This file is indexed.

/usr/share/pyshared/sympy/utilities/compilef.py is in python-sympy 0.7.1.rc1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
# needs access to libtcc and math.h
# TODO: *get tcc errors (currently something like 'Unknown error 3217941984',
#                        this makes debugging painful)
#       *currently the compiled function accepts too many arguments silently
#       *implement multi-dimensional functions for frange
#       *list comprehension syntax for frange?
#       *configuration of path to libtcc.so
#       *add gcc support again (easier to set up than tcc)
#       *fix compiler warnings

# heavily inspired by http://www.cs.tut.fi/~ask/cinpy/

"""
Experimental module for compiling functions to machine code.
Can also be used to generate C code from SymPy expressions.
Depends on libtcc.

This code is experimental. It may have severe bugs. Due to the use of C, it's
able to crash your Python interpreter/debugger with obscure error messages.

64 bit floats (double) are used.


Overview
========

clambdify:   compile a function to machine code (only useful for big functions)
frange:      evaluate a function on a range of numbers using machine code
cexpr:       translate a Python expression to a C expression
genfcode:    generate C code from a lambda string
evanonarray: evaluate a function on an array using machine code


Performance
===========

Python functions using the math module are *quite* fast. For simple functions
they are faster than functions compiled to machine code. So you should test
to see whether lambdify is fast enough for you.

Iterating is slow in Python (it's probably the biggest bottle neck).
frange allows you to iterate using machine code. This can result in huge
speedups. You might want to use NumPy: http://numpy.org/
For simple functions it's faster, but for big ones frange can be several times
more efficient.

You should experiment to see which solution is best for your application.

You can run the included benchmarks to see the real performance on your machine.


Configuration
=============

You will probably need to compile libtcc on your own. Get the sources of tcc:

http://bellard.org/tcc/

Currently it only works for a recent development version. So you might want to
run the following commands (you have to use your own paths of course):

$ cvs -z3 -d:pserver:anonymous@cvs.savannah.nongnu.org:/sources/tinycc co tinycc
$ cd tinycc
$ ./configure
$ make
$ gcc -shared -Wl,-soname,libtcc.so -o libtcc.so libtcc.o
$ cd sympy/utilities/
$ ln -s tinycc/libtcc.so # or change libtccpath in compilef.py

You might try to run libtcc_test. If something went wrong there will be bad low
level Python errors probably crashing the interpreter. The error output will be
printed to stdout or stderr, which might be different to your Python shell.

Make sure that this module knows the path to libtcc.

If everything went right, all the tests will pass. Run this file to do so and
to see the results of some benchmarks.

"""

import os
import ctypes
from sympy import Symbol, cse, sympify
from sympy.utilities.lambdify import lambdastr as getlambdastr
from sympy.external import import_module

numpy = import_module('numpy')

libtccpath = './libtcc.so'
dps = 17 # decimal places of float precision
# load libtcc TODO: better Windows support
libtcc = ctypes.cdll.LoadLibrary(libtccpath)
if not libtcc:
    raise ImportError('Could not load libtcc')

def __getLeftRight(expr, index, oplength=1, stopchar='+-'):
    """
    Gets the expressions to the left and right of an operator.

    >>> __getLeftRight('1/(g(x)*3.5)**(x - a**x)/(x**2 + a)', 12,
    ...                oplength=2, stopchar='+-*/')
    ('(g(x)*3.5)', '(x - a**x)')

    """
    # assumes correct syntax
    # TODO: never repeat yourself
    # get left expression
    left = ''
    openbraces = 0
    for char in reversed(expr[:index]):
        if char == ' ': # skip whitespaces but keep them
            left = char + left
            continue
        elif char == ')':
            openbraces += 1
            left = char + left
        elif char == '(':
            if not openbraces: # happens when operator is in braces
                break
            openbraces -= 1
            left = char + left
        elif char in stopchar:
            if openbraces:
                left = char + left
                continue
            else:
                break
        else:
            left = char + left
    # get right expression
    right = ''
    openbraces = 0
    for char in expr[index+oplength:]:
        if char == ' ': # skip whitespaces but keep them
            right += char
            continue
        elif char == '(':
            openbraces += 1
            right += char
        elif char == ')':
            if not openbraces: # happens when operator is in braces
                break
            openbraces -= 1
            right += char
        elif char in stopchar:
            if openbraces:
                right += char
                continue
            else:
                break
        else:
            right += char
    return (left, right)

def cexpr(pyexpr):
    """
    Python math expression string -> C expression string
    """
    # TODO: better spacing
    # replace 'a**b' with 'pow(a, b)'
    while True:
        index = pyexpr.find('**')
        if index != -1:
            left, right = __getLeftRight(pyexpr, index, 2, '+-*/')
            pyexpr = pyexpr.replace(left + '**' + right, ' pow(%s, %s) '
                                    % (left.lstrip(), right.rstrip()))
        else:
            break
    # TODO: convert 'x**n' to 'x*x*...*x'
    # TODO: avoid integer division
    return pyexpr

def _gentmpvars():
    """
    Generate symbols tmp1, tmp2, ... infinitely.
    """
    i = 0
    while True:
        i += 1
        yield Symbol('tmp' + str(i))

def genfcode(lambdastr, use_cse=False):
    """
    Python lambda string -> C function code

    Optionally cse() is used to eliminate common subexpressions.
    """
    # TODO: verify lambda string
    # interpret lambda string
    varstr, fstr = lambdastr.split(': ')
    varstr = varstr.lstrip('lambda ')
    # generate C variable string
    cvars = varstr.split(',')
    cvarstr = ''
    for v in cvars:
        cvarstr += 'double %s, ' % v
    cvarstr = cvarstr.rstrip(', ')
    # convert function string to C syntax
    if not use_cse:
        cfstr = ''
        finalexpr = cexpr(fstr)
    else:
        # eliminate common subexpressions
        subs, finalexpr = cse(sympify(fstr), _gentmpvars())
        assert len(finalexpr) == 1
        vardec = ''
        cfstr = ''
        for symbol, expr in subs:
            vardec += '    double %s;\n' % symbol.name
            cfstr += '    %s = %s;\n' % (symbol.name, cexpr(str(expr.evalf(dps))))
        cfstr = vardec + cfstr
        finalexpr = cexpr(str(finalexpr[0].evalf(dps)))
    # generate C code
    code = """
inline double f(%s)
    {
%s
    return %s;
    }
""" % (cvarstr, cfstr, finalexpr)
    return code

def __run(cmd):
    """
    Checks the exit code of a ran command.
    """
    if not cmd == 0:
        raise RuntimeError('could not run libtcc command')

def _compile(code, argcount=None, fname='f', fprototype=None):
    """
    C code with function -> compiled function

    Supports all standard C math functions, pi and e.
    Function is assumed to get and return 'double' only.
    Uses libtcc.
    """
    # returned type and all arguments are double
    if fprototype:
        fprototype = ctypes.CFUNCTYPE(*fprototype)
    else:
        assert argcount, 'need argcount if no prototype is specified'
        fprototype = ctypes.CFUNCTYPE(*[ctypes.c_double]*(argcount+1))
    # see libtcc.h for API documentation
    tccstate = libtcc.tcc_new()
    __run(libtcc.tcc_set_output_type(tccstate, 0)) # output to memory
    ##print libtcc.tcc_add_library_path(tccstate, mathh) # could be dropped
    __run(libtcc.tcc_add_library(tccstate, 'm')) # use math.h FIXME: Windows
    # compile string
    __run(libtcc.tcc_compile_string(tccstate, code))
    __run(libtcc.tcc_relocate(tccstate)) # fails if link error
    # create C variable to get result
    symbol = ctypes.c_long()
    __run(libtcc.tcc_get_symbol(tccstate, ctypes.byref(symbol), fname))
    # return reference to C function
    return fprototype(symbol.value)

# expr needs to work with lambdastr
def clambdify(args, expr, **kwargs):
    """
    SymPy expression -> compiled function

    Supports all standard C math functions, pi and e.

    >>> from sympy import symbols, sqrt
    >>> from sympy.abc import x, y
    >>> cf = clambdify((x,y), sqrt(x*y))
    >>> cf(0.5, 4)
    1.4142135623730951

    """
    # convert function to lambda string
    s = getlambdastr(args, expr.evalf(21))
    # generate code
    code = """
# include <math.h>

# define pi M_PI
# define e M_E

%s
""" % genfcode(s, **kwargs)
    # compile code
    return _compile(code, len(args))

def frange(*args, **kwargs):
    """
    frange(lambdastr, [start,] stop[, step]) -> ctypes double array

    Evaluates function on range using machine code.
    Currently only one-dimensional functions are supported.

    For simple functions it's somewhat slower than NumPy.
    For big functions it can be several times faster.

    lambdastr has the same restrictions as in clambdify.

    >>> frange('lambda x: sqrt(x)', 1, 4) # doctest: +ELLIPSIS
    <__main__.c_double_Array_3 object at ...>
    >>> for i in _:
    ...     print i
    ...
    1.0
    1.41421356237
    1.73205080757

    """
    if len(args) > 4:
        raise TypeError('expected at most 4 arguments, got %i' % len(args))
    if len(args) < 2:
        raise TypeError('expected at least 2 argument, got %i' % len(args))
    # interpret arguments
    lambdastr = args[0]
    start = 0
    step = 1
    if len(args) == 2:
        stop = args[1]
    elif len(args) >= 3:
        start = args[1]
        stop = args[2]
    if len(args) == 4:
        step = args[3]
    assert start + step != start, \
           'step is too small and would cause an infinite loop'
    # determine length of resulting array
    # TODO: do this better
    length = stop - start
    if length % step == 0:
        length = length/step - 1 # exclude last one
    else:
        length = length//step
    if step > 0:
        if start < stop:
            length += 1 # include first one
    else:
        if start > stop:
            length += 1 # include first one
    if length < 0:
        length = 0
    assert length == int(length)
    length = int(length)
    # create array
    a = (ctypes.c_double * length)()
    # generate code
    vardef = 'double* MAX; double x = %f;' % start
    loopbody = '*result = f(x); x += %f;' % step
    code = """
# include <math.h>

# define pi M_PI
# define e M_E

%s

void evalonrange(double *result, int n)
    {
    %s
    for (MAX = result + n; result < MAX; result++)
        {
        %s
        }
    }

""" % (genfcode(lambdastr, **kwargs), vardef, loopbody)
    # compile and run
    evalonrange = _compile(code, fname='evalonrange',
                           fprototype=[None, ctypes.c_void_p, ctypes.c_int])
    evalonrange(ctypes.byref(a), ctypes.c_int(length))
    # return ctypes array with results
    return a

def evalonarray(lambdastr, array, length=None, **kwargs):
    """
    Evaluates a function on an array using machine code.

    array can be a numpy array, a ctypes array or a pointer to an array.
    In the latter case, the correct length must be specified.

    array will be overwritten! Make a copy before to avoid this.
    """
    # interpret arguments
    if hasattr(array,  'ctypes'): # numpy array
        pointer = array.ctypes.get_as_parameter()
        length = len(array)
    elif isinstance(array,  ctypes.Array): # ctypes array
        pointer = ctypes.byref(array)
        length = len(array)
    elif isinstance(array,  ctypes.c_void_p): # ctypes pointer FIXME
        pointer = array
        assert isinstance(length,  int) and not length < 0
    else:
        raise ValueError('array type not recognized')
    # generate code
    code = """
# include <math.h>

# define pi M_PI
# define e M_E

%s

void evalonarray(double *array, int length)
    {
    double* MAX;
    for (MAX = array + length; array < MAX; array++)
        {
        *array = f(*array);
        }
    }

""" % genfcode(lambdastr, **kwargs)
    # compile an run on array
    run = _compile(code,  fname='evalonarray',
                   fprototype=[None, ctypes.c_void_p, ctypes.c_int])
    run(pointer, length)

#########
# TESTS #
#########

from sympy import sqrt, pi, lambdify
from math import exp, cos, sin

def test_cexpr():
    expr = '1/(g(x)*3.5)**(x - a**x)/(x**2 + a)'
    assert cexpr(expr).replace(' ', '') == \
           '1/pow((g(x)*3.5),(x-pow(a,x)))/(pow(x,2)+a)'

def test_clambdify():
    x = Symbol('x')
    y = Symbol('y')
    z = Symbol('z')
    f1 = sqrt(x*y)
    pf1 = lambdify((x, y), f1, 'math')
    cf1 = clambdify((x, y), f1)
    for i in xrange(10):
        assert cf1(i, 10 - i) == pf1(i, 10 - i)
    f2 = (x - y) / z * pi
    pf2 = lambdify((x, y, z), f2, 'math')
    cf2 = clambdify((x, y, z), f2)
    assert round(pf2(1, 2, 3),  14) == round(cf2(1, 2, 3),  14)
    # FIXME: slight difference in precision

def test_frange():
    fstr = 'lambda x: exp(x)*cos(x)**x'
    f = eval(fstr)
    a = frange(fstr, 30, 168, 3)
    args = range(30, 168, 3)
    assert len(a) == len(args)
    for i in xrange(len(a)):
        assert a[i] == f(args[i])
    assert len(frange('lambda x: x', 0, -10000)) == 0
    assert len(frange('lambda x: x', -1, -1, 0.0001)) == 0
    a = frange('lambda x: x', -5, 5, 0.1)
    b = range(-50, 50)
    assert len(a) == len(b)
    for i in xrange(len(a)):
        assert int(round(a[i]*10)) == b[i]
    a = frange('lambda x: x', 17, -9, -3)
    b = range(17, -9, -3)
    assert len(a) == len(b)
    for i in xrange(len(a)):
        assert a[i] == b[i]
    a = frange('lambda x: x', 2.7, -3.1, -1.01)
    b = range(270, -310, -101)
    assert len(a) == len(b)
    for i in xrange(len(a)):
        assert int(round(a[i]*100)) == b[i]
    assert frange('lambda x: x', 0.2, 0.1, -0.1)[0] == 0.2
    assert len(frange('lambda x: x', 0)) == 0
    assert len(frange('lambda x: x', 1000, -1)) == 0
    assert len(frange('lambda x: x', -1.23, 3.21, -0.0000001)) == 0
    try:
        frange()
        assert False
    except TypeError:
        pass
    try:
        frange(1, 2, 3, 4, 5)
        assert False
    except TypeError:
        pass

def test_evalonarray_ctypes():
    a = frange('lambda x: x', 10)
    evalonarray('lambda x: sin(x)', a)
    for i, j in enumerate(a):
        assert sin(i) == j
# TODO: test for ctypes pointers
##    evalonarray('lambda x: asin(x)', ctypes.byref(a), len(a))
##    for i, j in enumerater(a):
##        print j

def test_evalonarray_numpy():
    a = numpy.arange(10, dtype=float)
    evalonarray('lambda x: x + 1',  a)
    for i, j in enumerate(a):
        assert float(i + 1) == j

def test_use_cse():
    args = ('lambda x: sqrt(x + 1)**sqrt(x + 1)', 1, 10)
    a = frange(*args)
    kwargs = {}
    kwargs['use_cse'] = True
    b = frange(*args, **kwargs)
    assert len(a) == len(b)
    for i in xrange(len(a)):
        assert a[i] == b[i]

def benchmark():
    """
    Run some benchmarks for clambdify and frange.

    NumPy and Psyco are used as reference if available.
    """
    from time import time
    from timeit import Timer

    def fbenchmark(f, var=[Symbol('x')]):
        """
        Do some benchmarks with f using clambdify, lambdify and psyco.
        """
        global cf, pf, psyf
        start = time()
        cf = clambdify(var, f)
        print 'compile time (including sympy overhead): %f s' % (time() - start)
        pf = lambdify(var, f, 'math')
        psyf = None
        psyco = import_module('psyco')
        if psyco:
            psyf = lambdify(var, f, 'math')
            psyco.bind(psyf)
        code = '''for x in (i/1000. for i in range(1000)):
        f(%s)''' % ('x,'*len(var)).rstrip(',')
        t1 = Timer(code, 'from __main__ import cf as f')
        t2 = Timer(code, 'from __main__ import pf as f')
        if psyf:
            t3 = Timer(code, 'from __main__ import psyf as f')
        else:
            t3 = None
        print 'for x = (0, 1, 2, ..., 999)/1000'
        print '20 times in 3 runs'
        print 'compiled:      %.4f %.4f %.4f' % tuple(t1.repeat(3, 20))
        print 'Python lambda: %.4f %.4f %.4f' % tuple(t2.repeat(3, 20))
        if t3:
            print 'Psyco lambda:  %.4f %.4f %.4f' % tuple(t3.repeat(3, 20))

    print 'big function:'
    from sympy import diff, exp, sin, cos, pi, lambdify
    x = Symbol('x')
##    f1 = diff(exp(x)**2 - sin(x)**pi, x) \
##        * x**12-2*x**3+2*exp(x**2)-3*x**7+4*exp(123+x-x**5+2*x**4) \
##        * ((x + pi)**5).expand()
    f1 = 2*exp(x**2) + x**12*(-pi*sin(x)**((-1) + pi)*cos(x) + 2*exp(2*x)) \
         + 4*(10*pi**3*x**2 + 10*pi**2*x**3 + 5*pi*x**4 + 5*x*pi**4 + pi**5 \
         + x**5)*exp(123 + x + 2*x**4 - x**5) - 2*x**3 - 3*x**7
    fbenchmark(f1)
    print
    print 'simple function:'
    y = Symbol('y')
    f2 = sqrt(x*y)+x*5
    fbenchmark(f2, [x,y])
    times = 100000
    fstr = 'exp(sin(exp(-x**2)) + sqrt(pi)*cos(x**5/(x**3-x**2+pi*x)))'
    print
    print 'frange with f(x) ='
    print fstr
    print 'for x=1, ..., %i' % times
    print 'in 3 runs including full compile time'
    t4 = Timer("frange('lambda x: %s', 0, %i)" % (fstr, times),
               'from __main__ import frange')

    numpy = import_module('numpy')

    print 'frange:        %.4f %.4f %.4f' % tuple(t4.repeat(3, 1))
    if numpy:
        t5 = Timer('x = arange(%i); result = %s' % (times, fstr),
                   'from numpy import arange, sqrt, exp, sin, cos, exp, pi')
        print 'numpy:         %.4f %.4f %.4f' % tuple(t5.repeat(3, 1))
    # TODO: integration into fbenchmark

if __name__ == '__main__':
    if __debug__:
        print 'Running tests...',
        test_cexpr()
        test_clambdify()
        test_frange()
        test_evalonarray_ctypes()
        if numpy:
            test_evalonarray_numpy()
        test_use_cse()
        import doctest
        doctest.testmod()
        print 'OK'
        print
    print 'Running benchmark...'
    benchmark()