This file is indexed.

/usr/share/pyshared/sympy/polys/partfrac.py is in python-sympy 0.7.1.rc1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
"""Algorithms for partial fraction decomposition of rational functions. """

from sympy.polys import Poly, RootSum, cancel, factor
from sympy.polys.polytools import parallel_poly_from_expr

from sympy.core import S, Add, sympify, Symbol, Function, Lambda, Dummy
from sympy.utilities import numbered_symbols, take, threaded

@threaded
def apart(f, x=None, full=False):
    """
    Compute partial fraction decomposition of a rational function.

    Given a rational function ``f`` compute partial fraction decomposition
    of ``f``. Two algorithms are available: one is based on undetermined
    coefficients method and the other is Bronstein's full partial fraction
    decomposition algorithm.

    **Examples**

    >>> from sympy.polys.partfrac import apart
    >>> from sympy.abc import x, y

    >>> apart(y/(x + 2)/(x + 1), x)
    -y/(x + 2) + y/(x + 1)

    """
    f = sympify(f)

    if f.is_Atom:
        return f
    else:
        P, Q = f.as_numer_denom()

    (P, Q), opt = parallel_poly_from_expr((P, Q), x)

    if P.is_multivariate:
        raise NotImplementedError("multivariate partial fraction decomposition")

    common, P, Q = P.cancel(Q)

    poly, P = P.div(Q, auto=True)
    P, Q = P.rat_clear_denoms(Q)

    if Q.degree() <= 1:
        partial = P/Q
    else:
        if not full:
            partial = apart_undetermined_coeffs(P, Q)
        else:
            partial = apart_full_decomposition(P, Q)

    terms = S.Zero

    for term in Add.make_args(partial):
        terms += factor(term)

    return common*(poly.as_expr() + terms)

def apart_undetermined_coeffs(P, Q):
    """Partial fractions via method of undetermined coefficients. """
    X = numbered_symbols(cls=Dummy)
    partial, symbols = [], []

    _, factors = Q.factor_list()

    for f, k in factors:
        n, q = f.degree(), Q

        for i in xrange(1, k+1):
            coeffs, q = take(X, n), q.quo(f)
            partial.append((coeffs, q, f, i))
            symbols.extend(coeffs)

    dom = Q.get_domain().inject(*symbols)
    F = Poly(0, Q.gen, domain=dom)

    for i, (coeffs, q, f, k) in enumerate(partial):
        h = Poly(coeffs, Q.gen, domain=dom)
        partial[i] = (h, f, k)
        q = q.set_domain(dom)
        F += h*q

    system, result = [], S(0)

    for (k,), coeff in F.terms():
        system.append(coeff - P.nth(k))

    from sympy.solvers import solve
    solution = solve(system, symbols)

    for h, f, k in partial:
        h = h.as_expr().subs(solution)
        result += h/f.as_expr()**k

    return result

def apart_full_decomposition(P, Q):
    """
    Bronstein's full partial fraction decomposition algorithm.

    Given a univariate rational function ``f``, performing only GCD
    operations over the algebraic closure of the initial ground domain
    of definition, compute full partial fraction decomposition with
    fractions having linear denominators.

    Note that no factorization of the initial denominator of ``f`` is
    performed. The final decomposition is formed in terms of a sum of
    :class:`RootSum` instances.

    **References**

    1. [Bronstein93]_

    """
    f, x, U = P/Q, P.gen, []

    u = Function('u')(x)
    a = Dummy('a')

    partial = S(0)

    for d, n in Q.sqf_list_include(all=True):
        b = d.as_expr()
        U += [ u.diff(x, n-1) ]

        h = cancel(f*b**n) / u**n

        H, subs = [h], []

        for j in range(1, n):
            H += [ H[-1].diff(x) / j ]

        for j in range(1, n+1):
            subs += [ (U[j-1], b.diff(x, j) / j) ]

        for j in range(0, n):
            P, Q = cancel(H[j]).as_numer_denom()

            for i in range(0, j+1):
                P = P.subs(*subs[j-i])

            Q = Q.subs(*subs[0])

            P = Poly(P, x)
            Q = Poly(Q, x)

            G = P.gcd(d)
            D = d.quo(G)

            B, g = Q.half_gcdex(D)
            b = (P * B.quo(g)).rem(D)

            numer = b.as_expr()
            denom = (x-a)**(n-j)

            expr = numer.subs(x, a) / denom

            partial += RootSum(D, Lambda(a, expr))

    return partial