This file is indexed.

/usr/share/pyshared/sympy/polys/polyroots.py is in python-sympy 0.7.1.rc1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
"""Algorithms for computing symbolic roots of polynomials. """

from sympy.core.symbol import Dummy
from sympy.core.add import Add
from sympy.core.mul import Mul
from sympy.core import S, I, Basic
from sympy.core.sympify import sympify
from sympy.core.numbers import Rational, igcd

from sympy.ntheory import divisors, isprime, nextprime
from sympy.functions import exp, sqrt, re, im

from sympy.polys.polytools import Poly, cancel, factor, gcd_list
from sympy.polys.specialpolys import cyclotomic_poly
from sympy.polys.polyerrors import PolynomialError, GeneratorsNeeded, DomainError

from sympy.simplify import simplify
from sympy.utilities import default_sort_key

from sympy.core.compatibility import reduce

import math

def roots_linear(f):
    """Returns a list of roots of a linear polynomial."""
    r = -f.nth(0)/f.nth(1)
    dom = f.get_domain()

    if not dom.is_Numerical:
        if dom.is_Composite:
            r = factor(r)
        else:
            r = simplify(r)

    return [r]

def roots_quadratic(f):
    """Returns a list of roots of a quadratic polynomial."""
    a, b, c = f.all_coeffs()
    dom = f.get_domain()

    def _simplify(expr):
        if dom.is_Composite:
            return factor(expr)
        else:
            return simplify(expr)

    if c is S.Zero:
        r0, r1 = S.Zero, -b/a

        if not dom.is_Numerical:
            r1 = _simplify(r1)
    elif b is S.Zero:
        r = -c/a

        if not dom.is_Numerical:
            R = sqrt(_simplify(r))
        else:
            R = sqrt(r)

        r0 =  R
        r1 = -R
    else:
        d = b**2 - 4*a*c

        if dom.is_Numerical:
            D = sqrt(d)

            r0 = (-b + D) / (2*a)
            r1 = (-b - D) / (2*a)
        else:
            D = sqrt(_simplify(d))
            A = 2*a

            E = _simplify(-b/A)
            F = D/A

            r0 = E + F
            r1 = E - F

    return sorted([r0, r1], key=default_sort_key)

def roots_cubic(f):
    """Returns a list of roots of a cubic polynomial."""
    _, a, b, c = f.monic().all_coeffs()

    if c is S.Zero:
        x1, x2 = roots([1,a,b], multiple = True)
        return [x1, S.Zero, x2]

    p = b - a**2/3
    q = c - a*b/3 + 2*a**3/27

    pon3 = p/3
    aon3 = a/3

    if p is S.Zero:
        if q is S.Zero:
            return [-aon3]*3
        else:
            u1 = q**Rational(1, 3)
    elif q is S.Zero:
        y1, y2 = roots([1, 0, p], multiple=True)
        return [tmp - aon3 for tmp in [y1, S.Zero, y2]]
    else:
        u1 = (q/2 + sqrt(q**2/4 + pon3**3))**Rational(1, 3)

    coeff = S.ImaginaryUnit*sqrt(3)/2

    u2 = u1*(-S.Half + coeff)
    u3 = u1*(-S.Half - coeff)

    soln = [
        -u1 + pon3/u1 - aon3,
        -u2 + pon3/u2 - aon3,
        -u3 + pon3/u3 - aon3
    ]

    return soln

def roots_quartic(f):
    r"""
    Returns a list of roots of a quartic polynomial.

    There are many references for solving quartic expressions available [1-5].
    This reviewer has found that many of them require one to select from among
    2 or more possible sets of solutions and that some solutions work when one
    is searching for real roots but don't work when searching for complex roots
    (though this is not always stated clearly). The following routine has been
    tested and found to be correct for 0, 2 or 4 complex roots.

    The quasisymmetric case solution [6] looks for quartics that have the form
    `x**4 + A*x**3 + B*x**2 + C*x + D = 0` where `(C/A)**2 = D`.

    Although there is a general solution, simpler results can be obtained for
    certain values of the coefficients. In all cases, 4 roots are returned:

      1) `f = c + a*(a**2/8 - b/2) == 0`
      2) `g = d - a*(a*(3*a**2/256 - b/16) + c/4) = 0`
      3) if `f != 0` and `g != 0` and `p = -d + a*c/4 - b**2/12` then
        a) `p == 0`
        b) `p != 0`

    **Examples**

        >>> from sympy import Poly, symbols, I
        >>> from sympy.polys.polyroots import roots_quartic

        >>> r = roots_quartic(Poly('x**4-6*x**3+17*x**2-26*x+20'))

        >>> # 4 complex roots: 1+-I*sqrt(3), 2+-I
        >>> sorted(str(tmp.evalf(n=2)) for tmp in r)
        ['1.0 + 1.7*I', '1.0 - 1.7*I', '2.0 + 1.0*I', '2.0 - 1.0*I']

    **References**

    1. http://mathforum.org/dr.math/faq/faq.cubic.equations.html
    2. http://en.wikipedia.org/wiki/Quartic_function#Summary_of_Ferrari.27s_method
    3. http://planetmath.org/encyclopedia/GaloisTheoreticDerivationOfTheQuarticFormula.html
    4. http://staff.bath.ac.uk/masjhd/JHD-CA.pdf
    5. http://www.albmath.org/files/Math_5713.pdf
    6. http://www.statemaster.com/encyclopedia/Quartic-equation

    """
    _, a, b, c, d = f.monic().all_coeffs()

    if not d:
        return [S.Zero] + roots([1, a, b, c], multiple=True)
    elif (c/a)**2 == d:
        x, m = f.gen, c/a

        g = Poly(x**2 + a*x + b - 2*m, x)

        z1, z2 = roots_quadratic(g)

        h1 = Poly(x**2 - z1*x + m, x)
        h2 = Poly(x**2 - z2*x + m, x)

        r1 = roots_quadratic(h1)
        r2 = roots_quadratic(h2)

        return r1 + r2
    else:
        a2 = a**2
        e = b - 3*a2/8
        f = c + a*(a2/8 - b/2)
        g = d - a*(a*(3*a2/256 - b/16) + c/4)
        aon4 = a/4
        ans = []

        if f is S.Zero:
            y1, y2 = [tmp**S.Half for tmp in
                      roots([1, e, g], multiple = True)]
            return [tmp - aon4 for tmp in [-y1, -y2, y1, y2]]
        if g is S.Zero:
            y = [S.Zero] + roots([1, 0, e, f], multiple = True)
            return [tmp - aon4 for tmp in y]
        else:
            p = -e**2/12 - g
            q = -e**3/108 + e*g/3 - f**2/8
            TH = Rational(1, 3)
            if p is S.Zero:
                y = -5*e/6 - q**TH
            else:
                # with p !=0 then u below is not 0
                root = sqrt(q**2/4 + p**3/27)
                r = -q/2 + root # or -q/2 - root
                u = r**TH # primary root of solve(x**3-r, x)
                y = -5*e/6 + u - p/u/3
            w = sqrt(e + 2*y)
            arg1 = 3*e + 2*y
            arg2 = 2*f/w
            for s in [-1, 1]:
                root = sqrt(-(arg1 + s*arg2))
                for t in [-1, 1]:
                    ans.append((s*w - t*root)/2 - aon4)

    return ans

def roots_binomial(f):
    """Returns a list of roots of a binomial polynomial."""
    n = f.degree()

    a, b = f.nth(n), f.nth(0)
    alpha = (-cancel(b/a))**Rational(1, n)

    if alpha.is_number:
        alpha = alpha.expand(complex=True)

    roots, I = [], S.ImaginaryUnit

    for k in xrange(n):
        zeta = exp(2*k*S.Pi*I/n).expand(complex=True)
        roots.append((alpha*zeta).expand(power_base=False))

    return sorted(roots, key=default_sort_key)

def _inv_totient_estimate(m):
    """
    Find ``(L, U)`` such that ``L <= phi^-1(m) <= U``.

    **Examples**

    >>> from sympy.polys.polyroots import _inv_totient_estimate

    >>> _inv_totient_estimate(192)
    (192, 840)
    >>> _inv_totient_estimate(400)
    (400, 1750)

    """
    primes = [ d + 1 for d in divisors(m) if isprime(d + 1) ]

    a, b = 1, 1

    for p in primes:
        a *= p
        b *= p - 1

    L = m
    U = int(math.ceil(m*(float(a)/b)))

    P = p = 2
    primes = []

    while P <= U:
        p = nextprime(p)
        primes.append(p)
        P *= p

    P //= p
    b = 1

    for p in primes[:-1]:
        b *= p - 1

    U = int(math.ceil(m*(float(P)/b)))

    return L, U

def roots_cyclotomic(f, factor=False):
    """Compute roots of cyclotomic polynomials. """
    L, U = _inv_totient_estimate(f.degree())

    for n in xrange(L, U+1):
        g = cyclotomic_poly(n, f.gen, polys=True)

        if f == g:
            break
    else: # pragma: no cover
        raise RuntimeError("failed to find index of a cyclotomic polynomial")

    roots = []

    if not factor:
        for k in xrange(1, n+1):
            if igcd(k, n) == 1:
                roots.append(exp(2*k*S.Pi*I/n).expand(complex=True))
    else:
        g = Poly(f, extension=(-1)**Rational(1, n))

        for h, _ in g.factor_list()[1]:
            roots.append(-h.TC())

    return sorted(roots, key=default_sort_key)

def roots_rational(f):
    """Returns a list of rational roots of a polynomial."""
    domain = f.get_domain()

    if domain.is_QQ:
        _, f = f.clear_denoms()
    elif domain.is_ZZ:
        f = f.set_domain('QQ')
    else:
        return []

    LC_divs = divisors(int(f.LC()))
    EC_divs = divisors(int(f.EC()))

    if not f.eval(S.Zero):
        zeros = [S.Zero]
    else:
        zeros = []

    for p in LC_divs:
        for q in EC_divs:
            zero = Rational(p, q)

            if not f.eval(zero):
                zeros.append(zero)

            if not f.eval(-zero):
                zeros.append(-zero)

    return sorted(zeros, key=default_sort_key)

def _integer_basis(poly):
    """Compute coefficient basis for a polynomial over integers. """
    monoms, coeffs = zip(*poly.terms())

    monoms, = zip(*monoms)
    coeffs = map(abs, coeffs)

    if coeffs[0] < coeffs[-1]:
        coeffs = list(reversed(coeffs))
    else:
        return None

    monoms = monoms[:-1]
    coeffs = coeffs[:-1]

    divs = reversed(divisors(gcd_list(coeffs))[1:])

    try:
        div = divs.next()
    except StopIteration:
        return None

    while True:
        for monom, coeff in zip(monoms, coeffs):
            if coeff % div**monom != 0:
                try:
                    div = divs.next()
                except StopIteration:
                    return None
                else:
                    break
        else:
            return div

def preprocess_roots(poly):
    """Try to get rid of symbolic coefficients from ``poly``. """
    coeff = S.One

    try:
        _, poly = poly.clear_denoms(convert=True)
    except DomainError:
        return coeff, poly

    poly = poly.primitive()[1]
    poly = poly.retract()

    if poly.get_domain().is_Poly and all(c.is_monomial for c in poly.rep.coeffs()):
        poly = poly.inject()

        strips = zip(*poly.monoms())
        gens = list(poly.gens[1:])

        base, strips = strips[0], strips[1:]

        for gen, strip in zip(list(gens), strips):
            reverse = False

            if strip[0] < strip[-1]:
                strip = reversed(strip)
                reverse = True

            ratio = None

            for a, b in zip(base, strip):
                if not a and not b:
                    continue
                elif not a or not b:
                    break
                elif b % a != 0:
                    break
                else:
                    _ratio = b // a

                    if ratio is None:
                        ratio = _ratio
                    elif ratio != _ratio:
                        break
            else:
                if reverse:
                    ratio = -ratio

                poly = poly.eval(gen, 1)
                coeff *= gen**(-ratio)
                gens.remove(gen)

        if gens:
            poly = poly.eject(*gens)

    if poly.is_univariate and poly.get_domain().is_ZZ:
        basis = _integer_basis(poly)

        if basis is not None:
            n = poly.degree()

            def func(k, coeff):
                return coeff//basis**(n-k[0])

            poly = poly.termwise(func)
            coeff *= basis

    return coeff, poly

def roots(f, *gens, **flags):
    """
    Computes symbolic roots of a univariate polynomial.

    Given a univariate polynomial f with symbolic coefficients (or
    a list of the polynomial's coefficients), returns a dictionary
    with its roots and their multiplicities.

    Only roots expressible via radicals will be returned.  To get
    a complete set of roots use RootOf class or numerical methods
    instead. By default cubic and quartic formulas are used in
    the algorithm. To disable them because of unreadable output
    set ``cubics=False`` or ``quartics=False`` respectively.

    To get roots from a specific domain set the ``filter`` flag with
    one of the following specifiers: Z, Q, R, I, C. By default all
    roots are returned (this is equivalent to setting ``filter='C'``).

    By default a dictionary is returned giving a compact result in
    case of multiple roots.  However to get a tuple containing all
    those roots set the ``multiple`` flag to True.

    **Examples**

    >>> from sympy import Poly, roots
    >>> from sympy.abc import x, y

    >>> roots(x**2 - 1, x)
    {-1: 1, 1: 1}

    >>> p = Poly(x**2-1, x)
    >>> roots(p)
    {-1: 1, 1: 1}

    >>> p = Poly(x**2-y, x, y)

    >>> roots(Poly(p, x))
    {-y**(1/2): 1, y**(1/2): 1}

    >>> roots(x**2 - y, x)
    {-y**(1/2): 1, y**(1/2): 1}

    >>> roots([1, 0, -1])
    {-1: 1, 1: 1}

    """
    flags = dict(flags)

    auto = flags.pop('auto', True)
    cubics = flags.pop('cubics', True)
    quartics = flags.pop('quartics', True)
    multiple = flags.pop('multiple', False)
    filter = flags.pop('filter', None)
    predicate = flags.pop('predicate', None)

    if isinstance(f, list):
        if gens:
            raise ValueError('redundant generators given')

        x = Dummy('x')

        poly, i = {}, len(f)-1

        for coeff in f:
            poly[i], i = sympify(coeff), i-1

        f = Poly(poly, x, field=True)
    else:
        try:
            f = Poly(f, *gens, **flags)
        except GeneratorsNeeded:
            if multiple:
                return []
            else:
                return {}

        if f.is_multivariate:
            raise PolynomialError('multivariate polynomials are not supported')

    def _update_dict(result, root, k):
        if root in result:
            result[root] += k
        else:
            result[root] = k

    def _try_decompose(f):
        """Find roots using functional decomposition. """
        factors, roots = f.decompose(), []

        for root in _try_heuristics(factors[0]):
            roots.append(root)

        for factor in factors[1:]:
            previous, roots = list(roots), []

            for root in previous:
                g = factor - Poly(root, f.gen)

                for root in _try_heuristics(g):
                    roots.append(root)

        return roots

    def _try_heuristics(f):
        """Find roots using formulas and some tricks. """
        if f.is_ground:
            return []
        if f.is_monomial:
            return [S(0)]*f.degree()

        if f.length() == 2:
            if f.degree() == 1:
                return map(cancel, roots_linear(f))
            else:
                return roots_binomial(f)

        result = []

        for i in [-1, 1]:
            if not f.eval(i):
                f = f.quo(Poly(f.gen - i, f.gen))
                result.append(i)
                break

        n = f.degree()

        if n == 1:
            result += map(cancel, roots_linear(f))
        elif n == 2:
            result += map(cancel, roots_quadratic(f))
        elif f.is_cyclotomic:
            result += roots_cyclotomic(f)
        elif n == 3 and cubics:
            result += roots_cubic(f)
        elif n == 4 and quartics:
            result += roots_quartic(f)

        return result

    (k,), f = f.terms_gcd()

    if not k:
        zeros = {}
    else:
        zeros = {S(0) : k}

    coeff, f = preprocess_roots(f)

    if auto and f.get_domain().has_Ring:
        f = f.to_field()

    result = {}

    if not f.is_ground:
        if not f.get_domain().is_Exact:
            for r in f.nroots():
                _update_dict(result, r, 1)
        elif f.degree() == 1:
            result[roots_linear(f)[0]] = 1
        elif f.degree() == 2:
            for r in roots_quadratic(f):
                _update_dict(result, r, 1)
        elif f.length() == 2:
            for r in roots_binomial(f):
                _update_dict(result, r, 1)
        else:
            _, factors = Poly(f.as_expr()).factor_list()

            if len(factors) == 1 and factors[0][1] == 1:
                for root in _try_decompose(f):
                    _update_dict(result, root, 1)
            else:
                for factor, k in factors:
                    for r in _try_heuristics(Poly(factor, f.gen, field=True)):
                        _update_dict(result, r, k)

    if coeff is not S.One:
        _result, result, = result, {}

        for root, k in _result.iteritems():
            result[coeff*root] = k

    result.update(zeros)

    if filter not in [None, 'C']:
        handlers = {
            'Z' : lambda r: r.is_Integer,
            'Q' : lambda r: r.is_Rational,
            'R' : lambda r: r.is_real,
            'I' : lambda r: r.is_imaginary,
        }

        try:
            query = handlers[filter]
        except KeyError:
            raise ValueError("Invalid filter: %s" % filter)

        for zero in dict(result).iterkeys():
            if not query(zero):
                del result[zero]

    if predicate is not None:
        for zero in dict(result).iterkeys():
            if not predicate(zero):
                del result[zero]

    if not multiple:
        return result
    else:
        zeros = []

        for zero, k in result.iteritems():
            zeros.extend([zero]*k)

        return sorted(zeros, key=default_sort_key)

def root_factors(f, *gens, **args):
    """
    Returns all factors of a univariate polynomial.

    **Examples**

    >>> from sympy.abc import x, y
    >>> from sympy.polys.polyroots import root_factors

    >>> root_factors(x**2-y, x)
    [x - y**(1/2), x + y**(1/2)]

    """
    args = dict(args)
    filter = args.pop('filter', None)

    F = Poly(f, *gens, **args)

    if not F.is_Poly:
        return [f]

    if F.is_multivariate:
        raise ValueError('multivariate polynomials not supported')

    x = F.gens[0]

    zeros = roots(F, filter=filter)

    if not zeros:
        factors = [F]
    else:
        factors, N = [], 0

        for r, n in zeros.iteritems():
            factors, N = factors + [Poly(x-r, x)]*n, N + n

        if N < F.degree():
            G = reduce(lambda p,q: p*q, factors)
            factors.append(F.quo(G))

    if not isinstance(f, Poly):
        return [ f.as_expr() for f in factors ]
    else:
        return factors