/usr/share/pyshared/sympy/polys/rootoftools.py is in python-sympy 0.7.1.rc1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 | """Implementation of RootOf class and related tools. """
from sympy.core import S, Basic, Expr, Integer, Float, I, Add, Lambda, symbols, sympify
from sympy.polys.polytools import Poly, PurePoly, factor
from sympy.polys.rationaltools import together
from sympy.polys.polyfuncs import symmetrize, viete
from sympy.polys.rootisolation import (
dup_isolate_complex_roots_sqf,
dup_isolate_real_roots_sqf)
from sympy.polys.polyroots import (
roots_linear, roots_quadratic,
roots_binomial, preprocess_roots)
from sympy.polys.polyerrors import (
MultivariatePolynomialError,
GeneratorsNeeded,
PolynomialError)
from sympy.polys.domains import QQ
from sympy.mpmath import (
mp, mpf, mpc, findroot)
from sympy.utilities import lambdify
import operator
def dup_minpoly_add(f, g, K):
F = dmp_raise(f, 1, 0, K)
G = dmp_raise(g, 1, 0, K)
H = [[-K.one], [K.one, K.zero]]
F = dmp_compose(F, H, 1, K)
return dmp_resultant(F, G, 1, K)
def dup_minpoly_sub(f, g, K):
F = dmp_raise(f, 1, 0, K)
G = dmp_raise(g, 1, 0, K)
H = [[K.one], [K.one, K.zero]]
F = dmp_compose(F, H, 1, K)
return dmp_resultant(F, G, 1, K)
def dup_minpoly_mul(f, g, K):
f, F = reversed(f), []
for i, c in enumerate(f):
if not c:
F.append([])
else:
F.append(dup_lshift([c], i, K))
F = dmp_strip(F)
G = dmp_raise(g, 1, 0, K)
return dmp_resultant(F, G, 1, K)
def dup_minpoly_div(f, g, K):
F = dmp_raise(f, 1, 0, K)
G = dmp_raise(g, 1, 0, K)
H = [[K.one, K.zero], []]
F = dmp_compose(F, H, 1, K)
return dmp_resultant(F, G, 1, K)
def dup_minpoly_pow(f, p, q, K):
d = {(p, 0): -K.one, (0, q): K.one}
F = dmp_raise(f, 1, 0, K)
G = dmp_from_dict(d, 1, K)
return dmp_resultant(F, G, 1, K)
_reals_cache = {}
_complexes_cache = {}
class RootOf(Expr):
"""Represents ``k``-th root of a univariate polynomial. """
__slots__ = ['poly', 'index']
def __new__(cls, f, x, index=None, radicals=True, expand=True):
"""Construct a new ``RootOf`` object for ``k``-th root of ``f``. """
x = sympify(x)
if index is None and x.is_Integer:
x, index = None, x
else:
index = sympify(index)
if index.is_Integer:
index = int(index)
else:
raise ValueError("expected an integer root index, got %d" % index)
poly = PurePoly(f, x, greedy=False, expand=expand)
if not poly.is_univariate:
raise PolynomialError("only univariate polynomials are allowed")
degree = poly.degree()
if degree <= 0:
raise PolynomialError("can't construct RootOf object for %s" % f)
if index < -degree or index >= degree:
raise IndexError("root index out of [%d, %d] range, got %d" % (-degree, degree-1, index))
elif index < 0:
index += degree
dom = poly.get_domain()
if not dom.is_Exact:
poly = poly.to_exact()
roots = cls._roots_trivial(poly, radicals)
if roots is not None:
return roots[index]
coeff, poly = preprocess_roots(poly)
dom = poly.get_domain()
if not dom.is_ZZ:
raise NotImplementedError("RootOf is not supported over %s" % dom)
root = cls._indexed_root(poly, index)
return coeff*cls._postprocess_root(root, radicals)
@classmethod
def _new(cls, poly, index):
"""Construct new ``RootOf`` object from raw data. """
obj = Expr.__new__(cls)
obj.poly = poly
obj.index = index
return obj
def _hashable_content(self):
return (self.poly, self.index)
@property
def expr(self):
return self.poly.as_expr()
@property
def args(self):
return (self.expr, Integer(self.index))
@property
def free_symbols(self):
return self.poly.free_symbols
@property
def is_commutative(self):
return True
@property
def is_real(self):
"""Return ``True`` if the root is real. """
return self.index < len(_reals_cache[self.poly])
@property
def is_complex(self):
"""Return ``True`` if the root is complex. """
return not self.is_real
@classmethod
def real_roots(cls, poly, radicals=True):
"""Get real roots of a polynomial. """
return cls._get_roots("_real_roots", poly, radicals)
@classmethod
def all_roots(cls, poly, radicals=True):
"""Get real and complex roots of a polynomial. """
return cls._get_roots("_all_roots", poly, radicals)
@classmethod
def _get_reals_sqf(cls, factor):
"""Compute real root isolating intervals for a square-free polynomial. """
if factor in _reals_cache:
real_part = _reals_cache[factor]
else:
_reals_cache[factor] = real_part = \
dup_isolate_real_roots_sqf(factor.rep.rep, factor.rep.dom, blackbox=True)
return real_part
@classmethod
def _get_complexes_sqf(cls, factor):
"""Compute complex root isolating intervals for a square-free polynomial. """
if factor in _complexes_cache:
complex_part = _complexes_cache[factor]
else:
_complexes_cache[factor] = complex_part = \
dup_isolate_complex_roots_sqf(factor.rep.rep, factor.rep.dom, blackbox=True)
return complex_part
@classmethod
def _get_reals(cls, factors):
"""Compute real root isolating intervals for a list of factors. """
reals = []
for factor, k in factors:
real_part = cls._get_reals_sqf(factor)
reals.extend([ (root, factor, k) for root in real_part ])
return reals
@classmethod
def _get_complexes(cls, factors):
"""Compute complex root isolating intervals for a list of factors. """
complexes = []
for factor, k in factors:
complex_part = cls._get_complexes_sqf(factor)
complexes.extend([ (root, factor, k) for root in complex_part ])
return complexes
@classmethod
def _reals_sorted(cls, reals):
"""Make real isolating intervals disjoint and sort roots. """
cache = {}
for i, (u, f, k) in enumerate(reals):
for j, (v, g, m) in enumerate(reals[i+1:]):
u, v = u.refine_disjoint(v)
reals[i+j+1] = (v, g, m)
reals[i] = (u, f, k)
reals = sorted(reals, key=lambda r: r[0].a)
for root, factor, _ in reals:
if factor in cache:
cache[factor].append(root)
else:
cache[factor] = [root]
for factor, roots in cache.iteritems():
_reals_cache[factor] = roots
return reals
@classmethod
def _complexes_sorted(cls, complexes):
"""Make complex isolating intervals disjoint and sort roots. """
cache = {}
for i, (u, f, k) in enumerate(complexes):
for j, (v, g, m) in enumerate(complexes[i+1:]):
u, v = u.refine_disjoint(v)
complexes[i+j+1] = (v, g, m)
complexes[i] = (u, f, k)
complexes = sorted(complexes, key=lambda r: (r[0].ax, r[0].ay))
for root, factor, _ in complexes:
if factor in cache:
cache[factor].append(root)
else:
cache[factor] = [root]
for factor, roots in cache.iteritems():
_complexes_cache[factor] = roots
return complexes
@classmethod
def _reals_index(cls, reals, index):
"""Map initial real root index to an index in a factor where the root belongs. """
i = 0
for j, (_, factor, k) in enumerate(reals):
if index < i + k:
poly, index = factor, 0
for _, factor, _ in reals[:j]:
if factor == poly:
index += 1
return poly, index
else:
i += k
@classmethod
def _complexes_index(cls, complexes, index):
"""Map initial complex root index to an index in a factor where the root belongs. """
index, i = index, 0
for j, (_, factor, k) in enumerate(complexes):
if index < i + k:
poly, index = factor, 0
for _, factor, _ in complexes[:j]:
if factor == poly:
index += 1
index += len(_reals_cache[poly])
return poly, index
else:
i += k
@classmethod
def _count_roots(cls, roots):
"""Count the number of real or complex roots including multiplicites. """
return sum([ k for _, _, k in roots ])
@classmethod
def _indexed_root(cls, poly, index):
"""Get a root of a composite polynomial by index. """
(_, factors) = poly.factor_list()
reals = cls._get_reals(factors)
reals_count = cls._count_roots(reals)
if index < reals_count:
reals = cls._reals_sorted(reals)
return cls._reals_index(reals, index)
else:
complexes = cls._get_complexes(factors)
complexes = cls._complexes_sorted(complexes)
return cls._complexes_index(complexes, index-reals_count)
@classmethod
def _real_roots(cls, poly):
"""Get real roots of a composite polynomial. """
(_, factors) = poly.factor_list()
reals = cls._get_reals(factors)
reals = cls._reals_sorted(reals)
reals_count = cls._count_roots(reals)
roots = []
for index in xrange(0, reals_count):
roots.append(cls._reals_index(reals, index))
return roots
@classmethod
def _all_roots(cls, poly):
"""Get real and complex roots of a composite polynomial. """
(_, factors) = poly.factor_list()
reals = cls._get_reals(factors)
reals = cls._reals_sorted(reals)
reals_count = cls._count_roots(reals)
roots = []
for index in xrange(0, reals_count):
roots.append(cls._reals_index(reals, index))
complexes = cls._get_complexes(factors)
complexes = cls._complexes_sorted(complexes)
complexes_count = cls._count_roots(complexes)
for index in xrange(0, complexes_count):
roots.append(cls._complexes_index(complexes, index))
return roots
@classmethod
def _roots_trivial(cls, poly, radicals):
"""Compute roots in linear, quadratic and binomial cases. """
if poly.degree() == 1:
return roots_linear(poly)
if not radicals:
return None
if radicals and poly.degree() == 2:
return roots_quadratic(poly)
elif radicals and poly.length() == 2 and poly.TC():
return roots_binomial(poly)
else:
return None
@classmethod
def _preprocess_roots(cls, poly):
"""Take heroic measures to make ``poly`` compatible with ``RootOf``. """
dom = poly.get_domain()
if not dom.is_Exact:
poly = poly.to_exact()
coeff, poly = preprocess_roots(poly)
dom = poly.get_domain()
if not dom.is_ZZ:
raise NotImplementedError("RootOf is not supported over %s" % dom)
return coeff, poly
@classmethod
def _postprocess_root(cls, root, radicals):
"""Return the root if it is trivial or a ``RootOf`` object. """
poly, index = root
roots = cls._roots_trivial(poly, radicals)
if roots is not None:
return roots[index]
else:
return cls._new(poly, index)
@classmethod
def _get_roots(cls, method, poly, radicals):
"""Return postprocessed roots of specified kind. """
if not poly.is_univariate:
raise PolynomialError("only univariate polynomials are allowed")
coeff, poly = cls._preprocess_roots(poly)
roots = []
for root in getattr(cls, method)(poly):
roots.append(coeff*cls._postprocess_root(root, radicals))
return roots
def _get_interval(self):
"""Internal function for retrieving isolation interval from cache. """
if self.is_real:
return _reals_cache[self.poly][self.index]
else:
reals_count = len(_reals_cache[self.poly])
return _complexes_cache[self.poly][self.index - reals_count]
def _set_interval(self, interval):
"""Internal function for updating isolation interval in cache. """
if self.is_real:
_reals_cache[self.poly][self.index] = interval
else:
reals_count = len(_reals_cache[self.poly])
_complexes_cache[self.poly][self.index - reals_count] = interval
def _eval_evalf(self, prec):
"""Evaluate this complex root to the given precision. """
_prec, mp.prec = mp.prec, prec
try:
func = lambdify(self.poly.gen, self.expr)
interval = self._get_interval()
refined = False
while True:
if self.is_real:
x0 = mpf(str(interval.center))
else:
x0 = mpc(*map(str, interval.center))
try:
root = findroot(func, x0)
except ValueError:
interval = interval.refine()
refined = True
continue
else:
if refined:
self._set_interval(interval)
break
finally:
mp.prec = _prec
return Float._new(root.real._mpf_, prec) + I*Float._new(root.imag._mpf_, prec)
class RootSum(Expr):
"""Represents a sum of all roots of a univariate polynomial. """
__slots__ = ['poly', 'fun', 'auto']
def __new__(cls, expr, func=None, x=None, auto=True, quadratic=False):
"""Construct a new ``RootSum`` instance carrying all roots of a polynomial. """
coeff, poly = cls._transform(expr, x)
if not poly.is_univariate:
raise MultivariatePolynomialError("only univariate polynomials are allowed")
if func is None:
func = Lambda(poly.gen, poly.gen)
else:
try:
is_func = func.is_Function
except AttributeError:
is_func = False
if is_func and (func.nargs == 1 or 1 in func.nargs):
if not isinstance(func, Lambda):
func = Lambda(poly.gen, func(poly.gen))
else:
raise ValueError("expected a univariate function, got %s" % func)
var, expr = func.variables[0], func.expr
if coeff is not S.One:
expr = expr.subs(var, coeff*var)
deg = poly.degree()
if not expr.has(var):
return deg*expr
if expr.is_Add:
add_const, expr = expr.as_independent(var)
else:
add_const = S.Zero
if expr.is_Mul:
mul_const, expr = expr.as_independent(var)
else:
mul_const = S.One
func = Lambda(var, expr)
rational = cls._is_func_rational(poly, func)
(_, factors), terms = poly.factor_list(), []
for poly, k in factors:
if poly.is_linear:
term = func(roots_linear(poly)[0])
elif quadratic and poly.is_quadratic:
term = sum(map(func, roots_quadratic(poly)))
else:
if not rational or not auto:
term = cls._new(poly, func, auto)
else:
term = cls._rational_case(poly, func)
terms.append(k*term)
return mul_const*Add(*terms) + deg*add_const
@classmethod
def _new(cls, poly, func, auto=True):
"""Construct new raw ``RootSum`` instance. """
obj = Expr.__new__(cls)
obj.poly = poly
obj.fun = func
obj.auto = auto
return obj
@classmethod
def new(cls, poly, func, auto=True):
"""Construct new ``RootSum`` instance. """
if not func.expr.has(*func.variables):
return func.expr
rational = cls._is_func_rational(poly, func)
if not rational or not auto:
return cls._new(poly, func, auto)
else:
return cls._rational_case(poly, func)
@classmethod
def _transform(cls, expr, x):
"""Transform an expression to a polynomial. """
poly = PurePoly(expr, x, greedy=False)
return preprocess_roots(poly)
@classmethod
def _is_func_rational(cls, poly, func):
"""Check if a lambda is areational function. """
var, expr = func.variables[0], func.expr
return expr.is_rational_function(var)
@classmethod
def _rational_case(cls, poly, func):
"""Handle the rational function case. """
roots = symbols('r:%d' % poly.degree())
var, expr = func.variables[0], func.expr
f = sum(expr.subs(var, r) for r in roots)
p, q = together(f).as_numer_denom()
domain = QQ[roots]
p = p.expand()
q = q.expand()
try:
p = Poly(p, domain=domain, expand=False)
except GeneratorsNeeded:
p, p_coeff = None, (p,)
else:
p_monom, p_coeff = zip(*p.terms())
try:
q = Poly(q, domain=domain, expand=False)
except GeneratorsNeeded:
q, q_coeff = None, (q,)
else:
q_monom, q_coeff = zip(*q.terms())
coeffs, mapping = symmetrize(p_coeff + q_coeff, formal=True)
formulas, values = viete(poly, roots), []
for (sym, _), (_, val) in zip(mapping, formulas):
values.append((sym, val))
for i, (coeff, _) in enumerate(coeffs):
coeffs[i] = coeff.subs(values)
n = len(p_coeff)
p_coeff = coeffs[:n]
q_coeff = coeffs[n:]
if p is not None:
p = Poly(dict(zip(p_monom, p_coeff)), *p.gens).as_expr()
else:
(p,) = p_coeff
if q is not None:
q = Poly(dict(zip(q_monom, q_coeff)), *q.gens).as_expr()
else:
(q,) = q_coeff
return factor(p/q)
def _hashable_content(self):
return (self.poly, self.fun)
@property
def expr(self):
return self.poly.as_expr()
@property
def args(self):
return (self.expr, self.fun, self.poly.gen)
@property
def free_symbols(self):
return self.poly.free_symbols | self.fun.free_symbols
@property
def is_commutative(self):
return True
def doit(self, **hints):
if hints.get('roots', True):
return Add(*map(self.fun, self.poly.all_roots()))
else:
return self
def _eval_derivative(self, x):
var, expr = self.fun.args
func = Lambda(var, expr.diff(x))
return self.new(self.poly, func, self.auto)
|