This file is indexed.

/usr/share/pyshared/sympy/polys/specialpolys.py is in python-sympy 0.7.1.rc1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
"""Functions for generating interesting polynomials, e.g. for benchmarking. """

from sympy.core import Add, Mul, Symbol, Rational, sympify, Dummy, symbols
from sympy.core.singleton import S

from sympy.polys.polytools import Poly, PurePoly
from sympy.polys.polyutils import _analyze_gens

from sympy.polys.polyclasses import DMP

from sympy.polys.densebasic import (
    dmp_zero, dmp_one, dmp_ground, dmp_normal,
    dup_from_raw_dict, dmp_raise, dup_random
)

from sympy.polys.densearith import (
    dmp_add_term, dmp_neg, dmp_mul, dmp_sqr
)

from sympy.polys.factortools import (
    dup_zz_cyclotomic_poly
)

from sympy.polys.domains import ZZ

from sympy.ntheory import nextprime

from sympy.utilities import cythonized, subsets

@cythonized("n,i")
def swinnerton_dyer_poly(n, x=None, **args):
    """Generates n-th Swinnerton-Dyer polynomial in `x`.  """
    if n <= 0:
        raise ValueError("can't generate Swinnerton-Dyer polynomial of order %s" % n)

    if x is not None:
        x, cls = sympify(x), Poly
    else:
        x, cls = Dummy('x'), PurePoly

    p, elts = 2, [[x, -2**Rational(1,2)],
                  [x,  2**Rational(1,2)]]

    for i in xrange(2, n+1):
        p, _elts = nextprime(p), []

        neg_sqrt = -p**Rational(1,2)
        pos_sqrt = +p**Rational(1,2)

        for elt in elts:
            _elts.append(elt + [neg_sqrt])
            _elts.append(elt + [pos_sqrt])

        elts = _elts

    poly = []

    for elt in elts:
        poly.append(Add(*elt))

    if not args.get('polys', False):
        return Mul(*poly).expand()
    else:
        return PurePoly(Mul(*poly), x)

def cyclotomic_poly(n, x=None, **args):
    """Generates cyclotomic polynomial of order `n` in `x`. """
    if n <= 0:
        raise ValueError("can't generate cyclotomic polynomial of order %s" % n)

    poly = DMP(dup_zz_cyclotomic_poly(int(n), ZZ), ZZ)

    if x is not None:
        poly = Poly.new(poly, x)
    else:
        poly = PurePoly.new(poly, Dummy('x'))

    if not args.get('polys', False):
        return poly.as_expr()
    else:
        return poly

def symmetric_poly(n, *gens, **args):
    """Generates symmetric polynomial of order `n`. """
    gens = _analyze_gens(gens)

    if n < 0 or n > len(gens) or not gens:
        raise ValueError("can't generate symmetric polynomial of order %s for %s" % (n, gens))
    elif not n:
        poly = S.One
    else:
        poly = Add(*[ Mul(*s) for s in subsets(gens, int(n)) ])

    if not args.get('polys', False):
        return poly
    else:
        return Poly(poly, *gens)

def random_poly(x, n, inf, sup, domain=ZZ, polys=False):
    """Return a polynomial of degree ``n`` with coefficients in ``[inf, sup]``. """
    poly = Poly(dup_random(n, inf, sup, domain), x, domain=domain)

    if not polys:
        return poly.as_expr()
    else:
        return poly

@cythonized("n,i,j")
def interpolating_poly(n, x, X='x', Y='y'):
    """Construct Lagrange interpolating polynomial for ``n`` data points. """
    if isinstance(X, str):
        X = symbols("%s:%s" % (X, n))

    if isinstance(Y, str):
        Y = symbols("%s:%s" % (Y, n))

    coeffs = []

    for i in xrange(0, n):
        numer = []
        denom = []

        for j in xrange(0, n):
            if i == j:
                continue

            numer.append(x    - X[j])
            denom.append(X[i] - X[j])

        numer = Mul(*numer)
        denom = Mul(*denom)

        coeffs.append(numer/denom)

    return Add(*[ coeff*y for coeff, y in zip(coeffs, Y) ])

@cythonized("n,i")
def fateman_poly_F_1(n):
    """Fateman's GCD benchmark: trivial GCD """
    Y = [ Symbol('y_' + str(i)) for i in xrange(0, n+1) ]

    y_0, y_1 = Y[0], Y[1]

    u = y_0    + Add(*[ y    for y in Y[1:] ])
    v = y_0**2 + Add(*[ y**2 for y in Y[1:] ])

    F = ((u + 1)*(u + 2)).as_poly(*Y)
    G = ((v + 1)*(-3*y_1*y_0**2 + y_1**2 - 1)).as_poly(*Y)

    H = Poly(1, *Y)

    return F, G, H

@cythonized("n,m,i")
def dmp_fateman_poly_F_1(n, K):
    """Fateman's GCD benchmark: trivial GCD """
    u = [K(1), K(0)]

    for i in xrange(0, n):
        u = [dmp_one(i, K), u]

    v = [K(1), K(0), K(0)]

    for i in xrange(0, n):
        v = [dmp_one(i, K), dmp_zero(i), v]

    m = n-1

    U = dmp_add_term(u, dmp_ground(K(1), m), 0, n, K)
    V = dmp_add_term(u, dmp_ground(K(2), m), 0, n, K)

    f = [[-K(3), K(0)], [], [K(1), K(0), -K(1)]]

    W = dmp_add_term(v, dmp_ground(K(1), m), 0, n, K)
    Y = dmp_raise(f, m, 1, K)

    F = dmp_mul(U, V, n, K)
    G = dmp_mul(W, Y, n, K)

    H = dmp_one(n, K)

    return F, G, H

@cythonized("n,i")
def fateman_poly_F_2(n):
    """Fateman's GCD benchmark: linearly dense quartic inputs """
    Y = [ Symbol('y_' + str(i)) for i in xrange(0, n+1) ]

    y_0 = Y[0]

    u = Add(*[ y for y in Y[1:] ])

    H = Poly((y_0 + u + 1)**2, *Y)

    F = Poly((y_0 - u - 2)**2, *Y)
    G = Poly((y_0 + u + 2)**2, *Y)

    return H*F, H*G, H

@cythonized("n,m,i")
def dmp_fateman_poly_F_2(n, K):
    """Fateman's GCD benchmark: linearly dense quartic inputs """
    u = [K(1), K(0)]

    for i in xrange(0, n-1):
        u = [dmp_one(i, K), u]

    m = n-1

    v = dmp_add_term(u, dmp_ground(K(2), m-1), 0, n, K)

    f = dmp_sqr([dmp_one(m, K), dmp_neg(v, m, K)], n, K)
    g = dmp_sqr([dmp_one(m, K), v], n, K)

    v = dmp_add_term(u, dmp_one(m-1, K), 0, n, K)

    h = dmp_sqr([dmp_one(m, K), v], n, K)

    return dmp_mul(f, h, n, K), dmp_mul(g, h, n, K), h

@cythonized("n,i")
def fateman_poly_F_3(n):
    """Fateman's GCD benchmark: sparse inputs (deg f ~ vars f) """
    Y = [ Symbol('y_' + str(i)) for i in xrange(0, n+1) ]

    y_0 = Y[0]

    u = Add(*[ y**(n+1) for y in Y[1:] ])

    H = Poly((y_0**(n+1) + u + 1)**2, *Y)

    F = Poly((y_0**(n+1) - u - 2)**2, *Y)
    G = Poly((y_0**(n+1) + u + 2)**2, *Y)

    return H*F, H*G, H

@cythonized("n,i")
def dmp_fateman_poly_F_3(n, K):
    """Fateman's GCD benchmark: sparse inputs (deg f ~ vars f) """
    u = dup_from_raw_dict({n+1: K.one}, K)

    for i in xrange(0, n-1):
        u = dmp_add_term([u], dmp_one(i, K), n+1, i+1, K)

    v = dmp_add_term(u, dmp_ground(K(2), n-2), 0, n, K)

    f = dmp_sqr(dmp_add_term([dmp_neg(v, n-1, K)], dmp_one(n-1, K), n+1, n, K), n, K)
    g = dmp_sqr(dmp_add_term([v], dmp_one(n-1, K), n+1, n, K), n, K)

    v = dmp_add_term(u, dmp_one(n-2, K), 0, n-1, K)

    h = dmp_sqr(dmp_add_term([v], dmp_one(n-1, K), n+1, n, K), n, K)

    return dmp_mul(f, h, n, K), dmp_mul(g, h, n, K), h

# A few useful polynomials from Wang's paper ('78).

f_0 = dmp_normal([
    [[1,2,3], [2]],
    [[3]],
    [[4,5,6], [1,2,1], [1]]
], 2, ZZ)

f_1 = dmp_normal([
    [[1, 0], []],
    [[1, 0, 1], [20, 30], [1, 10, 0]],
    [[1, 0], [30, 20], [1, 10, 1, 610], [20, 230, 300]],
    [[1, 10, 0], [30, 320, 200], [600, 6000]]
], 2, ZZ)

f_2 = dmp_normal([
    [[1], [1, 0], [1, 0, 0], [1, 0, 0, 0]],
    [[]],
    [[1], [1, 90], [90, 0]],
    [[1, -11], [], [1, -11, 0, 0]],
    [[]],
    [[1, -11], [90, -990]]
], 2, ZZ)

f_3 = dmp_normal([
    [[1], [], []],
    [[1, 0, 0, 0, 1]],
    [[1, 0], [], [], [1, 0]],
    [[1], [1, 0, 0, 0], [], [1, 0, 0, 0, 1, 0], []],
    [[1, 0, 0, 0, 1], [1, 0, 0, 0, 1, 1, 0, 0], []],
    [[1, 0], [1, 0, 0, 0, 0], []]
], 2, ZZ)

f_4 = dmp_normal([
    [[-1, 0], [], [], [], [], [], [], [], []],
    [[-1, 0, 0, 0], [], [], [], [], []],
    [[-1, 0, 0], [], [], [], [-5], [], [], [], [], [], [], [], []],
    [[-1, 0, 0, 0, 0], [], [1, 0, 3, 0], [], [-5, 0, 0], [-1, 0, 0, 0], [], [], [], []],
    [[1, 0, 3, 0, 0, 0], [], [], [-1, 0, 0, 0, 0, 0], []],
    [[1, 0, 3, 0, 0], [], [], [-1, 0, 0, 0, 0], [5, 0, 15], [], [], [-5, 0, 0], [], [], [], []],
    [[1, 0, 3, 0, 0, 0, 0], [], [], [-1, 0, 0, 0, 0, 0, 0], [5, 0, 15, 0, 0], [1, 0, 3, 0, 0, 0], [], [-5, 0, 0, 0, 0], []],
    [[1, 0, 3, 0, 0, 0, 0, 0]],
    [[1, 0, 3, 0, 0, 0, 0], [], [], [], [5, 0, 15, 0, 0], [], [], []],
    [[1, 0, 3, 0, 0, 0, 0, 0, 0], [], [], [], [5, 0, 15, 0, 0, 0, 0]]
], 2, ZZ)

f_5 = dmp_normal([
    [[-1]],
    [[-3], [3, 0]],
    [[-3], [6, 0], [-3, 0, 0]],
    [[-1], [3, 0], [-3, 0, 0], [1, 0, 0, 0]]
], 2, ZZ)

f_6 = dmp_normal([
    [[[2115]], [[]]],
    [[[45, 0, 0], [], [], [-45, 0, 0]]],
    [[[]]],
    [[[-423]], [[-47]], [[]], [[141], [], [94, 0], []], [[]]],
    [[[-9, 0, 0], [], [], [9, 0, 0]],
     [[-1, 0, 0], [], [], [1, 0, 0]],
     [[]],
     [[3, 0, 0], [], [2, 0, 0, 0], [-3, 0, 0], [], [-2, 0, 0, 0], []]
    ]
], 3, ZZ)


w_1 = dmp_normal([
    [[4, 0, 0], [4, 0, 0, 0], [-4, 0, 0, 0, 0], [-4, 0, 0, 0, 0, 0], []],
    [[1, 0, 0, 0], [12, 0], [-1, 0, 0, 12, 0, 0], [-12, 0, 0, 0], [-12, 0, 0, 0, 0]],
    [[8], [6, 8, 0], [-4, 4, -8, 0, 0], [-4, -2, -8, 0, 0, 0], []],
    [[2, 0], [1, 0, 0, 0], [-1, 0, -2 , 0, 9, 0], [-12, 12, 0, 0], [-12, 3, 0, 0, 0]],
    [[6], [-6, 8, 0], [-2, -8, 2, 0, 0], []],
    [[2, 0], [-2, 0, 0, 0], [-3, 0], [3, 0, 0, 0]],
    [[-2], [2, 0, 0], []]
], 2, ZZ)

w_2 = dmp_normal([
    [24, 48, 0, 0],
    [24, 0, 0, -72, 0, 0],
    [25, 2, 0, 4, 8],
    [1, 0, 0, 1, 0, 0, -12],
    [1, -1, -2, 292, 0, 0],
    [-1, 0, 0, 3, 0, 0, 0],
    [-1, 0, 12, 0, 0, 48],
    [],
    [-12, 0, 0, 0]
], 1, ZZ)