This file is indexed.

/usr/share/pyshared/sympy/physics/hydrogen.py is in python-sympy 0.7.1.rc1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
from sympy import factorial, sqrt, exp, S, laguerre_l, Float

def R_nl(n, l, r, Z=1):
    """
    Returns the Hydrogen radial wavefunction R_{nl}.

    n, l .... quantum numbers 'n' and 'l'
    r    .... radial coordinate
    Z    .... atomic number (1 for Hydrogen, 2 for Helium, ...)

    Everything is in Hartree atomic units.

    Examples::

    >>> from sympy.physics.hydrogen import R_nl
    >>> from sympy import var
    >>> var("r Z")
    (r, Z)
    >>> R_nl(1, 0, r, Z)
    2*(Z**3)**(1/2)*exp(-Z*r)
    >>> R_nl(2, 0, r, Z)
    2**(1/2)*(-Z*r + 2)*(Z**3)**(1/2)*exp(-Z*r/2)/4
    >>> R_nl(2, 1, r, Z)
    6**(1/2)*Z*r*(Z**3)**(1/2)*exp(-Z*r/2)/12

    For Hydrogen atom, you can just use the default value of Z=1::

    >>> R_nl(1, 0, r)
    2*exp(-r)
    >>> R_nl(2, 0, r)
    2**(1/2)*(-r + 2)*exp(-r/2)/4
    >>> R_nl(3, 0, r)
    2*3**(1/2)*(2*r**2/9 - 2*r + 3)*exp(-r/3)/27

    For Silver atom, you would use Z=47::

    >>> R_nl(1, 0, r, Z=47)
    94*47**(1/2)*exp(-47*r)
    >>> R_nl(2, 0, r, Z=47)
    47*94**(1/2)*(-47*r + 2)*exp(-47*r/2)/4
    >>> R_nl(3, 0, r, Z=47)
    94*141**(1/2)*(4418*r**2/9 - 94*r + 3)*exp(-47*r/3)/27

    The normalization of the radial wavefunction is::

    >>> from sympy import integrate, oo
    >>> integrate(R_nl(1, 0, r)**2 * r**2, (r, 0, oo))
    1
    >>> integrate(R_nl(2, 0, r)**2 * r**2, (r, 0, oo))
    1
    >>> integrate(R_nl(2, 1, r)**2 * r**2, (r, 0, oo))
    1

    It holds for any atomic number:

    >>> integrate(R_nl(1, 0, r, Z=2)**2 * r**2, (r, 0, oo))
    1
    >>> integrate(R_nl(2, 0, r, Z=3)**2 * r**2, (r, 0, oo))
    1
    >>> integrate(R_nl(2, 1, r, Z=4)**2 * r**2, (r, 0, oo))
    1

    """
    # sympify arguments
    n, l, r, Z = S(n), S(l), S(r), S(Z)
    # radial quantum number
    n_r = n - l - 1
    # rescaled "r"
    a = 1/Z # Bohr radius
    r0 = 2 * r / (n * a)
    # normalization coefficient
    C =  sqrt((S(2)/(n*a))**3 * factorial(n_r) / (2*n*factorial(n+l)))
    # This is an equivalent normalization coefficient, that can be found in
    # some books. Both coefficients seem to be the same fast:
    # C =  S(2)/n**2 * sqrt(1/a**3 * factorial(n_r) / (factorial(n+l)))
    return  C * r0**l * laguerre_l(n_r, 2*l+1, r0).expand() * exp(-r0/2)

def E_nl(n, Z=1):
    """
    Returns the energy of the state (n, l) in Hartree atomic units.

    The energy doesn't depend on "l".

    Examples::

    >>> from sympy import var
    >>> from sympy.physics.hydrogen import E_nl
    >>> var("n Z")
    (n, Z)
    >>> E_nl(n, Z)
    -Z**2/(2*n**2)
    >>> E_nl(1)
    -1/2
    >>> E_nl(2)
    -1/8
    >>> E_nl(3)
    -1/18
    >>> E_nl(3, 47)
    -2209/18

    """
    n, Z = S(n), S(Z)
    if n.is_integer and (n < 1):
        raise ValueError("'n' must be positive integer")
    return -Z**2/(2*n**2)

def E_nl_dirac(n, l, spin_up=True, Z=1, c=Float("137.035999037")):
    """
    Returns the relativistic energy of the state (n, l, spin) in Hartree atomic
    units.

    The energy is calculated from the Dirac equation. The rest mass energy is
    *not* included.

    n, l ...... quantum numbers 'n' and 'l'
    spin_up ... True if the electron spin is up (default), otherwise down
    Z    ...... atomic number (1 for Hydrogen, 2 for Helium, ...)
    c    ...... speed of light in atomic units. Default value is 137.035999037,
                taken from: http://arxiv.org/abs/1012.3627

    Examples::

    >>> from sympy.physics.hydrogen import E_nl_dirac
    >>> E_nl_dirac(1, 0)
    -0.500006656595360

    >>> E_nl_dirac(2, 0)
    -0.125002080189006
    >>> E_nl_dirac(2, 1)
    -0.125000416024704
    >>> E_nl_dirac(2, 1, False)
    -0.125002080189006

    >>> E_nl_dirac(3, 0)
    -0.0555562951740285
    >>> E_nl_dirac(3, 1)
    -0.0555558020932949
    >>> E_nl_dirac(3, 1, False)
    -0.0555562951740285
    >>> E_nl_dirac(3, 2)
    -0.0555556377366884
    >>> E_nl_dirac(3, 2, False)
    -0.0555558020932949


    """
    if not (l >= 0):
        raise ValueError("'l' must be positive or zero")
    if not (n > l):
        raise ValueError("'n' must be greater than 'l'")
    if (l==0 and spin_up is False):
        raise ValueError("Spin must be up for l==0.")
    # skappa is sign*kappa, where sign contains the correct sign
    if spin_up:
        skappa = -l - 1
    else:
        skappa = -l
    c = S(c)
    beta = sqrt(skappa**2 - Z**2/c**2)
    return c**2/sqrt(1+Z**2/(n + skappa + beta)**2/c**2) - c**2