This file is indexed.

/usr/share/pyshared/sympy/utilities/lambdify.py is in python-sympy 0.7.1.rc1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
"""
This module provides convenient functions to transform sympy expressions to
lambda functions which can be used to calculate numerical values very fast.
"""

from __future__ import division
from sympy.core.sympify import sympify
from sympy.core.compatibility import is_sequence

import inspect

# These are the namespaces the lambda functions will use.
MATH = {}
MPMATH = {}
NUMPY = {}
SYMPY = {}

# Default namespaces, letting us define translations that can't be defined
# by simple variable maps, like I => 1j
# These are separate from the names above because the above names are modified
# throughout this file, whereas these should remain unmodified.
MATH_DEFAULT = {}
MPMATH_DEFAULT = {}
NUMPY_DEFAULT = {"I": 1j}
SYMPY_DEFAULT = {}

# Mappings between sympy and other modules function names.
MATH_TRANSLATIONS = {
    "Abs":"fabs",
    "ceiling":"ceil",
    "E":"e",
    "ln":"log",
}

MPMATH_TRANSLATIONS = {
    "ceiling":"ceil",
    "chebyshevt":"chebyt",
    "chebyshevu":"chebyu",
    "E":"e",
    "I":"j",
    "ln":"log",
    #"lowergamma":"lower_gamma",
    "oo":"inf",
    #"uppergamma":"upper_gamma",
    "LambertW":"lambertw",
    "Matrix":"matrix",
    "conjugate":"conj",
}

NUMPY_TRANSLATIONS = {
    "acos":"arccos",
    "acosh":"arccosh",
    "arg":"angle",
    "asin":"arcsin",
    "asinh":"arcsinh",
    "atan":"arctan",
    "atan2":"arctan2",
    "atanh":"arctanh",
    "ceiling":"ceil",
    "E":"e",
    "im":"imag",
    "ln":"log",
    "Matrix":"matrix",
    "Max":"amax",
    "Min":"amin",
    "oo":"inf",
    "re":"real",
}

# Available modules:
MODULES = {
    "math":(MATH, MATH_DEFAULT, MATH_TRANSLATIONS, ("from math import *",)),
    "mpmath":(MPMATH, MPMATH_DEFAULT, MPMATH_TRANSLATIONS, ("from sympy.mpmath import *",)),
    "numpy":(NUMPY, NUMPY_DEFAULT, NUMPY_TRANSLATIONS, ("from numpy import *",)),
    "sympy":(SYMPY, SYMPY_DEFAULT, {}, ("from sympy.functions import *",
                         "from sympy.matrices import Matrix",
                         "from sympy import Integral, pi, oo, nan, zoo, E, I",)),
}

def _import(module, reload="False"):
    """
    Creates a global translation dictionary for module.

    The argument module has to be one of the following strings: "math",
    "mpmath", "numpy", "sympy".
    These dictionaries map names of python functions to their equivalent in
    other modules.
    """
    # TODO: rewrite this using import_module from sympy.external
    if not module in MODULES:
        raise NameError("This module can't be used for lambdification.")
    namespace, namespace_default, translations, import_commands = MODULES[module]
    # Clear namespace or exit
    if namespace != namespace_default:
        # The namespace was already generated, don't do it again if not forced.
        if reload:
            namespace.clear()
            namespace.update(namespace_default)
        else:
            return

    # It's possible that numpy is not available.
    for import_command in import_commands:
        try:
            exec import_command in {}, namespace
        except ImportError:
            raise ImportError("Can't import %s with command %s" % (module, import_command))

    # Add translated names to namespace
    for sympyname, translation in translations.iteritems():
        namespace[sympyname] = namespace[translation]

def lambdify(args, expr, modules=None, printer=None, use_imps=True):
    """
    Returns a lambda function for fast calculation of numerical values.

    Usage:
    >>> from sympy import sqrt, sin
    >>> from sympy.utilities.lambdify import lambdify
    >>> from sympy.abc import x, y, z
    >>> f = lambdify(x, x**2)
    >>> f(2)
    4
    >>> f = lambdify((x,y,z), [z,y,x])
    >>> f(1,2,3)
    [3, 2, 1]
    >>> f = lambdify(x, sqrt(x))
    >>> f(4)
    2.0
    >>> f = lambdify((x,y), sin(x*y)**2)
    >>> f(0, 5)
    0.0

    If not specified differently by the user, Sympy functions are replaced as
    far as possible by either python-math, numpy (if available) or mpmath
    functions - exactly in this order.
    To change this behavior, the "modules" argument can be used.
    It accepts:
     - the strings "math", "mpmath", "numpy", "sympy"
     - any modules (e.g. math)
     - dictionaries that map names of sympy functions to arbitrary functions
     - lists that contain a mix of the arguments above. (Entries that are first
        in the list have higher priority)

    Examples:
    (1) Use one of the provided modules:
        >> f = lambdify(x, sin(x), "math")

        Attention: Functions that are not in the math module will throw a name
                   error when the lambda function is evaluated! So this would
                   be better:
        >> f = lambdify(x, sin(x)*gamma(x), ("math", "mpmath", "sympy"))

    (2) Use some other module:
        >> import numpy
        >> f = lambdify((x,y), tan(x*y), numpy)

        Attention: There are naming differences between numpy and sympy. So if
                   you simply take the numpy module, e.g. sympy.atan will not be
                   translated to numpy.arctan. Use the modified module instead
                   by passing the string "numpy":

        >> f = lambdify((x,y), tan(x*y), "numpy")
        >> f(1, 2)
        -2.18503986326
        >> from numpy import array
        >> f(array([1, 2, 3]), array([2, 3, 5]))
        [-2.18503986 -0.29100619 -0.8559934 ]

    (3) Use own dictionaries:
        >> def my_cool_function(x): ...
        >> dic = {"sin" : my_cool_function}
        >> f = lambdify(x, sin(x), dic)

        Now f would look like:
        >> lambda x: my_cool_function(x)

    Functions present in `expr` can also carry their own numerical
    implementations, in a callable attached to the ``_imp_``
    attribute.  Usually you attach this using the
    ``implemented_function`` factory:

    >>> from sympy.abc import x, y, z
    >>> from sympy.utilities.lambdify import lambdify, implemented_function
    >>> from sympy import Function
    >>> f = implemented_function(Function('f'), lambda x : x+1)
    >>> func = lambdify(x, f(x))
    >>> func(4)
    5

    ``lambdify`` always prefers ``_imp_`` implementations to
    implementations in other namespaces, unless the ``use_imps`` input
    parameter is False.
    """
    from sympy.core.symbol import Symbol
    # If the user hasn't specified any modules, use what is available.
    if modules is None:
        # Use either numpy (if available) or python.math where possible.
        # XXX: This leads to different behaviour on different systems and
        #      might be the reason for irreproducible errors.
        try:
            _import("numpy")
            modules = ("math", "numpy", "mpmath", "sympy")
        except ImportError:
            modules = ("math", "mpmath", "sympy")

    # Get the needed namespaces.
    namespaces = []
    # First find any function implementations
    if use_imps:
        namespaces.append(_imp_namespace(expr))
    # Check for dict before iterating
    if isinstance(modules, (dict, str)) or not hasattr(modules, '__iter__'):
        namespaces.append(modules)
    else:
        namespaces += list(modules)
    # fill namespace with first having highest priority
    namespace = {}
    for m in namespaces[::-1]:
        buf = _get_namespace(m)
        namespace.update(buf)

    if hasattr(expr, "atoms"):
        #Try if you can extract symbols from the expression.
        #Move on if expr.atoms in not implemented.
        syms = expr.atoms(Symbol)
        for term in syms:
            namespace.update({str(term): term})

    # Create lambda function.
    lstr = lambdastr(args, expr, printer=printer)

    return eval(lstr, namespace)

def _get_namespace(m):
    """
    This is used by _lambdify to parse its arguments.
    """
    if isinstance(m, str):
        _import(m)
        return MODULES[m][0]
    elif isinstance(m, dict):
        return m
    elif hasattr(m, "__dict__"):
        return m.__dict__
    else:
        raise TypeError("Argument must be either a string, dict or module but it is: %s" % m)

def lambdastr(args, expr, printer=None):
    """
    Returns a string that can be evaluated to a lambda function.

    >>> from sympy.abc import x, y, z
    >>> from sympy.utilities.lambdify import lambdastr
    >>> lambdastr(x, x**2)
    'lambda x: (x**2)'
    >>> lambdastr((x,y,z), [z,y,x])
    'lambda x,y,z: ([z, y, x])'

    """
    if printer is not None:
        if inspect.isfunction(printer):
            lambdarepr = printer
        else:
            if inspect.isclass(printer):
                lambdarepr = lambda expr: printer().doprint(expr)
            else:
                lambdarepr = lambda expr: printer.doprint(expr)
    else:
        #XXX: This has to be done here because of circular imports
        from sympy.printing.lambdarepr import lambdarepr

    # Transform everything to strings.
    expr = lambdarepr(expr)
    if isinstance(args, str):
        pass
    elif hasattr(args, "__iter__"):
        args = ",".join(str(a) for a in args)
    else:
        args = str(args)

    return "lambda %s: (%s)" % (args, expr)

def _imp_namespace(expr, namespace=None):
    """ Return namespace dict with function implementations

    We need to search for functions in anything that can be thrown at
    us - that is - anything that could be passed as `expr`.  Examples
    include sympy expressions, as well as tuples, lists and dicts that may
    contain sympy expressions.

    Parameters
    ----------
    expr : object
       Something passed to lambdify, that will generate valid code from
       ``str(expr)``.
    namespace : None or mapping
       Namespace to fill.  None results in new empty dict

    Returns
    -------
    namespace : dict
       dict with keys of implemented function names within `expr` and
       corresponding values being the numerical implementation of
       function

    Examples
    --------
    >>> from sympy.abc import x, y, z
    >>> from sympy.utilities.lambdify import implemented_function, _imp_namespace
    >>> from sympy import Function
    >>> f = implemented_function(Function('f'), lambda x : x+1)
    >>> g = implemented_function(Function('g'), lambda x : x*10)
    >>> namespace = _imp_namespace(f(g(x)))
    >>> sorted(namespace.keys())
    ['f', 'g']
    """
    # Delayed import to avoid circular imports
    from sympy.core.function import FunctionClass
    if namespace is None:
        namespace = {}
    # tuples, lists, dicts are valid expressions
    if is_sequence(expr):
        for arg in expr:
            _imp_namespace(arg, namespace)
        return namespace
    elif isinstance(expr, dict):
        for key, val in expr.items():
            # functions can be in dictionary keys
            _imp_namespace(key, namespace)
            _imp_namespace(val, namespace)
        return namespace
    # sympy expressions may be Functions themselves
    func = getattr(expr, 'func', None)
    if isinstance(func, FunctionClass):
        imp = getattr(func, '_imp_', None)
        if not imp is None:
            name = expr.func.__name__
            if name in namespace and namespace[name] != imp:
                raise ValueError('We found more than one '
                                 'implementation with name '
                                 '"%s"' % name)
            namespace[name] = imp
    # and / or they may take Functions as arguments
    if hasattr(expr, 'args'):
        for arg in expr.args:
            _imp_namespace(arg, namespace)
    return namespace

def implemented_function(symfunc, implementation):
    """ Add numerical `implementation` to function `symfunc`

    `symfunc` can by a Function, or a name, in which case we make an
    anonymous function with this name.  The function is anonymous in the
    sense that the name is not unique in the sympy namespace.

    Parameters
    ----------
    symfunc : str or ``sympy.FunctionClass`` instance
       If str, then create new anonymous sympy function with this as
       name.  If `symfunc` is a sympy function, attach implementation to
       function
    implementation : callable
       numerical implementation of function for use in ``lambdify``

    Returns
    -------
    afunc : sympy.FunctionClass instance
       function with attached implementation

    Examples
    --------
    >>> from sympy.abc import x, y, z
    >>> from sympy.utilities.lambdify import lambdify, implemented_function
    >>> from sympy import Function
    >>> f = implemented_function(Function('f'), lambda x : x+1)
    >>> lam_f = lambdify(x, f(x))
    >>> lam_f(4)
    5
    """
    # Delayed import to avoid circular imports
    from sympy.core.function import UndefinedFunction
    # if name, create anonymous function to hold implementation
    if isinstance(symfunc, basestring):
        symfunc = UndefinedFunction(symfunc)
    # We need to attach as a method because symfunc will be a class
    symfunc._imp_ = staticmethod(implementation)
    return symfunc