This file is indexed.

/usr/share/pyshared/sympy/polys/monomialtools.py is in python-sympy 0.7.1.rc1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
"""Tools and arithmetics for monomials of distributed polynomials. """

from sympy.core.mul import Mul
from sympy.core.singleton import S
from sympy.core.basic import C

from sympy.polys.polyerrors import ExactQuotientFailed

from sympy.utilities import cythonized

from sympy.core.compatibility import cmp

def monomials(variables, degree):
    r"""
    Generate a set of monomials of the given total degree or less.

    Given a set of variables `V` and a total degree `N` generate
    a set of monomials of degree at most `N`. The total number of
    monomials is huge and is given by the following formula:

    .. math::

        \frac{(\#V + N)!}{\#V! N!}

    For example if we would like to generate a dense polynomial of
    a total degree `N = 50` in 5 variables, assuming that exponents
    and all of coefficients are 32-bit long and stored in an array we
    would need almost 80 GiB of memory! Fortunately most polynomials,
    that we will encounter, are sparse.

    **Examples**

    Consider monomials in variables `x` and `y`::

        >>> from sympy import monomials
        >>> from sympy.abc import x, y

        >>> sorted(monomials([x, y], 2))
        [1, x, y, x**2, y**2, x*y]

        >>> sorted(monomials([x, y], 3))
        [1, x, y, x**2, x**3, y**2, y**3, x*y, x*y**2, x**2*y]

    """
    if not variables:
        return set([S.One])
    else:
        x, tail = variables[0], variables[1:]

        monoms = monomials(tail, degree)

        for i in range(1, degree+1):
            monoms |= set([ x**i * m for m in monomials(tail, degree-i) ])

        return monoms

def monomial_count(V, N):
    r"""
    Computes the number of monomials.

    The number of monomials is given by the following formula:

    .. math::

        \frac{(\#V + N)!}{\#V! N!}

    where `N` is a total degree and `V` is a set of variables.

    **Examples**

    >>> from sympy import monomials, monomial_count
    >>> from sympy.abc import x, y

    >>> monomial_count(2, 2)
    6

    >>> M = monomials([x, y], 2)

    >>> sorted(M)
    [1, x, y, x**2, y**2, x*y]
    >>> len(M)
    6

    """
    return C.factorial(V + N) / C.factorial(V) / C.factorial(N)

def monomial_lex_key(monom):
    """Key function for sorting monomials in lexicographic order. """
    return monom

def monomial_grlex_key(monom):
    """Key function for sorting monomials in graded lexicographic order. """
    return (sum(monom), monom)

def monomial_grevlex_key(monom):
    """Key function for sorting monomials in reversed graded lexicographic order. """
    return (sum(monom), tuple(reversed(monom)))

_monomial_key = {
    'lex'     : monomial_lex_key,
    'grlex'   : monomial_grlex_key,
    'grevlex' : monomial_grevlex_key,
}

def monomial_key(order=None):
    """
    Return a function defining admissible order on monomials.

    The result of a call to :func:`monomial_key` is a function which should
    be used as a key to :func:`sorted` built-in function, to provide order
    in a set of monomials of the same length.

    Currently supported monomial orderings are:

    1. lex       - lexicographic order (default)
    2. grlex     - graded lexicographic order
    3. grevlex   - reversed graded lexicographic order

    If the input argument is not a string but has ``__call__`` attribute,
    then it will pass through with an assumption that the callable object
    defines an admissible order on monomials.

    """
    if order is None:
        return _monomial_key['lex']

    if isinstance(order, str):
        try:
            return _monomial_key[order]
        except KeyError:
            raise ValueError("supported monomial orderings are 'lex', 'grlex' and 'grevlex', got %r" % order)
    elif hasattr(order, '__call__'):
        return order
    else:
        raise ValueError("monomial ordering specification must be a string or a callable, got %s" % order)

def monomial_lex_cmp(a, b):
    return cmp(a, b)

def monomial_grlex_cmp(a, b):
    return cmp(sum(a), sum(b)) or cmp(a, b)

def monomial_grevlex_cmp(a, b):
    return cmp(sum(a), sum(b)) or cmp(tuple(reversed(b)), tuple(reversed(a)))

_monomial_order = {
    'lex'     : monomial_lex_cmp,
    'grlex'   : monomial_grlex_cmp,
    'grevlex' : monomial_grevlex_cmp,
}

def monomial_cmp(order):
    """
    Returns a function defining admissible order on monomials.

    Currently supported orderings are:

    1. lex       - lexicographic order
    2. grlex     - graded lexicographic order
    3. grevlex   - reversed graded lexicographic order

    """
    try:
        return _monomial_order[order]
    except KeyError:
        raise ValueError("expected valid monomial order, got %s" % order)

@cythonized("a,b")
def monomial_mul(A, B):
    """
    Multiplication of tuples representing monomials.

    Lets multiply `x**3*y**4*z` with `x*y**2`::

        >>> from sympy.polys.monomialtools import monomial_mul

        >>> monomial_mul((3, 4, 1), (1, 2, 0))
        (4, 6, 1)

    which gives `x**4*y**5*z`.

    """
    return tuple([ a + b for a, b in zip(A, B) ])

@cythonized("a,b,c")
def monomial_div(A, B):
    """
    Division of tuples representing monomials.

    Lets divide `x**3*y**4*z` by `x*y**2`::

        >>> from sympy.polys.monomialtools import monomial_div

        >>> monomial_div((3, 4, 1), (1, 2, 0))
        (2, 2, 1)

    which gives `x**2*y**2*z`. However::

        >>> monomial_div((3, 4, 1), (1, 2, 2)) is None
        True

    `x*y**2*z**2` does not divide `x**3*y**4*z`.

    """
    C = [ a - b for a, b in zip(A, B) ]

    if all([ c >= 0 for c in C ]):
        return tuple(C)
    else:
        return None

@cythonized("a,b")
def monomial_gcd(A, B):
    """
    Greatest common divisor of tuples representing monomials.

    Lets compute GCD of `x**3*y**4*z` and `x*y**2`::

        >>> from sympy.polys.monomialtools import monomial_gcd

        >>> monomial_gcd((3, 4, 1), (1, 2, 0))
        (1, 2, 0)

    which gives `x*y**2`.

    """
    return tuple([ min(a, b) for a, b in zip(A, B) ])

@cythonized("a,b")
def monomial_lcm(A, B):
    """
    Least common multiple of tuples representing monomials.

    Lets compute LCM of `x**3*y**4*z` and `x*y**2`::

        >>> from sympy.polys.monomialtools import monomial_lcm

        >>> monomial_lcm((3, 4, 1), (1, 2, 0))
        (3, 4, 1)

    which gives `x**3*y**4*z`.

    """
    return tuple([ max(a, b) for a, b in zip(A, B) ])

@cythonized("i,n")
def monomial_max(*monoms):
    """
    Returns maximal degree for each variable in a set of monomials.

    Consider monomials `x**3*y**4*z**5`, `y**5*z` and `x**6*y**3*z**9`.
    We wish to find out what is the maximal degree for each of `x`, `y`
    and `z` variables::

        >>> from sympy.polys.monomialtools import monomial_max

        >>> monomial_max((3,4,5), (0,5,1), (6,3,9))
        (6, 5, 9)

    """
    M = list(monoms[0])

    for N in monoms[1:]:
        for i, n in enumerate(N):
            M[i] = max(M[i], n)

    return tuple(M)

@cythonized("i,n")
def monomial_min(*monoms):
    """
    Returns minimal degree for each variable in a set of monomials.

    Consider monomials `x**3*y**4*z**5`, `y**5*z` and `x**6*y**3*z**9`.
    We wish to find out what is the minimal degree for each of `x`, `y`
    and `z` variables::

        >>> from sympy.polys.monomialtools import monomial_min

        >>> monomial_min((3,4,5), (0,5,1), (6,3,9))
        (0, 3, 1)

    """
    M = list(monoms[0])

    for N in monoms[1:]:
        for i, n in enumerate(N):
            M[i] = min(M[i], n)

    return tuple(M)

class Monomial(object):
    """Class representing a monomial, i.e. a product of powers. """

    __slots__ = ['data']

    def __init__(self, *data):
        self.data = tuple(map(int, data))

    def __hash__(self):
        return hash((self.__class__.__name__, self.data))

    def __repr__(self):
        return "Monomial(%s)" % ", ".join(map(str, self.data))

    def as_expr(self, *gens):
        """Convert a monomial instance to a SymPy expression. """
        return Mul(*[ gen**exp for gen, exp in zip(gens, self.data) ])

    def __eq__(self, other):
        if isinstance(other, Monomial):
            return self.data == other.data
        else:
            return False

    def __ne__(self, other):
        return not self.__eq__(other)

    def __mul__(self, other):
        if isinstance(other, Monomial):
            return Monomial(*monomial_mul(self.data, other.data))
        else:
            raise TypeError("an instance of Monomial class expected, got %s" % other)

    def __pow__(self, other):
        n = int(other)

        if not n:
            return Monomial(*((0,)*len(self.data)))
        elif n > 0:
            data = self.data

            for i in xrange(1, n):
                data = monomial_mul(data, self.data)

            return Monomial(*data)
        else:
            raise ValueError("a non-negative integer expected, got %s" % other)

    def __div__(self, other):
        if isinstance(other, Monomial):
            result = monomial_div(self.data, other.data)

            if result is not None:
                return Monomial(*result)
            else:
                raise ExactQuotientFailed(self, other)
        else:
            raise TypeError("an instance of Monomial class expected, got %s" % other)

    __floordiv__ = __truediv__ = __div__

    def gcd(self, other):
        """Greatest common divisor of monomials. """
        if isinstance(other, Monomial):
            return Monomial(*monomial_gcd(self.data, other.data))
        else:
            raise TypeError("an instance of Monomial class expected, got %s" % other)

    def lcm(self, other):
        """Least common multiple of monomials. """
        if isinstance(other, Monomial):
            return Monomial(*monomial_lcm(self.data, other.data))
        else:
            raise TypeError("an instance of Monomial class expected, got %s" % other)

    @classmethod
    def max(cls, *monomials):
        """Returns maximal degree for each variable in a set of monomials. """
        return Monomial(*monomial_max(*[ monomial.data for monomial in monomials ]))

    @classmethod
    def min(cls, *monomials):
        """Returns minimal degree for each variable in a set of monomials. """
        return Monomial(*monomial_min(*[ monomial.data for monomial in monomials ]))