass instance
function with attached implementation
Examples
--------
>>> from sympy.abc import x, y, z
>>> from sympy.utilities.lambdify import lambdify, implemented_function
>>> from sympy import Function
>>> f = implemented_function(Function('f'), lambda x : x+1)
>>> lam_f = lambdify(x, f(x))
>>> lam_f(4)
5
"""
# Delayed import to avoid circular imports
from sympy.core.function import UndefinedFunction
# if name, create anonymous function to hold implementation
if isinstance(symfunc, basestring):
symfunc = UndefinedFunction(symfunc)
# We need to attach as a method because symfunc will be a class
symfunc._imp_ = staticmethod(implementation)
return symfunc
|