This file is indexed.

/usr/share/pyshared/sympy/utilities/codegen.py is in python-sympy 0.7.1.rc1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
"""
module for generating C, C++, Fortran77, Fortran90 and python routines that
evaluate sympy expressions. This module is work in progress. Only the
milestones with a '+' character in the list below have been completed.


--- How is sympy.utilities.codegen different from sympy.printing.ccode? ---

We considered the idea to extend the printing routines for sympy functions in
such a way that it prints complete compilable code, but this leads to a few
unsurmountable issues that can only be tackled with dedicated code generator:

- For C, one needs both a code and a header file, while the printing routines
generate just one string. This code generator can be extended to support .pyf
files for f2py.

- Sympy functions are not concerned with programming-technical issues, such as
input, output and input-output arguments. Other examples are contiguous or
non-contiguous arrays, including headers of other libraries such as gsl or others.

- It is highly interesting to evaluate several sympy functions in one C routine,
eventually sharing common intermediate results with the help of the cse routine.
This is more than just printing.

- From the programming perspective, expressions with constants should be
evaluated in the code generator as much as possible. This is different for
printing.


--- Basic assumptions ---

* A generic Routine data structure describes the routine that must be translated
  into C/Fortran/... code. This data structure covers all features present in
  one or more of the supported languages.

* Descendants from the CodeGen class transform multiple Routine instances into
  compilable code. Each derived class translates into a specific language.

* In many cases, one wants a simple workflow. The friendly functions in the last
  part are a simple api on top of the Routine/CodeGen stuff. They are easier to
  use, but are less powerful.


--- Milestones ---

+ First working version with scalar input arguments, generating C code, tests
+ Friendly functions that are easier to use than the rigorous Routine/CodeGen
  workflow.
+ Integer and Real numbers as input and output
- Optional extra include lines for libraries/objects that can eval special
  functions
- Test other C compilers and libraries: gcc, tcc, libtcc, gcc+gsl, ...
+ Output arguments
+ InputOutput arguments
+ Sort input/output arguments properly
+ Contiguous array arguments (numpy matrices)
- Contiguous array arguments (sympy matrices)
- Non-contiguous array arguments (sympy matrices)
- ccode must raise an error when it encounters something that can not be
  translated into c. ccode(integrate(sin(x)/x, x)) does not make sense.
- Complex numbers as input and output
+ Also generate .pyf code for f2py (in autowrap module)
- A default complex datatype
- Include extra information in the header: date, user, hostname, sha1 hash, ...
+ Isolate constants and evaluate them beforehand in double precision
- Common Subexpression Elimination
- User defined comments in the generated code
- Fortran 77
+ Fortran 90
- C++
- Python
- ...
"""
from __future__ import with_statement

import os
from StringIO import StringIO

from sympy import __version__ as sympy_version
from sympy.core import Symbol, S, Expr, Tuple, Equality, Function
from sympy.core.compatibility import is_sequence
from sympy.printing.codeprinter import AssignmentError
from sympy.printing.ccode import ccode, CCodePrinter
from sympy.printing.fcode import fcode, FCodePrinter
from sympy.tensor import Idx, Indexed, IndexedBase
from sympy.utilities import flatten



__all__ = [
    # description of routines
    "Routine", "DataType", "default_datatypes", "get_default_datatype",
    "Argument", "InputArgument", "Result",
    # routines -> code
    "CodeGen", "CCodeGen", "FCodeGen",
    # friendly functions
    "codegen",
]


#
# Description of routines
#


class Routine(object):
    """Generic description of an evaluation routine for a set of sympy expressions.

       A CodeGen class can translate instances of this class into C/Fortran/...
       code. The routine specification covers all the features present in these
       languages. The CodeGen part must raise an exception when certain features
       are not present in the target language. For example, multiple return
       values are possible in Python, but not in C or Fortran. Another example:
       Fortran and Python support complex numbers, while C does not.
    """
    def __init__(self, name, expr, argument_sequence=None):
        """Initialize a Routine instance.

        ``name``
            A string with the name of this routine in the generated code
        ``expr``
            The sympy expression that the Routine instance will represent.  If
            given a list or tuple of expressions, the routine will be
            considered to have multiple return values.
        ``argument_sequence``
            Optional list/tuple containing arguments for the routine in a
            preferred order.  If omitted, arguments will be ordered
            alphabetically, but with all input aguments first, and then output
            or in-out arguments.

        A decision about whether to use output arguments or return values,
        is made depending on the mathematical expressions.  For an expression
        of type Equality, the left hand side is made into an OutputArgument
        (or an InOutArgument if appropriate).  Else, the calculated
        expression is the return values of the routine.

        A tuple of exressions can be used to create a routine with both
        return value(s) and output argument(s).

        """
        arg_list = []

        if is_sequence(expr):
            if not expr:
                raise ValueError("No expression given")
            expressions = Tuple(*expr)
        else:
            expressions = Tuple(expr)

        # local variables
        local_vars = set([i.label for i in expressions.atoms(Idx)])

        # symbols that should be arguments
        symbols = expressions.atoms(Symbol) - local_vars

        # Decide whether to use output argument or return value
        return_val = []
        output_args = []
        for expr in expressions:
            if isinstance(expr, Equality):
                out_arg = expr.lhs
                expr = expr.rhs
                if isinstance(out_arg, Indexed):
                    dims = tuple([ (S.Zero, dim-1) for dim in out_arg.shape])
                    symbol = out_arg.base.label
                elif isinstance(out_arg, Symbol):
                    dims = []
                    symbol = out_arg
                else:
                    raise CodeGenError("Only Indexed or Symbol can define output arguments")

                if expr.has(symbol):
                    output_args.append(InOutArgument(symbol, out_arg, expr, dimensions=dims))
                else:
                    output_args.append(OutputArgument(symbol, out_arg, expr, dimensions=dims))

                # avoid duplicate arguments
                symbols.remove(symbol)
            else:
                return_val.append(Result(expr))

        # setup input argument list
        array_symbols = {}
        for array in expressions.atoms(Indexed):
            array_symbols[array.base.label] = array

        for symbol in sorted(symbols, key=str):
            if symbol in array_symbols:
                dims = []
                array = array_symbols[symbol]
                for dim in array.shape:
                    dims.append((S.Zero, dim - 1))
                metadata = {'dimensions': dims}
            else:
                metadata = {}

            arg_list.append(InputArgument(symbol, **metadata))

        output_args.sort(key=lambda x:str(x.name))
        arg_list.extend(output_args)

        if argument_sequence is not None:
            # if the user has supplied IndexedBase instances, we'll accept that
            new_sequence = []
            for arg in argument_sequence:
                if isinstance(arg, IndexedBase):
                    new_sequence.append(arg.label)
                else:
                    new_sequence.append(arg)
            argument_sequence = new_sequence

            missing = filter(lambda x: x.name not in argument_sequence, arg_list)
            if missing:
                raise CodeGenArgumentListError("Argument list didn't specify: %s" %
                        ", ".join([str(m.name) for m in missing]), missing)

            # create redundant arguments to produce the requested sequence
            name_arg_dict = dict([(x.name, x) for x in arg_list])
            new_args = []
            for symbol in argument_sequence:
                try:
                    new_args.append(name_arg_dict[symbol])
                except KeyError:
                    new_args.append(InputArgument(symbol))
            arg_list = new_args

        self.name = name
        self.arguments = arg_list
        self.results = return_val
        self.local_vars = local_vars

    @property
    def variables(self):
        """Returns a set containing all variables possibly used in this routine.

        For routines with unnamed return values, the dummies that may or may
        not be used will be included in the set.
        """
        v = set(self.local_vars)
        for arg in self.arguments:
            v.add(arg.name)
        for res in self.results:
            v.add(res.result_var)
        return v

    @property
    def result_variables(self):
        """Returns a list of OutputArgument, InOutArgument and Result.

        If return values are present, they are at the end ot the list.
        """
        args = [arg for arg in self.arguments if isinstance(arg, (OutputArgument, InOutArgument))]
        args.extend(self.results)
        return args

class DataType(object):
    """Holds strings for a certain datatype in different programming languages."""
    def __init__(self, cname, fname, pyname):
        self.cname = cname
        self.fname = fname
        self.pyname = pyname


default_datatypes = {
    "int": DataType("int", "INTEGER*4", "int"),
    "float": DataType("double", "REAL*8", "float")
}


def get_default_datatype(expr):
    """Derives a decent data type based on the assumptions on the expression."""
    if expr.is_integer:
        return default_datatypes["int"]
    else:
        return default_datatypes["float"]

class Variable(object):
    """Represents a typed variable."""

    def __init__(self, name, datatype=None, dimensions=None, precision=None):
        """Initializes a Variable instance

           name  --  must be of class Symbol
           datatype  --  When not given, the data type will be guessed based
                         on the assumptions on the symbol argument.
           dimension  --  If present, the argument is interpreted as an array.
                          Dimensions must be a sequence containing tuples, i.e.
                          (lower, upper) bounds for each index of the array
           precision  --  FIXME
        """
        if not isinstance(name, Symbol):
            raise TypeError("The first argument must be a sympy symbol.")
        if datatype is None:
            datatype = get_default_datatype(name)
        elif not isinstance(datatype, DataType):
            raise TypeError("The (optional) `datatype' argument must be an instance of the DataType class.")
        if dimensions and not isinstance(dimensions, (tuple, list)):
            raise TypeError("The dimension argument must be a sequence of tuples")

        self._name = name
        self._datatype = {
                'C': datatype.cname,
                'FORTRAN': datatype.fname,
                'PYTHON': datatype.pyname
                }
        self.dimensions = dimensions
        self.precision = precision

    @property
    def name(self):
        return self._name

    def get_datatype(self, language):
        """Returns the datatype string for the requested langage.

            >>> from sympy import Symbol
            >>> from sympy.utilities.codegen import Variable
            >>> x = Variable(Symbol('x'))
            >>> x.get_datatype('c')
            'double'
            >>> x.get_datatype('fortran')
            'REAL*8'
        """
        try:
            return self._datatype[language.upper()]
        except KeyError:
            raise CodeGenError("Has datatypes for languages: %s" %
                    ", ".join(self._datatype))

class Argument(Variable):
    """An abstract Argument data structure: a name and a data type.

       This structure is refined in the descendants below.
    """

    def __init__(self, name, datatype=None, dimensions=None, precision=None):
        """ See docstring of Variable.__init__
        """

        Variable.__init__(self, name, datatype, dimensions, precision)

class InputArgument(Argument):
    pass

class ResultBase(object):
    """Base class for all ``outgoing'' information from a routine

       Objects of this class stores a sympy expression, and a sympy object
       representing a result variable that will be used in the generated code
       only if necessary.
   """
    def __init__(self, expr, result_var):
        self.expr = expr
        self.result_var = result_var

class OutputArgument(Argument, ResultBase):
    """OutputArgument are always initialized in the routine
    """
    def __init__(self, name, result_var, expr, datatype=None, dimensions=None, precision=None):
        """ See docstring of Variable.__init__
        """
        Argument.__init__(self, name, datatype, dimensions, precision)
        ResultBase.__init__(self, expr, result_var)

class InOutArgument(Argument, ResultBase):
    """InOutArgument are never initialized in the routine
    """

    def __init__(self, name, result_var, expr, datatype=None, dimensions=None, precision=None):
        """ See docstring of Variable.__init__
        """
        Argument.__init__(self, name, datatype, dimensions, precision)
        ResultBase.__init__(self, expr, result_var)

class Result(ResultBase):
    """An expression for a scalar return value.

       The name result is used to avoid conflicts with the reserved word
       'return' in the python language. It is also shorter than ReturnValue.

    """

    def __init__(self, expr, datatype=None, precision=None):
        """Initialize a (scalar) return value.

           The second argument is optional. When not given, the data type will
           be guessed based on the assumptions on the expression argument.
        """
        if not isinstance(expr, Expr):
            raise TypeError("The first argument must be a sympy expression.")

        temp_var = Variable(Symbol('result_%s'%hash(expr)),
                datatype=datatype, dimensions=None, precision=precision)
        ResultBase.__init__(self, expr, temp_var.name)
        self._temp_variable = temp_var

    def get_datatype(self, language):
        return self._temp_variable.get_datatype(language)


#
# Transformation of routine objects into code
#

class CodeGen(object):
    """Abstract class for the code generators."""

    def __init__(self, project="project"):
        """Initialize a code generator.

           Derived classes will offer more options that affect the generated
           code.
        """
        self.project = project

    def write(self, routines, prefix, to_files=False, header=True, empty=True):
        """Writes all the source code files for the given routines.

            The generate source is returned as a list of (filename, contents)
            tuples, or is written to files (see options). Each filename consists
            of the given prefix, appended with an appropriate extension.

            ``routines``
                A list of Routine instances to be written
            ``prefix``
                The prefix for the output files
            ``to_files``
                When True, the output is effectively written to files.
                [DEFAULT=False] Otherwise, a list of (filename, contents)
                tuples is returned.
            ``header``
                When True, a header comment is included on top of each source
                file. [DEFAULT=True]
            ``empty``
                When True, empty lines are included to structure the source
                files. [DEFAULT=True]

        """
        if to_files:
            for dump_fn in self.dump_fns:
                filename = "%s.%s" % (prefix, dump_fn.extension)
                with open(filename, "w") as f:
                    dump_fn(self, routines, f, prefix, header, empty)
        else:
            result = []
            for dump_fn in self.dump_fns:
                filename = "%s.%s" % (prefix, dump_fn.extension)
                contents = StringIO()
                dump_fn(self, routines, contents, prefix, header, empty)
                result.append((filename, contents.getvalue()))
            return result

    def dump_code(self, routines, f, prefix, header=True, empty=True):
        """Write the code file by calling language specific methods in correct order

        The generated file contains all the definitions of the routines in
        low-level code and refers to the header file if appropriate.

        :Arguments:

        routines
            A list of Routine instances
        f
            A file-like object to write the file to
        prefix
            The filename prefix, used to refer to the proper header file. Only
            the basename of the prefix is used.

        :Optional arguments:

        header
            When True, a header comment is included on top of each source file.
            [DEFAULT=True]
        empty
            When True, empty lines are included to structure the source files.
            [DEFAULT=True]
        """

        code_lines = self._preprosessor_statements(prefix)

        for routine in routines:
            if empty: code_lines.append("\n")
            code_lines.extend(self._get_routine_opening(routine))
            code_lines.extend(self._declare_arguments(routine))
            code_lines.extend(self._declare_locals(routine))
            if empty: code_lines.append("\n")
            code_lines.extend(self._call_printer(routine))
            if empty: code_lines.append("\n")
            code_lines.extend(self._get_routine_ending(routine))

        code_lines = self._indent_code(''.join(code_lines))

        if header:
            code_lines = ''.join(self._get_header() + [code_lines])

        if code_lines:
            print >> f, code_lines,

class CodeGenError(Exception):
    pass

class CodeGenArgumentListError(Exception):
    @property
    def missing_args(self):
        return self.args[1]


header_comment = """Code generated with sympy %(version)s

See http://www.sympy.org/ for more information.

This file is part of '%(project)s'
"""


class CCodeGen(CodeGen):
    """
    Generator for C code

    The .write() method inherited from CodeGen will output a code file and an
    inteface file, <prefix>.c and <prefix>.h respectively.
    """

    code_extension = "c"
    interface_extension = "h"

    def _get_header(self):
        """Writes a common header for the generated files."""
        code_lines = []
        code_lines.append("/" + "*"*78 + '\n')
        tmp = header_comment % {"version": sympy_version, "project": self.project}
        for line in tmp.splitlines():
            code_lines.append(" *%s*\n" % line.center(76))
        code_lines.append(" " + "*"*78 + "/\n")
        return code_lines

    def get_prototype(self, routine):
        """Returns a string for the function prototype for the given routine.

           If the routine has multiple result objects, an CodeGenError is
           raised.

           See: http://en.wikipedia.org/wiki/Function_prototype
        """
        if len(routine.results) > 1:
            raise CodeGenError("C only supports a single or no return value.")
        elif len(routine.results) == 1:
            ctype = routine.results[0].get_datatype('C')
        else:
            ctype = "void"

        type_args = []
        for arg in routine.arguments:
            name = ccode(arg.name)
            if arg.dimensions:
                type_args.append((arg.get_datatype('C'), "*%s" % name))
            elif isinstance(arg, ResultBase):
                type_args.append((arg.get_datatype('C'), "&%s" % name))
            else:
                type_args.append((arg.get_datatype('C'), name))
        arguments = ", ".join([ "%s %s" % t for t in type_args])
        return "%s %s(%s)" % (ctype, routine.name, arguments)

    def _preprosessor_statements(self, prefix):
        code_lines = []
        code_lines.append("#include \"%s.h\"\n" % os.path.basename(prefix))
        code_lines.append("#include <math.h>\n")
        return code_lines

    def _get_routine_opening(self, routine):
        prototype = self.get_prototype(routine)
        return ["%s {\n" % prototype]

    def _declare_arguments(self, routine):
        # arguments are declared in prototype
        return []

    def _declare_locals(self, routine):
        # loop variables are declared in loop statement
        return []

    def _call_printer(self, routine):
        code_lines = []
        for result in routine.result_variables:
            if isinstance(result, Result):
                assign_to = None
            elif isinstance(result, (OutputArgument, InOutArgument)):
                assign_to = result.result_var

            try:
                constants, not_c, c_expr = ccode(result.expr, assign_to=assign_to, human=False)
            except AssignmentError:
                assign_to = result.result_var
                code_lines.append("%s %s;\n" % (result.get_datatype('c'), str(assign_to)))
                constants, not_c, c_expr = ccode(result.expr, assign_to=assign_to, human=False)

            for name, value in sorted(constants, key=str):
                code_lines.append("double const %s = %s;\n" % (name, value))
            if assign_to:
                code_lines.append("%s\n" % c_expr)
            else:
                code_lines.append("   return %s;\n" % c_expr)
        return code_lines

    def _indent_code(self, codelines):
        p = CCodePrinter()
        return p.indent_code(codelines)

    def _get_routine_ending(self, routine):
        return ["}\n"]

    def dump_c(self, routines, f, prefix, header=True, empty=True):
        self.dump_code(routines, f, prefix, header, empty)
    dump_c.extension = code_extension
    dump_c.__doc__ = CodeGen.dump_code.__doc__

    def dump_h(self, routines, f, prefix, header=True, empty=True):
        """Writes the C header file.

           This file contains all the function declarations.

           :Arguments:

           routines
                A list of Routine instances
           f
                A file-like object to write the file to
           prefix
                The filename prefix, used to construct the include guards.

           :Optional arguments:

           header
                When True, a header comment is included on top of each source
                file. [DEFAULT=True]
           empty
                When True, empty lines are included to structure the source
                files. [DEFAULT=True]
        """
        if header:
            print >> f, ''.join(self._get_header())
        guard_name = "%s__%s__H" % (self.project.replace(" ", "_").upper(), prefix.replace("/", "_").upper())
        # include guards
        if empty: print >> f
        print >> f, "#ifndef %s" % guard_name
        print >> f, "#define %s" % guard_name
        if empty: print >> f
        # declaration of the function prototypes
        for routine in routines:
            prototype = self.get_prototype(routine)
            print >> f, "%s;" % prototype
        # end if include guards
        if empty: print >> f
        print >> f, "#endif"
        if empty: print >> f
    dump_h.extension = interface_extension

    # This list of dump functions is used by CodeGen.write to know which dump
    # functions it has to call.
    dump_fns = [dump_c, dump_h]

class FCodeGen(CodeGen):
    """
    Generator for Fortran 95 code

    The .write() method inherited from CodeGen will output a code file and an
    inteface file, <prefix>.f90 and <prefix>.h respectively.
    """

    code_extension = "f90"
    interface_extension = "h"

    def __init__(self, project='project'):
        CodeGen.__init__(self, project)

    def _get_symbol(self, s):
        """returns the symbol as fcode print it"""
        return fcode(s).strip()

    def _get_header(self):
        """Writes a common header for the generated files."""
        code_lines = []
        code_lines.append("!" + "*"*78 + '\n')
        tmp = header_comment % {"version": sympy_version, "project": self.project}
        for line in tmp.splitlines():
            code_lines.append("!*%s*\n" % line.center(76))
        code_lines.append("!" + "*"*78 + '\n')
        return code_lines

    def _preprosessor_statements(self, prefix):
        return []

    def _get_routine_opening(self, routine):
        """
        Returns the opening statements of the fortran routine
        """
        code_list = []
        if len(routine.results) > 1:
            raise CodeGenError("Fortran only supports a single or no return value.")
        elif len(routine.results) == 1:
            result = routine.results[0]
            code_list.append(result.get_datatype('fortran'))
            code_list.append("function")
        else:
            code_list.append("subroutine")

        args = ", ".join("%s" % self._get_symbol(arg.name)
                for arg in routine.arguments)

        # name of the routine + arguments
        code_list.append("%s(%s)\n" % (routine.name, args))
        code_list = [ " ".join(code_list) ]

        code_list.append('implicit none\n')
        return code_list

    def _declare_arguments(self, routine):
        # argument type declarations
        code_list = []
        array_list = []
        scalar_list = []
        for arg in routine.arguments:

            if isinstance(arg, InputArgument):
                typeinfo = "%s, intent(in)" % arg.get_datatype('fortran')
            elif isinstance(arg, InOutArgument):
                typeinfo = "%s, intent(inout)" % arg.get_datatype('fortran')
            elif isinstance(arg, OutputArgument):
                typeinfo = "%s, intent(out)" % arg.get_datatype('fortran')
            else:
                raise CodeGenError("Unkown Argument type: %s"%type(arg))

            fprint = self._get_symbol

            if arg.dimensions:
                # fortran arrays start at 1
                dimstr = ", ".join(["%s:%s"%(
                    fprint(dim[0]+1), fprint(dim[1]+1))
                    for dim in arg.dimensions])
                typeinfo += ", dimension(%s)" % dimstr
                array_list.append("%s :: %s\n" % (typeinfo, fprint(arg.name)))
            else:
                scalar_list.append("%s :: %s\n" % (typeinfo, fprint(arg.name)))

        # scalars first, because they can be used in array declarations
        code_list.extend(scalar_list)
        code_list.extend(array_list)

        return code_list

    def _declare_locals(self, routine):
        code_list = []
        for var in sorted(routine.local_vars, key=str):
            typeinfo = get_default_datatype(var)
            code_list.append("%s :: %s\n" % (
                typeinfo.fname, self._get_symbol(var)))
        return code_list

    def _get_routine_ending(self, routine):
        """
        Returns the closing statements of the fortran routine
        """
        if len(routine.results) == 1:
            return ["end function\n"]
        else:
            return ["end subroutine\n"]

    def get_interface(self, routine):
        """Returns a string for the function interface for the given routine and
           a single result object, which can be None.

           If the routine has multiple result objects, a CodeGenError is
           raised.

           See: http://en.wikipedia.org/wiki/Function_prototype

        """
        prototype = [ "interface\n" ]
        prototype.extend(self._get_routine_opening(routine))
        prototype.extend(self._declare_arguments(routine))
        prototype.extend(self._get_routine_ending(routine))
        prototype.append("end interface\n")

        return "".join(prototype)

    def _call_printer(self, routine):
        declarations = []
        code_lines = []
        for result in routine.result_variables:
            if isinstance(result, Result):
                assign_to = routine.name
            elif isinstance(result, (OutputArgument, InOutArgument)):
                assign_to = result.result_var

            constants, not_fortran, f_expr = fcode(result.expr,
                assign_to=assign_to, source_format='free', human=False)

            for obj, v in sorted(constants, key=str):
                t = get_default_datatype(obj)
                declarations.append("%s, parameter :: %s = %s\n" % (t.fname, obj, v))
            for obj in sorted(not_fortran, key=str):
                t = get_default_datatype(obj)
                if isinstance(obj, Function):
                    name = obj.func
                else:
                    name = obj
                declarations.append("%s :: %s\n" % (t.fname, name))

            code_lines.append("%s\n" % f_expr)
        return declarations + code_lines

    def _indent_code(self, codelines):
        p = FCodePrinter({'source_format': 'free', 'human': False})
        return p.indent_code(codelines)

    def dump_f95(self, routines, f, prefix, header=True, empty=True):
        # check that symbols are unique with ignorecase
        for r in routines:
            lowercase = set(map(lambda x: str(x).lower(), r.variables))
            orig_case = set(map(lambda x: str(x), r.variables))
            if len(lowercase) < len(orig_case):
                raise CodeGenError("Fortran ignores case. Got symbols: %s"%
                        (", ".join([str(var) for var in r.variables])))
        self.dump_code(routines, f, prefix, header, empty)
    dump_f95.extension = code_extension
    dump_f95.__doc__ = CodeGen.dump_code.__doc__


    def dump_h(self, routines, f, prefix, header=True, empty=True):
        """Writes the interface to a header file.

           This file contains all the function declarations.

           :Arguments:

           routines
                A list of Routine instances
           f
                A file-like object to write the file to
           prefix
                The filename prefix

           :Optional arguments:

           header
                When True, a header comment is included on top of each source
                file. [DEFAULT=True]
           empty
                When True, empty lines are included to structure the source
                files. [DEFAULT=True]
        """
        if header:
            print >> f, ''.join(self._get_header())
        if empty: print >> f
        # declaration of the function prototypes
        for routine in routines:
            prototype  = self.get_interface(routine)
            print >> f, prototype,
        if empty: print >> f
    dump_h.extension = interface_extension

    # This list of dump functions is used by CodeGen.write to know which dump
    # functions it has to call.
    dump_fns = [dump_f95, dump_h]


def get_code_generator(language, project):
    CodeGenClass = {"C": CCodeGen, "F95": FCodeGen}.get(language.upper())
    if CodeGenClass is None:
        raise ValueError("Language '%s' is not supported." % language)
    return CodeGenClass(project)


#
# Friendly functions
#


def codegen(name_expr, language, prefix, project="project", to_files=False, header=True, empty=True,
        argument_sequence=None):
    """Write source code for the given expressions in the given language.

    :Mandatory Arguments:

    ``name_expr``
        A single (name, expression) tuple or a list of (name, expression)
        tuples. Each tuple corresponds to a routine.  If the expression is an
        equality (an instance of class Equality) the left hand side is
        considered an output argument.
    ``language``
            A string that indicates the source code language. This is case
            insensitive. For the moment, only 'C' and 'F95' is supported.
    ``prefix``
            A prefix for the names of the files that contain the source code.
            Proper (language dependent) suffixes will be appended.

    :Optional Arguments:

    ``project``
        A project name, used for making unique preprocessor instructions.
        [DEFAULT="project"]
    ``to_files``
        When True, the code will be written to one or more files with the given
        prefix, otherwise strings with the names and contents of these files
        are returned. [DEFAULT=False]
    ``header``
        When True, a header is written on top of each source file.
        [DEFAULT=True]
    ``empty``
        When True, empty lines are used to structure the code.  [DEFAULT=True]
    ``argument_sequence``
        sequence of arguments for the routine in a preferred order.  A
        CodeGenError is raised if required arguments are missing.  Redundant
        arguments are used without warning.

        If omitted, arguments will be ordered alphabetically, but with all
        input aguments first, and then output or in-out arguments.

    >>> from sympy import symbols
    >>> from sympy.utilities.codegen import codegen
    >>> from sympy.abc import x, y, z
    >>> [(c_name, c_code), (h_name, c_header)] = \\
    ...     codegen(("f", x+y*z), "C", "test", header=False, empty=False)
    >>> print c_name
    test.c
    >>> print c_code,
    #include "test.h"
    #include <math.h>
    double f(double x, double y, double z) {
      return x + y*z;
    }
    >>> print h_name
    test.h
    >>> print c_header,
    #ifndef PROJECT__TEST__H
    #define PROJECT__TEST__H
    double f(double x, double y, double z);
    #endif

    """

    # Initialize the code generator.
    code_gen = get_code_generator(language, project)

    # Construct the routines based on the name_expression pairs.
    #  mainly the input arguments require some work
    routines = []
    if isinstance(name_expr[0], basestring):
        # single tuple is given, turn it into a singleton list with a tuple.
        name_expr = [name_expr]

    for name, expr in name_expr:
        routines.append(Routine(name, expr, argument_sequence))

    # Write the code.
    return code_gen.write(routines, prefix, to_files, header, empty)