This file is indexed.

/usr/share/pyshared/sympy/utilities/autowrap.py is in python-sympy 0.7.1.rc1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
"""Module for compiling codegen output, and wrap the binary for use in python.

.. note:: To use the autowrap module it must first be imported

   >>> from sympy.utilities.autowrap import autowrap

This module provides a common interface for different external backends, such
as f2py, fwrap, Cython, SWIG(?) etc. (Currently only f2py and Cython are
implemented) The goal is to provide access to compiled binaries of acceptable
performance with a one-button user interface, i.e.

    >>> from sympy.abc import x,y
    >>> expr = ((x - y)**(25)).expand()
    >>> binary_callable = autowrap(expr)           # doctest: +SKIP
    >>> binary_callable(1, 2)                      # doctest: +SKIP
    -1.0

The callable returned from autowrap() is a binary python function, not a
Sympy object.  If it is desired to use the compiled function in symbolic
expressions, it is better to use binary_function() which returns a Sympy
Function object.  The binary callable is attached as the _imp_ attribute and
invoked when a numerical evaluation is requested with evalf(), or with
lambdify().

    >>> from sympy.utilities.autowrap import binary_function
    >>> f = binary_function('f', expr)             # doctest: +SKIP
    >>> 2*f(x, y) + y                              # doctest: +SKIP
    y + 2*f(x, y)
    >>> (2*f(x, y) + y).evalf(2, subs={x: 1, y:2}) # doctest: +SKIP
    0.0

The idea is that a SymPy user will primarily be interested in working with
mathematical expressions, and should not have to learn details about wrapping
tools in order to evaluate expressions numerically, even if they are
computationally expensive.

When is this useful?

    1) For computations on large arrays, Python iterations may be too slow, and
       depending on the mathematical expression, it may be difficult to exploit
       the advanced index operations provided by NumPy.

    2) For *really* long expressions that will be called repeatedly, the
       compiled binary should be significantly faster than SymPy's .evalf()

    3) If you are generating code with the codegen utility in order to use it
       in another project, the automatic python wrappers let you test the
       binaries immediately from within SymPy.

    4) To create customized ufuncs for use with numpy arrays.  See :ref:`ufuncify`

When is this module NOT the best approach?

    1) If you are really concerned about speed or memory optimizations, you
       will probably get better results by working directly with the wrapper
       tools and the low level code.  However, the files generated by this
       utility may provide a useful starting point and reference code.
       Temporary files will be left intact if you supply the keyword
       tempdir="path/to/files/".

    2) If the array computation can be handled easily by numpy, and you don't
       need the binaries for another project.

"""
from __future__ import with_statement

import sys
import os
import shutil
import tempfile
import subprocess

from sympy.utilities.codegen import (
        codegen, get_code_generator, Routine, OutputArgument, InOutArgument,
        CodeGenArgumentListError, Result
        )
from sympy.utilities.lambdify import implemented_function
from sympy import C

class CodeWrapError(Exception): pass

class CodeWrapper:
    """Base Class for code wrappers"""
    _filename = "wrapped_code"
    _module_basename = "wrapper_module"
    _module_counter = 0

    @property
    def filename(self):
        return "%s_%s" % (self._filename, CodeWrapper._module_counter)

    @property
    def module_name(self):
        return "%s_%s" % (self._module_basename, CodeWrapper._module_counter)

    def __init__(self, generator, filepath=None, flags=[], verbose=False):
        """
        generator -- the code generator to use
        """
        self.generator = generator
        self.filepath = filepath
        self.flags = flags
        self.quiet = not verbose

    @property
    def include_header(self):
        return bool(self.filepath)

    @property
    def include_empty(self):
        return bool(self.filepath)

    def _generate_code(self, main_routine, routines):
        routines.append(main_routine)
        self.generator.write(routines, self.filename, True, self.include_header,
                self.include_empty)

    def wrap_code(self, routine, helpers=[]):

        workdir = self.filepath or tempfile.mkdtemp("_sympy_compile")
        if not os.access(workdir, os.F_OK):
            os.mkdir(workdir)
        oldwork = os.getcwd()
        os.chdir(workdir)
        try:
            sys.path.append(workdir)
            self._generate_code(routine, helpers)
            self._prepare_files(routine)
            self._process_files(routine)
            mod = __import__(self.module_name)
        finally:
            sys.path.remove(workdir)
            CodeWrapper._module_counter +=1
            os.chdir(oldwork)
            if not self.filepath:
                shutil.rmtree(workdir)

        return self._get_wrapped_function(mod)

    def _process_files(self, routine):
        command = self.command
        command.extend(self.flags)
        null = open(os.devnull, 'w')
        try:
            if self.quiet:
                retcode = subprocess.call(command, stdout=null, stderr=subprocess.STDOUT)
            else:
                retcode = subprocess.call(command)
        except OSError:
            retcode = 1
        if retcode:
            raise CodeWrapError(
                    "Error while executing command: %s" % " ".join(command))

class DummyWrapper(CodeWrapper):
    """Class used for testing independent of backends """

    template = """# dummy module for testing of Sympy
def %(name)s():
    return "%(expr)s"
%(name)s.args = "%(args)s"
%(name)s.returns = "%(retvals)s"
"""
    def _prepare_files(self, routine):
        return

    def _generate_code(self, routine, helpers):
        with open('%s.py' % self.module_name, 'w') as f:
            printed = ", ".join([str(res.expr) for res in routine.result_variables])
            # convert OutputArguments to return value like f2py
            inargs = filter(lambda x: not isinstance(x, OutputArgument), routine.arguments)
            retvals = []
            for val in routine.result_variables:
                if isinstance(val, Result):
                    retvals.append('nameless')
                else:
                    retvals.append(val.result_var)

            print >> f, DummyWrapper.template % {
                    'name': routine.name,
                    'expr': printed,
                    'args': ", ".join([str(arg.name) for arg in inargs]),
                    'retvals': ", ".join([str(val) for val in retvals])
                    }

    def _process_files(self, routine):
        return

    @classmethod
    def _get_wrapped_function(cls, mod):
        return mod.autofunc

class CythonCodeWrapper(CodeWrapper):
    """Wrapper that uses Cython"""

    setup_template = """
from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

setup(
    cmdclass = {'build_ext': build_ext},
    ext_modules = [Extension(%(args)s)]
        )
"""

    @property
    def command(self):
        command = [sys.executable, "setup.py", "build_ext", "--inplace"]
        return command

    def _prepare_files(self, routine):
        pyxfilename = self.module_name + '.pyx'
        codefilename = "%s.%s" % (self.filename, self.generator.code_extension)

        # pyx
        with open(pyxfilename, 'w') as f:
            self.dump_pyx([routine], f, self.filename,
                self.include_header, self.include_empty)

        # setup.py
        ext_args = [repr(self.module_name), repr([pyxfilename, codefilename])]
        with open('setup.py', 'w') as f:
            print >> f, CythonCodeWrapper.setup_template % {'args': ", ".join(ext_args)}

    @classmethod
    def _get_wrapped_function(cls, mod):
        return mod.autofunc_c

    def dump_pyx(self, routines, f, prefix, header=True, empty=True):
        """Write a Cython file with python wrappers

           This file contains all the definitions of the routines in c code and
           refers to the header file.

           :Arguments:

           routines
                List of Routine instances
           f
                File-like object to write the file to
           prefix
                The filename prefix, used to refer to the proper header file.
                Only the basename of the prefix is used.
           empty
                Optional. When True, empty lines are included to structure the
                source files. [DEFAULT=True]
        """
        for routine in routines:
            prototype = self.generator.get_prototype(routine)
            origname = routine.name
            routine.name = "%s_c" % origname
            prototype_c = self.generator.get_prototype(routine)
            routine.name = origname

            # declare
            print >> f, 'cdef extern from "%s.h":' % prefix
            print >> f, '   %s' % prototype
            if empty: print >> f

            # wrap
            ret, args_py = self._split_retvals_inargs(routine.arguments)
            args_c = ", ".join([str(a.name) for a in routine.arguments])
            print >> f, "def %s_c(%s):" % (routine.name,
                    ", ".join(self._declare_arg(arg) for arg in args_py))
            for r in ret:
                if not r in args_py:
                    print >> f, "   cdef %s" % self._declare_arg(r)
            rets = ", ".join([str(r.name) for r in ret])
            if routine.results:
                call = '   return %s(%s)' % (routine.name, args_c)
                if rets:
                    print >> f, call + ', ' + rets
                else:
                    print >> f, call
            else:
                print >> f, '   %s(%s)' % (routine.name, args_c)
                print >> f, '   return %s' % rets

            if empty: print >> f
    dump_pyx.extension = "pyx"

    def _split_retvals_inargs(self, args):
        """Determines arguments and return values for python wrapper"""
        py_args = []
        py_returns = []
        for arg in args:
            if isinstance(arg, OutputArgument):
                py_returns.append(arg)
            elif isinstance(arg, InOutArgument):
                py_returns.append(arg)
                py_args.append(arg)
            else:
                py_args.append(arg)
        return py_returns, py_args

    def _declare_arg(self, arg):
        t = arg.get_datatype('c')
        if arg.dimensions:
            return "%s *%s"%(t, str(arg.name))
        else:
            return "%s %s"%(t, str(arg.name))

class F2PyCodeWrapper(CodeWrapper):
    """Wrapper that uses f2py"""

    @property
    def command(self):
        filename = self.filename + '.' + self.generator.code_extension
        command = ["f2py", "-m", self.module_name, "-c" , filename]
        return command

    def _prepare_files(self, routine):
        pass

    @classmethod
    def _get_wrapped_function(cls, mod):
        return mod.autofunc

def _get_code_wrapper_class(backend):
    wrappers = { 'F2PY': F2PyCodeWrapper, 'CYTHON': CythonCodeWrapper, 'DUMMY': DummyWrapper}
    return wrappers[backend.upper()]

def autowrap(expr, language='F95', backend='f2py', tempdir=None, args=None, flags=[],
        verbose=False, helpers=[]):
    """Generates python callable binaries based on the math expression.

    expr
        The SymPy expression that should be wrapped as a binary routine

    :Optional arguments:

    language
        The programming language to use, currently 'C' or 'F95'
    backend
        The wrapper backend to use, currently f2py or Cython
    tempdir
        Path to directory for temporary files.  If this argument is supplied,
        the generated code and the wrapper input files are left intact in the
        specified path.
    args
        Sequence of the formal parameters of the generated code, if ommited the
        function signature is determined by the code generator.
    flags
        Additional option flags that will be passed to the backend
    verbose
        If True, autowrap will not mute the command line backends.  This can be
        helpful for debugging.
    helpers
        Used to define auxillary expressions needed for the main expr.  If the
        main expression need to do call a specialized function it should be put
        in the `helpers' list.  Autowrap will then make sure that the compiled
        main expression can link to the helper routine.  Items should be tuples
        with (<funtion_name>, <sympy_expression>, <arguments>).  It is
        mandatory to supply an argument sequence to helper routines.

    >>> from sympy.abc import x, y, z
    >>> from sympy.utilities.autowrap import autowrap
    >>> expr = ((x - y + z)**(13)).expand()
    >>> binary_func = autowrap(expr)               # doctest: +SKIP
    >>> binary_func(1, 4, 2)                       # doctest: +SKIP
    -1.0

    """

    code_generator = get_code_generator(language, "autowrap")
    CodeWrapperClass = _get_code_wrapper_class(backend)
    code_wrapper = CodeWrapperClass(code_generator, tempdir, flags, verbose)
    try:
        routine  = Routine('autofunc', expr, args)
    except CodeGenArgumentListError, e:
        # if all missing arguments are for pure output, we simply attach them
        # at the end and try again, because the wrappers will silently convert
        # them to return values anyway.
        new_args = []
        for missing in e.missing_args:
            if not isinstance(missing, OutputArgument):
                raise
            new_args.append(missing.name)
        routine  = Routine('autofunc', expr, args + new_args)

    helps = []
    for name, expr, args in helpers:
        helps.append(Routine(name, expr, args))

    return code_wrapper.wrap_code(routine, helpers=helps)

def binary_function(symfunc, expr, **kwargs):
    """Returns a sympy function with expr as binary implementation

    This is a convenience function that automates the steps needed to
    autowrap the Sympy expression and attaching it to a Function object
    with implemented_function().

    >>> from sympy.abc import x, y, z
    >>> from sympy.utilities.autowrap import binary_function
    >>> expr = ((x - y)**(25)).expand()
    >>> f = binary_function('f', expr)             # doctest: +SKIP
    >>> type(f)                                    # doctest: +SKIP
    <class 'sympy.core.function.FunctionClass'>
    >>> 2*f(x, y)                                  # doctest: +SKIP
    2*f(x, y)
    >>> f(x, y).evalf(2, subs={x: 1, y: 2})        # doctest: +SKIP
    -1.0
    """
    binary = autowrap(expr, **kwargs)
    return implemented_function(symfunc, binary)

def ufuncify(args, expr, **kwargs):
    """Generates a binary ufunc-like lambda function for numpy arrays

    ``args``
        Either a Symbol or a tuple of symbols. Specifies the argument sequence
        for the ufunc-like function.

    ``expr``
        A Sympy expression that defines the element wise operation

    ``kwargs``
        Optional keyword arguments are forwarded to autowrap().

    The returned function can only act on one array at a time, as only the
    first argument accept arrays as input.

    .. Note:: a *proper* numpy ufunc is required to support broadcasting, type
       casting and more.  The function returned here, may not qualify for
       numpy's definition of a ufunc.  That why we use the term ufunc-like.

       See http://docs.scipy.org/doc/numpy/reference/ufuncs.html

    :Examples:

    >>> from sympy.utilities.autowrap import ufuncify
    >>> from sympy.abc import x, y, z
    >>> f = ufuncify([x, y], y + x**2)             # doctest: +SKIP
    >>> f([1, 2, 3], 2)                            # doctest: +SKIP
    [2.  5.  10.]

    """
    y = C.IndexedBase(C.Dummy('y'))
    x = C.IndexedBase(C.Dummy('x'))
    m = C.Dummy('m', integer=True)
    i = C.Dummy('i', integer=True)
    i = C.Idx(i, m)
    l = C.Lambda(args, expr)
    f = implemented_function('f', l)

    if isinstance(args, C.Symbol):
        args = [args]
    else:
        args = list(args)

    # first argument accepts an array
    args[0] = x[i]
    return autowrap(C.Equality(y[i], f(*args)), **kwargs)