This file is indexed.

/usr/share/pyshared/sympy/matrices/matrices.py is in python-sympy 0.7.1.rc1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
from sympy import Basic, Symbol, Integer, C, S, Dummy, Rational, Add, Pow
from sympy.core.numbers import Zero
from sympy.core.sympify import sympify, converter, SympifyError
from sympy.core.compatibility import is_sequence

from sympy.polys import Poly, roots, cancel
from sympy.simplify import simplify as sympy_simplify
from sympy.utilities.iterables import flatten
from sympy.functions.elementary.miscellaneous import sqrt, Max, Min
from sympy.functions.elementary.complexes import re, Abs
from sympy.printing import sstr

from sympy.core.compatibility import callable, reduce

import random

class MatrixError(Exception):
    pass

class ShapeError(ValueError, MatrixError):
    """Wrong matrix shape"""
    pass

class NonSquareMatrixError(ShapeError):
    pass

def _dims_to_nm(dims):
    """Converts dimensions tuple (or any object with length 1 or 2) or scalar
    in dims to matrix dimensions n and m."""

    try:
        l = len(dims)
    except TypeError:
        dims = (dims,)
        l = 1

    # This will work for nd-array too when they are added to sympy.
    for dim in dims:
        if dim < 0:
            raise ValueError("Matrix dimensions should be non-negative integers.")

    if l == 2:
        n, m = map(int, dims)
    elif l == 1:
        n = m = int(dims[0])
    else:
        raise ValueError("Matrix dimensions should be a two-element tuple of ints or a single int!")

    return n, m

def _iszero(x):
    """Returns True if x is zero."""
    return x.is_zero


class DeferredVector(object):
    def __init__(self,name):
        self.name=name

    def __getitem__(self,i):
        component_name = '%s[%d]'%(self.name,i)
        return Symbol(component_name)

    def __str__(self):
        return sstr(self)

    def __repr__(self):
        return sstr(self)


class Matrix(object):

    # Added just for numpy compatibility
    # TODO: investigate about __array_priority__
    __array_priority__ = 10.0

    def __init__(self, *args):
        """
        Matrix can be constructed with values or a rule.

        >>> from sympy import Matrix, I
        >>> Matrix( ((1,2+I), (3,4)) ) #doctest:+NORMALIZE_WHITESPACE
        [1, 2 + I]
        [3,     4]
        >>> Matrix(2, 2, lambda i,j: (i+1)*j ) #doctest:+NORMALIZE_WHITESPACE
        [0, 1]
        [0, 2]

        """
        if len(args) == 3 and callable(args[2]):
            operation = args[2]
            self.rows = int(args[0])
            self.cols = int(args[1])
            self.mat = []
            for i in range(self.rows):
                for j in range(self.cols):
                    self.mat.append(sympify(operation(i, j)))
        elif len(args)==3 and is_sequence(args[2]):
            self.rows=args[0]
            self.cols=args[1]
            mat = args[2]
            if len(mat) != len(self):
                raise ValueError('List length should be equal to rows*columns')
            self.mat = map(lambda i: sympify(i), mat)
        elif len(args) == 1:
            mat = args[0]
            if isinstance(mat, Matrix):
                self.rows = mat.rows
                self.cols = mat.cols
                self.mat = mat[:]
                return
            elif hasattr(mat, "__array__"):
                # NumPy array or matrix or some other object that implements
                # __array__. So let's first use this method to get a
                # numpy.array() and then make a python list out of it.
                arr = mat.__array__()
                if len(arr.shape) == 2:
                    self.rows, self.cols = arr.shape[0], arr.shape[1]
                    self.mat = map(lambda i: sympify(i), arr.ravel())
                    return
                elif len(arr.shape) == 1:
                    self.rows, self.cols = 1, arr.shape[0]
                    self.mat = [0]*self.cols
                    for i in xrange(len(arr)):
                        self.mat[i] = sympify(arr[i])
                    return
                else:
                    raise NotImplementedError("Sympy supports just 1D and 2D matrices")
            elif not is_sequence(mat, include=Matrix):
                raise TypeError("Matrix constructor doesn't accept %s as input" % str(type(mat)))
            mat = []
            for row in args[0]:
                if isinstance(row, Matrix):
                    mat.extend(row.tolist())
                else:
                    mat.append(row)
            self.rows = len(mat)
            if len(mat) != 0:
                if not is_sequence(mat[0]):
                    self.cols = 1
                    self.mat = map(lambda i: sympify(i), mat)
                    return
                self.cols = len(mat[0])
            else:
                self.cols = 0
            self.mat = []
            for j in xrange(self.rows):
                if len(mat[j]) != self.cols:
                    raise ValueError("Input %s inconsistant to form a Matrix." %
                        args)
                for i in xrange(self.cols):
                    self.mat.append(sympify(mat[j][i]))
        elif len(args) == 0:
            # Empty Matrix
            self.rows = self.cols = 0
            self.mat = []
        else:
            raise TypeError("Data type not understood")

    def key2ij(self,key):
        """Converts key=(4,6) to 4,6 and ensures the key is correct."""
        if not (is_sequence(key) and len(key) == 2):
            raise TypeError("wrong syntax: a[%s]. Use a[i,j] or a[(i,j)]"
                    %repr(key))
        i,j=key
        if not (i>=0 and i<self.rows and j>=0 and j < self.cols):
            print self.rows, " ", self.cols
            raise IndexError("Index out of range: a[%s]"%repr(key))
        return i,j

    def transpose(self):
        """
        Matrix transposition.

        >>> from sympy import Matrix, I
        >>> m=Matrix(((1,2+I),(3,4)))
        >>> m  #doctest: +NORMALIZE_WHITESPACE
        [1, 2 + I]
        [3,     4]
        >>> m.transpose() #doctest: +NORMALIZE_WHITESPACE
        [    1, 3]
        [2 + I, 4]
        >>> m.T == m.transpose()
        True

        """
        a = [0]*len(self)
        for i in xrange(self.cols):
            a[i*self.rows:(i+1)*self.rows] = self.mat[i::self.cols]
        return Matrix(self.cols,self.rows,a)

    T = property(transpose,None,None,"Matrix transposition.")

    def conjugate(self):
        """By-element conjugation."""
        out = Matrix(self.rows,self.cols,
                lambda i,j: self[i,j].conjugate())
        return out

    C = property(conjugate,None,None,"By-element conjugation.")

    @property
    def H(self):
        """
        Hermite conjugation.

        >>> from sympy import Matrix, I
        >>> m=Matrix(((1,2+I),(3,4)))
        >>> m  #doctest: +NORMALIZE_WHITESPACE
        [1, 2 + I]
        [3,     4]
        >>> m.H #doctest: +NORMALIZE_WHITESPACE
        [    1, 3]
        [2 - I, 4]

        """
        out = self.T.C
        return out

    @property
    def D(self):
        """Dirac conjugation."""
        from sympy.physics.matrices import mgamma
        out = self.H * mgamma(0)
        return out

    def __getitem__(self,key):
        """
        >>> from sympy import Matrix, I
        >>> m=Matrix(((1,2+I),(3,4)))
        >>> m  #doctest: +NORMALIZE_WHITESPACE
        [1, 2 + I]
        [3,     4]
        >>> m[1,0]
        3
        >>> m.H[1,0]
        2 - I

        """
        if type(key) is tuple:
            i, j = key
            if type(i) is slice or type(j) is slice:
                return self.submatrix(key)

            else:
                # a2idx inlined
                if not type(i) is int:
                    try:
                        i = i.__index__()
                    except AttributeError:
                        raise IndexError("Invalid index a[%r]" % (key,))
                # a2idx inlined
                if not type(j) is int:
                    try:
                       j = j.__index__()
                    except AttributeError:
                        raise IndexError("Invalid index a[%r]" % (key,))


                if not (i>=0 and i<self.rows and j>=0 and j < self.cols):
                    raise IndexError("Index out of range: a[%s]" % (key,))
                else:
                    return self.mat[i*self.cols + j]


        else:
            # row-wise decomposition of matrix
            if type(key) is slice:
                return self.mat[key]
            else:
                k = a2idx(key)
                if k is not None:
                    return self.mat[k]
        raise IndexError("Invalid index: a[%s]" % repr(key))

    def __setitem__(self, key, value):
        """
        >>> from sympy import Matrix, I
        >>> m=Matrix(((1,2+I),(3,4)))
        >>> m  #doctest: +NORMALIZE_WHITESPACE
        [1, 2 + I]
        [3,     4]
        >>> m[1,0]=9
        >>> m  #doctest: +NORMALIZE_WHITESPACE
        [1, 2 + I]
        [9,     4]

        """
        if type(key) is tuple:
            i, j = key
            if type(i) is slice or type(j) is slice:
                if isinstance(value, Matrix):
                    self.copyin_matrix(key, value)
                    return
                if is_sequence(value):
                    self.copyin_list(key, value)
                    return
            else:
                # a2idx inlined
                if not type(i) is int:
                    try:
                        i = i.__index__()
                    except AttributeError:
                        raise IndexError("Invalid index a[%r]" % (key,))

                # a2idx inlined
                if not type(j) is int:
                    try:
                        j = j.__index__()
                    except AttributeError:
                        raise IndexError("Invalid index a[%r]" % (key,))


                if not (i>=0 and i<self.rows and j>=0 and j < self.cols):
                    raise IndexError("Index out of range: a[%s]" % (key,))
                else:
                    self.mat[i*self.cols + j] = sympify(value)
                    return

        else:
            # row-wise decomposition of matrix
            if type(key) is slice:
                raise IndexError("Vector slices not implemented yet.")
            else:
                k = a2idx(key)
                if k is not None:
                    self.mat[k] = sympify(value)
                    return
        raise IndexError("Invalid index: a[%s]"%repr(key))

    def __array__(self):
        return matrix2numpy(self)

    def __len__(self):
        """
        Return the number of elements of self.

        Implemented mainly so bool(Matrix()) == False.
        """
        return self.rows * self.cols

    def tolist(self):
        """
        Return the Matrix converted in a python list.

        >>> from sympy import Matrix
        >>> m=Matrix(3, 3, range(9))
        >>> m
        [0, 1, 2]
        [3, 4, 5]
        [6, 7, 8]
        >>> m.tolist()
        [[0, 1, 2], [3, 4, 5], [6, 7, 8]]

        """
        ret = [0]*self.rows
        for i in xrange(self.rows):
            ret[i] = self.mat[i*self.cols:(i+1)*self.cols]
        return ret

    def copyin_matrix(self, key, value):
        rlo, rhi = self.slice2bounds(key[0], self.rows)
        clo, chi = self.slice2bounds(key[1], self.cols)
        if value.rows != rhi - rlo or value.cols != chi - clo:
            raise ShapeError("The Matrix `value` doesn't have the same dimensions " +
                "as the in sub-Matrix given by `key`.")

        for i in range(value.rows):
            for j in range(value.cols):
                self[i+rlo, j+clo] = sympify(value[i,j])

    def copyin_list(self, key, value):
        if not is_sequence(value):
            raise TypeError("`value` must be an ordered iterable, not %s." % type(value))
        self.copyin_matrix(key, Matrix(value))

    def hash(self):
        """Compute a hash every time, because the matrix elements
        could change."""
        return hash(self.__str__() )

    @property
    def shape(self):
        return (self.rows, self.cols)

    def __rmul__(self,a):
        if hasattr(a, "__array__") and a.shape != ():
            return matrix_multiply(a,self)
        out = Matrix(self.rows,self.cols,map(lambda i: a*i,self.mat))
        return out

    def expand(self):
        out = Matrix(self.rows,self.cols,map(lambda i: i.expand(), self.mat))
        return out

    def combine(self):
        out = Matrix(self.rows,self.cols,map(lambda i: i.combine(),self.mat))
        return out

    def subs(self, *args):
        out = Matrix(self.rows,self.cols,map(lambda i: i.subs(*args),self.mat))
        return out

    def __sub__(self,a):
        return self + (-a)

    def __mul__(self,a):
        if hasattr(a, "__array__") and a.shape != ():
            return matrix_multiply(self,a)
        out = Matrix(self.rows,self.cols,map(lambda i: i*a,self.mat))
        return out

    def __pow__(self, num):
        if not self.is_square:
            raise NonSquareMatrixError()
        if isinstance(num, int) or isinstance(num, Integer):
            n = int(num)
            if n < 0:
                return self.inv() ** -n   # A**-2 = (A**-1)**2
            a = eye(self.cols)
            s = self
            while n:
                if n%2:
                    a *= s
                    n -= 1
                s *= s
                n //= 2
            return a
        elif isinstance(num, Rational):
            try:
                P, D = self.diagonalize()
            except MatrixError:
                raise NotImplementedError("Implemented only for diagonalizable matrices")
            for i in range(D.rows):
                D[i, i] = D[i, i]**num
            return P * D * P.inv()
        else:
            raise NotImplementedError("Only integer and rational values are supported")

    def __add__(self,a):
        return matrix_add(self,a)

    def __radd__(self,a):
        return matrix_add(a,self)

    def __div__(self,a):
        return self * (S.One/a)

    def __truediv__(self,a):
        return self.__div__(a)

    def multiply(self,b):
        """Returns self*b """
        return matrix_multiply(self,b)

    def add(self,b):
        """Return self+b """
        return matrix_add(self,b)

    def __neg__(self):
        return -1*self

    def __eq__(self, a):
        if not isinstance(a, (Matrix, Basic)):
            a = sympify(a)
        if isinstance(a, Matrix) and self.shape == a.shape:
            return all(self[i, j] == a[i, j]
                for i in xrange(self.rows)
                for j in xrange(self.cols))
        else:
            return False

    def __ne__(self, a):
        if not isinstance(a, (Matrix, Basic)):
            a = sympify(a)
        if isinstance(a, Matrix) and self.shape == a.shape:
            return any(self[i, j] != a[i, j]
                for i in xrange(self.rows)
                for j in xrange(self.cols))
        else:
            return True

    def __hash__(self):
        return super(Matrix, self).__hash__()

    def _format_str(self, strfunc, rowsep='\n'):
        # Handle zero dimensions:
        if self.rows == 0 or self.cols == 0:
            return '[]'
        # Build table of string representations of the elements
        res = []
        # Track per-column max lengths for pretty alignment
        maxlen = [0] * self.cols
        for i in range(self.rows):
            res.append([])
            for j in range(self.cols):
                string = strfunc(self[i,j])
                res[-1].append(string)
                maxlen[j] = max(len(string), maxlen[j])
        # Patch strings together
        for i, row in enumerate(res):
            for j, elem in enumerate(row):
                # Pad each element up to maxlen so the columns line up
                row[j] = elem.rjust(maxlen[j])
            res[i] = "[" + ", ".join(row) + "]"
        return rowsep.join(res)

    def __str__(self):
        return sstr(self)

    def __repr__(self):
        return sstr(self)

    def cholesky(self):
        """
        Returns the Cholesky Decomposition L of a Matrix A
        such that L * L.T = A

        A must be a square, symmetric, positive-definite
        and non-singular matrix

        >>> from sympy.matrices import Matrix
        >>> A = Matrix(((25,15,-5),(15,18,0),(-5,0,11)))
        >>> A.cholesky()
        [ 5, 0, 0]
        [ 3, 3, 0]
        [-1, 1, 3]
        >>> A.cholesky() * A.cholesky().T
        [25, 15, -5]
        [15, 18,  0]
        [-5,  0, 11]
        """

        if not self.is_square:
            raise NonSquareMatrixError("Matrix must be square.")
        if not self.is_symmetric():
            raise ValueError("Matrix must be symmetric.")
        return self._cholesky()

    def _cholesky(self):
        """
        Helper function of cholesky.
        Without the error checks.
        To be used privately. """
        L = zeros((self.rows, self.rows))
        for i in xrange(self.rows):
            for j in xrange(i):
                L[i, j] = (1 / L[j, j]) * (self[i, j] - sum(L[i, k] * L[j, k]
                    for k in xrange(j)))
            L[i, i] = (self[i, i] - sum(L[i, k] ** 2
                for k in xrange(i))) ** (S(1)/2)
        return L

    def LDLdecomposition(self):
        """
        Returns the LDL Decomposition (L,D) of matrix A,
        such that L * D * L.T == A
        This method eliminates the use of square root.
        Further this ensures that all the diagonal entries of L are 1.
        A must be a square, symmetric, positive-definite
        and non-singular matrix.

        >>> from sympy.matrices import Matrix, eye
        >>> A = Matrix(((25,15,-5),(15,18,0),(-5,0,11)))
        >>> L, D = A.LDLdecomposition()
        >>> L
        [   1,   0, 0]
        [ 3/5,   1, 0]
        [-1/5, 1/3, 1]
        >>> D
        [25, 0, 0]
        [ 0, 9, 0]
        [ 0, 0, 9]
        >>> L * D * L.T * A.inv() == eye(A.rows)
        True

        """
        if not self.is_square:
            raise NonSquareMatrixException("Matrix must be square.")
        if not self.is_symmetric():
            raise ValueError("Matrix must be symmetric.")
        return self._LDLdecomposition()

    def _LDLdecomposition(self):
        """
        Helper function of LDLdecomposition.
        Without the error checks.
        To be used privately.
        """
        D = zeros((self.rows, self.rows))
        L = eye(self.rows)
        for i in xrange(self.rows):
            for j in xrange(i):
                L[i, j] = (1 / D[j, j]) * (self[i, j] - sum(
                    L[i, k] * L[j, k] * D[k, k] for k in xrange(j)))
            D[i, i] = self[i, i] - sum(L[i, k]**2 * D[k, k]
                for k in xrange(i))
        return L, D

    def lower_triangular_solve(self, rhs):
        """
        Solves Ax = B, where A is a lower triangular matrix.

        """

        if not self.is_square:
            raise NonSquareMatrixException("Matrix must be square.")
        if rhs.rows != self.rows:
            raise ShapeError("Matrices size mismatch.")
        if not self.is_lower():
            raise ValueError("Matrix must be lower triangular.")
        return self._lower_triangular_solve(rhs)

    def _lower_triangular_solve(self, rhs):
        """
        Helper function of function lower_triangular_solve.
        Without the error checks.
        To be used privately.
        """
        X = zeros((self.rows, 1))
        for i in xrange(self.rows):
            if self[i, i] == 0:
                raise TypeError("Matrix must be non-singular.")
            X[i, 0] = (rhs[i, 0] - sum(self[i, k] * X[k, 0]
                for k in xrange(i))) / self[i, i]
        return X

    def upper_triangular_solve(self, rhs):
        """
        Solves Ax = B, where A is an upper triangular matrix.

        """
        if not self.is_square:
            raise NonSquareMatrixException("Matrix must be square.")
        if rhs.rows != self.rows:
            raise TypeError("Matrix size mismatch.")
        if not self.is_upper():
            raise TypeError("Matrix is not upper triangular.")
        return self._upper_triangular_solve(rhs)

    def _upper_triangular_solve(self, rhs):
        """
        Helper function of function upper_triangular_solve.
        Without the error checks, to be used privately. """
        X = zeros((self.rows, 1))
        for i in reversed(xrange(self.rows)):
            if self[i, i] == 0:
                raise ValueError("Matrix must be non-singular.")
            X[i, 0] = (rhs[i, 0] - sum(self[i, k] * X[k, 0]
                for k in xrange(i+1, self.rows))) / self[i, i]
        return X

    def cholesky_solve(self, rhs):
        """
        Solves Ax = B using Cholesky decomposition,
        for a general square non-singular matrix.
        For a non-square matrix with rows > cols,
        the least squares solution is returned.

        """
        if self.is_symmetric():
            L = self._cholesky()
        elif self.rows >= self.cols:
            L = (self.T * self)._cholesky()
            rhs = self.T * rhs
        else:
            raise NotImplementedError("Under-determined System.")
        Y = L._lower_triangular_solve(rhs)
        return (L.T)._upper_triangular_solve(Y)

    def diagonal_solve(self, rhs):
        """
        Solves Ax = B efficiently, where A is a diagonal Matrix,
        with non-zero diagonal entries.
        """
        if not self.is_diagonal:
            raise TypeError("Matrix should be diagonal")
        if rhs.rows != self.rows:
            raise TypeError("Size mis-match")
        return self._diagonal_solve(rhs)

    def _diagonal_solve(self, rhs):
        """
        Helper function of function diagonal_solve,
        without the error checks, to be used privately.
        """
        return Matrix(rhs.rows, 1, lambda i, j: rhs[i, 0] / self[i, i])

    def LDLsolve(self, rhs):
        """
        Solves Ax = B using LDL decomposition,
        for a general square and non-singular matrix.

        For a non-square matrix with rows > cols,
        the least squares solution is returned.

        """
        if self.is_symmetric():
            L, D = self.LDLdecomposition()
        elif self.rows >= self.cols:
            L, D = (self.T * self).LDLdecomposition()
            rhs = self.T * rhs
        else:
            raise NotImplementedError("Under-determined System.")
        Y = L._lower_triangular_solve(rhs)
        Z = D._diagonal_solve(Y)
        return (L.T)._upper_triangular_solve(Z)

    def inv(self, method="GE", iszerofunc=_iszero, try_block_diag=False):
        """
        Calculates the matrix inverse.

        According to the "method" parameter, it calls the appropriate method:

          GE .... inverse_GE()
          LU .... inverse_LU()
          ADJ ... inverse_ADJ()

        According to the "try_block_diag" parameter, it will try to form block
        diagonal matrices using the method get_diag_blocks(), invert these
        individually, and then reconstruct the full inverse matrix.

        Note, the GE and LU methods may require the matrix to be simplified
        before it is inverted in order to properly detect zeros during
        pivoting. In difficult cases a custom zero detection function can
        be provided by setting the iszerosfunc argument to a function that
        should return True if its argument is zero.

        """
        if not self.is_square:
            raise NonSquareMatrixError()
        if try_block_diag:
            blocks = self.get_diag_blocks()
            r = []
            for block in blocks:
                r.append(block.inv(method=method, iszerofunc=iszerofunc))
            return diag(*r)
        if method == "GE":
            return self.inverse_GE(iszerofunc=iszerofunc)
        elif method == "LU":
            return self.inverse_LU(iszerofunc=iszerofunc)
        elif method == "ADJ":
            return self.inverse_ADJ()
        else:
            raise ValueError("Inversion method unrecognized")


    def __mathml__(self):
        mml = ""
        for i in range(self.rows):
            mml += "<matrixrow>"
            for j in range(self.cols):
                mml += self[i,j].__mathml__()
            mml += "</matrixrow>"
        return "<matrix>" + mml + "</matrix>"

    def row(self, i, f):
        """
        Elementary row operation using functor

        >>> from sympy import ones
        >>> I = ones(3)
        >>> I.row(1,lambda i,j: i*3)
        >>> I
        [1, 1, 1]
        [3, 3, 3]
        [1, 1, 1]

        """
        for j in range(0, self.cols):
            self[i, j] = f(self[i, j], j)

    def col(self, j, f):
        """
        Elementary column operation using functor

        >>> from sympy import ones
        >>> I = ones(3)
        >>> I.col(0,lambda i,j: i*3)
        >>> I
        [3, 1, 1]
        [3, 1, 1]
        [3, 1, 1]

        """
        for i in range(0, self.rows):
            self[i, j] = f(self[i, j], i)

    def row_swap(self, i, j):
        for k in range(0, self.cols):
            self[i, k], self[j, k] = self[j, k], self[i, k]

    def col_swap(self, i, j):
        for k in range(0, self.rows):
            self[k, i], self[k, j] = self[k, j], self[k, i]

    def row_del(self, i):
        self.mat = self.mat[:i*self.cols] + self.mat[(i+1)*self.cols:]
        self.rows -= 1

    def col_del(self, i):
        """
        >>> import sympy
        >>> M = sympy.matrices.eye(3)
        >>> M.col_del(1)
        >>> M   #doctest: +NORMALIZE_WHITESPACE
        [1, 0]
        [0, 0]
        [0, 1]

        """
        for j in range(self.rows-1, -1, -1):
            del self.mat[i+j*self.cols]
        self.cols -= 1

    def row_join(self, rhs):
        """
        Concatenates two matrices along self's last and rhs's first column

        >>> from sympy import Matrix
        >>> M = Matrix(3,3,lambda i,j: i+j)
        >>> V = Matrix(3,1,lambda i,j: 3+i+j)
        >>> M.row_join(V)
        [0, 1, 2, 3]
        [1, 2, 3, 4]
        [2, 3, 4, 5]

        """
        if self.rows != rhs.rows:
            raise ShapeError("`self` and `rhs` must have the same number of rows.")

        newmat = self.zeros((self.rows, self.cols + rhs.cols))
        newmat[:,:self.cols] = self[:,:]
        newmat[:,self.cols:] = rhs
        return newmat

    def col_join(self, bott):
        """
        Concatenates two matrices along self's last and bott's first row

        >>> from sympy import Matrix
        >>> M = Matrix(3,3,lambda i,j: i+j)
        >>> V = Matrix(1,3,lambda i,j: 3+i+j)
        >>> M.col_join(V)
        [0, 1, 2]
        [1, 2, 3]
        [2, 3, 4]
        [3, 4, 5]

        """
        if self.cols != bott.cols:
            raise ShapeError("`self` and `bott` must have the same number of columns.")

        newmat = self.zeros((self.rows+bott.rows, self.cols))
        newmat[:self.rows,:] = self[:,:]
        newmat[self.rows:,:] = bott
        return newmat

    def row_insert(self, pos, mti):
        """
        >>> from sympy import Matrix, zeros
        >>> M = Matrix(3,3,lambda i,j: i+j)
        >>> M
        [0, 1, 2]
        [1, 2, 3]
        [2, 3, 4]
        >>> V = zeros((1, 3))
        >>> V
        [0, 0, 0]
        >>> M.row_insert(1,V)
        [0, 1, 2]
        [0, 0, 0]
        [1, 2, 3]
        [2, 3, 4]

        """
        if pos is 0:
            return mti.col_join(self)

        if self.cols != mti.cols:
            raise ShapeError("`self` and `mti` must have the same number of columns.")

        newmat = self.zeros((self.rows + mti.rows, self.cols))
        newmat[:pos,:] = self[:pos,:]
        newmat[pos:pos+mti.rows,:] = mti[:,:]
        newmat[pos+mti.rows:,:] = self[pos:,:]
        return newmat

    def col_insert(self, pos, mti):
        """
        >>> from sympy import Matrix, zeros
        >>> M = Matrix(3,3,lambda i,j: i+j)
        >>> M
        [0, 1, 2]
        [1, 2, 3]
        [2, 3, 4]
        >>> V = zeros((3, 1))
        >>> V
        [0]
        [0]
        [0]
        >>> M.col_insert(1,V)
        [0, 0, 1, 2]
        [1, 0, 2, 3]
        [2, 0, 3, 4]

        """
        if pos is 0:
            return mti.row_join(self)

        if self.rows != mti.rows:
            raise ShapeError("self and mti must have the same number of rows.")

        newmat = self.zeros((self.rows, self.cols + mti.cols))
        newmat[:,:pos] = self[:,:pos]
        newmat[:,pos:pos+mti.cols] = mti[:,:]
        newmat[:,pos+mti.cols:] = self[:,pos:]
        return newmat

    def trace(self):
        if not self.is_square:
            raise NonSquareMatrixError()

        trace = 0
        for i in range(self.cols):
            trace += self[i,i]
        return trace

    def submatrix(self, keys):
        """
        >>> from sympy import Matrix
        >>> m = Matrix(4,4,lambda i,j: i+j)
        >>> m   #doctest: +NORMALIZE_WHITESPACE
        [0, 1, 2, 3]
        [1, 2, 3, 4]
        [2, 3, 4, 5]
        [3, 4, 5, 6]
        >>> m[0:1, 1]   #doctest: +NORMALIZE_WHITESPACE
        [1]
        >>> m[0:2, 0:1] #doctest: +NORMALIZE_WHITESPACE
        [0]
        [1]
        >>> m[2:4, 2:4] #doctest: +NORMALIZE_WHITESPACE
        [4, 5]
        [5, 6]

        """
        if not isinstance(keys[0], slice) and not isinstance(keys[1], slice):
            raise TypeError("At least one element of `keys` must be a slice object.")

        rlo, rhi = self.slice2bounds(keys[0], self.rows)
        clo, chi = self.slice2bounds(keys[1], self.cols)
        if not ( 0<=rlo<=rhi and 0<=clo<=chi ):
            raise IndexError("Slice indices out of range: a[%s]"%repr(keys))
        outLines, outCols = rhi-rlo, chi-clo
        outMat = [0]*outLines*outCols
        for i in xrange(outLines):
            outMat[i*outCols:(i+1)*outCols] = self.mat[(i+rlo)*self.cols+clo:(i+rlo)*self.cols+chi]
        return Matrix(outLines,outCols,outMat)

    def extract(self, rowsList, colsList):
        """
        Extract a submatrix by specifying a list of rows and columns

        Examples:

        >>> from sympy import Matrix
        >>> m = Matrix(4, 3, lambda i, j: i*3 + j)
        >>> m   #doctest: +NORMALIZE_WHITESPACE
        [0,  1,  2]
        [3,  4,  5]
        [6,  7,  8]
        [9, 10, 11]
        >>> m.extract([0,1,3],[0,1])   #doctest: +NORMALIZE_WHITESPACE
        [0,  1]
        [3,  4]
        [9, 10]

        See also: .submatrix()
        """
        cols = self.cols
        rows = self.rows
        mat = self.mat
        if not all(i < rows for i in rowsList):
            raise IndexError("Row indices out of range")
        if not all(j < cols for j in colsList):
            raise IndexError("Column indices out of range")
        return Matrix(len(rowsList), len(colsList), lambda i,j: mat[rowsList[i]*cols + colsList[j]])

    def slice2bounds(self, key, defmax):
        """
            Takes slice or number and returns (min,max) for iteration
            Takes a default maxval to deal with the slice ':' which is (none, none)
        """
        if isinstance(key, slice):
            lo, hi = 0, defmax
            if key.start is not None:
                if key.start >= 0:
                    lo = key.start
                else:
                    lo = defmax+key.start
            if key.stop is not None:
                if key.stop >= 0:
                    hi = key.stop
                else:
                    hi = defmax+key.stop
            return lo, hi
        elif isinstance(key, int):
            if key >= 0:
                return key, key+1
            else:
                return defmax+key, defmax+key+1
        else:
            raise IndexError("Improper index type")

    def applyfunc(self, f):
        """
        >>> from sympy import Matrix
        >>> m = Matrix(2,2,lambda i,j: i*2+j)
        >>> m   #doctest: +NORMALIZE_WHITESPACE
        [0, 1]
        [2, 3]
        >>> m.applyfunc(lambda i: 2*i)  #doctest: +NORMALIZE_WHITESPACE
        [0, 2]
        [4, 6]

        """
        if not callable(f):
            raise TypeError("`f` must be callable.")

        out = Matrix(self.rows,self.cols,map(f,self.mat))
        return out

    def evalf(self, prec=None, **options):
        if prec is None:
            return self.applyfunc(lambda i: i.evalf(**options))
        else:
            return self.applyfunc(lambda i: i.evalf(prec, **options))

    def reshape(self, _rows, _cols):
        """
        >>> from sympy import Matrix
        >>> m = Matrix(2,3,lambda i,j: 1)
        >>> m   #doctest: +NORMALIZE_WHITESPACE
        [1, 1, 1]
        [1, 1, 1]
        >>> m.reshape(1,6)  #doctest: +NORMALIZE_WHITESPACE
        [1, 1, 1, 1, 1, 1]
        >>> m.reshape(3,2)  #doctest: +NORMALIZE_WHITESPACE
        [1, 1]
        [1, 1]
        [1, 1]

        """
        if len(self) != _rows*_cols:
            print "Invalid reshape parameters %d %d" % (_rows, _cols)
        return Matrix(_rows, _cols, lambda i,j: self.mat[i*_cols + j])

    def print_nonzero (self, symb="X"):
        """
        Shows location of non-zero entries for fast shape lookup ::

            >>> from sympy import Matrix, matrices
            >>> m = Matrix(2,3,lambda i,j: i*3+j)
            >>> m           #doctest: +NORMALIZE_WHITESPACE
            [0, 1, 2]
            [3, 4, 5]
            >>> m.print_nonzero()   #doctest: +NORMALIZE_WHITESPACE
            [ XX]
            [XXX]
            >>> m = matrices.eye(4)
            >>> m.print_nonzero("x")    #doctest: +NORMALIZE_WHITESPACE
            [x   ]
            [ x  ]
            [  x ]
            [   x]

        """
        s = ""
        for i in range(self.rows):
            s += "["
            for j in range(self.cols):
                if self[i,j] == 0:
                    s += " "
                else:
                    s += symb + ""
            s += "]\n"
        print s

    def LUsolve(self, rhs, iszerofunc=_iszero):
        """
        Solve the linear system Ax = b for x.
        self is the coefficient matrix A and rhs is the right side b.

        This is for symbolic matrices, for real or complex ones use
        sympy.mpmath.lu_solve or sympy.mpmath.qr_solve.

        """
        if rhs.rows != self.rows:
            raise ShapeError("`self` and `rhs` must have the same number of rows.")

        A, perm = self.LUdecomposition_Simple(iszerofunc=_iszero)
        n = self.rows
        b = rhs.permuteFwd(perm)
        # forward substitution, all diag entries are scaled to 1
        for i in range(n):
            for j in range(i):
                b.row(i, lambda x,k: x - b[j,k]*A[i,j])
        # backward substitution
        for i in range(n-1,-1,-1):
            for j in range(i+1, n):
                b.row(i, lambda x,k: x - b[j,k]*A[i,j])
            b.row(i, lambda x,k: x / A[i,i])
        return b

    def LUdecomposition(self, iszerofunc=_iszero):
        """
        Returns the decomposition LU and the row swaps p.

        Example:

        >>> from sympy import Matrix
        >>> a = Matrix([[4, 3], [6, 3]])
        >>> L, U, _ = a.LUdecomposition()
        >>> L
        [  1, 0]
        [3/2, 1]
        >>> U
        [4,    3]
        [0, -3/2]

        """
        combined, p = self.LUdecomposition_Simple(iszerofunc=_iszero)
        L = self.zeros(self.rows)
        U = self.zeros(self.rows)
        for i in range(self.rows):
            for j in range(self.rows):
                if i > j:
                    L[i,j] = combined[i,j]
                else:
                    if i == j:
                        L[i,i] = 1
                    U[i,j] = combined[i,j]
        return L, U, p

    def LUdecomposition_Simple(self, iszerofunc=_iszero):
        """
        Returns A comprised of L,U (L's diag entries are 1) and
        p which is the list of the row swaps (in order).
        """
        if not self.is_square:
            raise NonSquareMatrixError()
        n = self.rows
        A = self[:,:]
        p = []
        # factorization
        for j in range(n):
            for i in range(j):
                for k in range(i):
                    A[i,j] = A[i,j] - A[i,k]*A[k,j]
            pivot = -1
            for i in range(j,n):
                for k in range(j):
                    A[i,j] = A[i,j] - A[i,k]*A[k,j]
                # find the first non-zero pivot, includes any expression
                if pivot == -1 and not iszerofunc(A[i,j]):
                    pivot = i
            if pivot < 0:
                # this result is based on iszerofunc's analysis of the possible pivots, so even though
                # the element may not be strictly zero, the supplied iszerofunc's evaluation gave True
                raise ValueError("No nonzero pivot found; inversion failed.")
            if pivot != j: # row must be swapped
                A.row_swap(pivot,j)
                p.append([pivot,j])
            scale = 1 / A[j,j]
            for i in range(j+1,n):
                A[i,j] = A[i,j] * scale
        return A, p


    def LUdecompositionFF(self):
        """
        Compute a fraction-free LU decomposition.

        Returns 4 matrices P, L, D, U such that PA = L D**-1 U.
        If the elements of the matrix belong to some integral domain I, then all
        elements of L, D and U are guaranteed to belong to I.

        **Reference**
            - W. Zhou & D.J. Jeffrey, "Fraction-free matrix factors: new forms
              for LU and QR factors". Frontiers in Computer Science in China,
              Vol 2, no. 1, pp. 67-80, 2008.
        """
        n, m = self.rows, self.cols
        U, L, P = self[:,:], eye(n), eye(n)
        DD = zeros(n) # store it smarter since it's just diagonal
        oldpivot = 1

        for k in range(n-1):
            if U[k,k] == 0:
                for kpivot in range(k+1, n):
                    if U[kpivot, k] != 0:
                        break
                else:
                    raise ValueError("Matrix is not full rank")
                U[k, k:], U[kpivot, k:] = U[kpivot, k:], U[k, k:]
                L[k, :k], L[kpivot, :k] = L[kpivot, :k], L[k, :k]
                P[k, :], P[kpivot, :] = P[kpivot, :], P[k, :]
            L[k,k] = Ukk = U[k,k]
            DD[k,k] = oldpivot * Ukk
            for i in range(k+1, n):
                L[i,k] = Uik = U[i,k]
                for j in range(k+1, m):
                    U[i,j] = (Ukk * U[i,j] - U[k,j]*Uik) / oldpivot
                U[i,k] = 0
            oldpivot = Ukk
        DD[n-1,n-1] = oldpivot
        return P, L, DD, U

    def cofactorMatrix(self, method="berkowitz"):
        out = Matrix(self.rows, self.cols, lambda i,j:
                self.cofactor(i, j, method))
        return out

    def minorEntry(self, i, j, method="berkowitz"):
        if not 0 <= i < self.rows or not 0 <= j < self.cols:
            raise ValueError("`i` and `j` must satisfy 0 <= i < `self.rows` " +
                "(%d)" % self.rows + "and 0 <= j < `self.cols` (%d)." % self.cols)
        return self.minorMatrix(i,j).det(method)

    def minorMatrix(self, i, j):
        if not 0 <= i < self.rows or not 0 <= j < self.cols:
            raise ValueError("`i` and `j` must satisfy 0 <= i < `self.rows` " +
                "(%d)" % self.rows + "and 0 <= j < `self.cols` (%d)." % self.cols)
        return self.delRowCol(i,j)

    def cofactor(self, i, j, method="berkowitz"):
        if (i+j) % 2 == 0:
            return self.minorEntry(i, j, method)
        else:
            return -1 * self.minorEntry(i, j, method)

    def jacobian(self, X):
        """
        Calculates the Jacobian matrix (derivative of a vectorial function).

        *self*
            A vector of expressions representing functions f_i(x_1, ..., x_n).
        *X*
            The set of x_i's in order, it can be a list or a Matrix

        Both self and X can be a row or a column matrix in any order
        (jacobian() should always work).

        Examples::

            >>> from sympy import sin, cos, Matrix
            >>> from sympy.abc import rho, phi
            >>> X = Matrix([rho*cos(phi), rho*sin(phi), rho**2])
            >>> Y = Matrix([rho, phi])
            >>> X.jacobian(Y)
            [cos(phi), -rho*sin(phi)]
            [sin(phi),  rho*cos(phi)]
            [   2*rho,             0]
            >>> X = Matrix([rho*cos(phi), rho*sin(phi)])
            >>> X.jacobian(Y)
            [cos(phi), -rho*sin(phi)]
            [sin(phi),  rho*cos(phi)]

        """
        if not isinstance(X, Matrix):
            X = Matrix(X)
        # Both X and self can be a row or a column matrix, so we need to make
        # sure all valid combinations work, but everything else fails:
        if self.shape[0] == 1:
            m = self.shape[1]
        elif self.shape[1] == 1:
            m = self.shape[0]
        else:
            raise TypeError("self must be a row or a column matrix")
        if X.shape[0] == 1:
            n = X.shape[1]
        elif X.shape[1] == 1:
            n = X.shape[0]
        else:
            raise TypeError("X must be a row or a column matrix")

        # m is the number of functions and n is the number of variables
        # computing the Jacobian is now easy:
        return Matrix(m, n, lambda j, i: self[j].diff(X[i]))

    def QRdecomposition(self):
        """
        Return Q,R where A = Q*R, Q is orthogonal and R is upper triangular.

        Examples

        This is the example from wikipedia::

        >>> from sympy import Matrix, eye
        >>> A = Matrix([[12,-51,4],[6,167,-68],[-4,24,-41]])
        >>> Q, R = A.QRdecomposition()
        >>> Q
        [ 6/7, -69/175, -58/175]
        [ 3/7, 158/175,   6/175]
        [-2/7,    6/35,  -33/35]
        >>> R
        [14,  21, -14]
        [ 0, 175, -70]
        [ 0,   0,  35]
        >>> A == Q*R
        True

        QR factorization of an identity matrix
        >>> A = Matrix([[1,0,0],[0,1,0],[0,0,1]])
        >>> Q, R = A.QRdecomposition()
        >>> Q
        [1, 0, 0]
        [0, 1, 0]
        [0, 0, 1]
        >>> R
        [1, 0, 0]
        [0, 1, 0]
        [0, 0, 1]

        """

        if not self.rows >= self.cols:
            raise MatrixError("The number of rows must be greater than columns")
        n = self.rows
        m = self.cols
        rank = n
        row_reduced = self.rref()[0]
        for i in range(row_reduced.rows):
            if Matrix(row_reduced[i*m:(i+1)*m]).norm() == 0:
                rank -= 1
        if not rank == self.cols:
            raise MatrixError("The rank of the matrix must match the columns")
        Q, R = self.zeros((n, m)), self.zeros(m)
        for j in range(m):      # for each column vector
            tmp = self[:,j]     # take original v
            for i in range(j):
                # subtract the project of self on new vector
                tmp -= Q[:,i] * self[:,j].dot(Q[:,i])
                tmp.expand()
            # normalize it
            R[j,j] = tmp.norm()
            Q[:,j] = tmp / R[j,j]
            if Q[:,j].norm() != 1:
                raise NotImplementedError("Could not normalize the vector %d." % j)
            for i in range(j):
                R[i,j] = Q[:,i].dot(self[:,j])
        return Q,R

    def QRsolve(self, b):
        """
        Solve the linear system 'Ax = b'.

        'self' is the matrix 'A', the method argument is the vector
        'b'.  The method returns the solution vector 'x'.  If 'b' is a
        matrix, the system is solved for each column of 'b' and the
        return value is a matrix of the same shape as 'b'.

        This method is slower (approximately by a factor of 2) but
        more stable for floating-point arithmetic than the LUsolve method.
        However, LUsolve usually uses an exact arithmetic, so you don't need
        to use QRsolve.

        This is mainly for educational purposes and symbolic matrices, for real
        (or complex) matrices use sympy.mpmath.qr_solve.
        """

        Q, R = self.QRdecomposition()
        y = Q.T * b

        # back substitution to solve R*x = y:
        # We build up the result "backwards" in the vector 'x' and reverse it
        # only in the end.
        x = []
        n = R.rows
        for j in range(n-1, -1, -1):
            tmp = y[j,:]
            for k in range(j+1, n):
                tmp -= R[j,k] * x[n-1-k]
            x.append(tmp/R[j,j])
        return Matrix([row.mat for row in reversed(x)])

    # Utility functions
    def simplify(self, simplify=sympy_simplify, ratio=1.7):
        """Simplify the elements of a matrix in place.

        If (result length)/(input length) > ratio, then input is returned
        unmodified. If 'ratio=oo', then simplify() is applied anyway.

        See also simplify().
        """
        for i in xrange(len(self.mat)):
            self.mat[i] = simplify(self.mat[i], ratio=ratio)

    #def evaluate(self):    # no more eval() so should be removed
    #    for i in range(self.rows):
    #        for j in range(self.cols):
    #            self[i,j] = self[i,j].eval()

    def cross(self, b):
        if not is_sequence(b, include=Matrix):
            raise TypeError("`b` must be an ordered iterable or Matrix, not %s." %
                type(b))
        if not (self.rows == 1 and self.cols == 3 or \
                self.rows == 3 and self.cols == 1 ) and \
                (b.rows == 1 and b.cols == 3 or \
                b.rows == 3 and b.cols == 1):
            raise ShapeError("Dimensions incorrect for cross product.")
        else:
            return Matrix(1,3,((self[1]*b[2] - self[2]*b[1]),
                               (self[2]*b[0] - self[0]*b[2]),
                               (self[0]*b[1] - self[1]*b[0])))

    def dot(self, b):
        if not is_sequence(b, include=Matrix):
            raise TypeError("`b` must be an ordered iterable or Matrix, not %s." %
                type(b))
        m = len(b)
        if len(self) != m:
            raise ShapeError("Dimensions incorrect for dot product.")
        prod = 0
        for i in range(m):
            prod += self[i] * b[i]
        return prod

    def multiply_elementwise(self, b):
        """Return the Hadamard product (elementwise product) of A and B

        >>> import sympy
        >>> A = sympy.Matrix([[0, 1, 2], [3, 4, 5]])
        >>> B = sympy.Matrix([[1, 10, 100], [100, 10, 1]])
        >>> print A.multiply_elementwise(B)
        [  0, 10, 200]
        [300, 40,   5]
        """
        return matrix_multiply_elementwise(self, b)

    def norm(self, ord=None):
        """Return the Norm of a Matrix or Vector.
        In the simplest case this is the geometric size of the vector
        Other norms can be specified by the ord parameter


        =====  ============================  ==========================
        ord    norm for matrices             norm for vectors
        =====  ============================  ==========================
        None   Frobenius norm                2-norm
        'fro'  Frobenius norm                - does not exist
        inf    --                            max(abs(x))
        -inf   --                            min(abs(x))
        1      --                            as below
        -1     --                            as below
        2      2-norm (largest sing. value)  as below
        -2     smallest singular value       as below
        other  - does not exist              sum(abs(x)**ord)**(1./ord)
        =====  ============================  ==========================

        >>> from sympy import Matrix, var, trigsimp, cos, sin
        >>> x = var('x', real=True)
        >>> v = Matrix([cos(x), sin(x)])
        >>> print trigsimp( v.norm() )
        1
        >>> print v.norm(10)
        (sin(x)**10 + cos(x)**10)**(1/10)
        >>> A = Matrix([[1,1], [1,1]])
        >>> print A.norm(2)# Spectral norm (max of |Ax|/|x| under 2-vector-norm)
        2
        >>> print A.norm(-2) # Inverse spectral norm (smallest singular value)
        0
        >>> print A.norm() # Frobenius Norm
        2
        """

        # Row or Column Vector Norms
        if self.rows == 1 or self.cols == 1:
            if ord == 2 or ord == None: # Common case sqrt(<x,x>)
                return Add(*(abs(i)**2 for i in self.mat))**S.Half

            elif ord == 1: # sum(abs(x))
                return Add(*(abs(i) for i in self.mat))

            elif ord == S.Infinity: # max(abs(x))
                return Max(*self.applyfunc(abs))

            elif ord == S.NegativeInfinity: # min(abs(x))
                return Min(*self.applyfunc(abs))

            # Otherwise generalize the 2-norm, Sum(x_i**ord)**(1/ord)
            # Note that while useful this is not mathematically a norm
            try:
                return Pow( Add(*(abs(i)**ord for i in self.mat)), S(1)/ord )
            except:
                raise ValueError("Expected order to be Number, Symbol, oo")

        # Matrix Norms
        else:
            if ord == 2: # Spectral Norm
                # Maximum singular value
                return Max(*self.singular_values())

            elif ord == -2:
                # Minimum singular value
                return Min(*self.singular_values())

            elif (ord == None or isinstance(ord,str) and ord.lower() in
                    ['f', 'fro', 'frobenius', 'vector']):
                # Reshape as vector and send back to norm function
                return self.vec().norm(ord=2)

            else:
                raise NotImplementedError("Matrix Norms under development")

    def normalized(self):
        if self.rows != 1 and self.cols != 1:
            raise ShapeError("A Matrix must be a vector to normalize.")
        norm = self.norm()
        out = self.applyfunc(lambda i: i / norm)
        return out

    def project(self, v):
        """Project onto v."""
        return v * (self.dot(v) / v.dot(v))

    def permuteBkwd(self, perm):
        copy = self[:,:]
        for i in range(len(perm)-1, -1, -1):
            copy.row_swap(perm[i][0], perm[i][1])
        return copy

    def permuteFwd(self, perm):
        copy = self[:,:]
        for i in range(len(perm)):
            copy.row_swap(perm[i][0], perm[i][1])
        return copy

    def delRowCol(self, i, j):
        # used only for cofactors, makes a copy
        M = self[:,:]
        M.row_del(i)
        M.col_del(j)
        return M

    def exp(self):
        """ Returns the exponent of a matrix """
        if not self.is_square:
            raise NonSquareMatrixError("Exponentiation is valid only for square matrices")
        try:
            U, D = self.diagonalize()
        except MatrixError:
            raise NotImplementedError("Exponentiation is implemented only for diagonalizable matrices")
        for i in xrange(0, D.rows):
            D[i, i] = C.exp(D[i, i])
        return U * D * U.inv()

    def zeros(self, dims):
        """Returns a dims = (d1,d2) matrix of zeros."""
        n, m = _dims_to_nm( dims )
        return Matrix(n,m,[S.Zero]*n*m)

    def eye(self, n):
        """Returns the identity matrix of size n."""
        tmp = self.zeros(n)
        for i in range(tmp.rows):
            tmp[i,i] = S.One
        return tmp

    @property
    def is_square(self):
        return self.rows == self.cols

    def is_nilpotent(self):
        """
        Checks if a matrix is nilpotent.

        A matrix B is nilpotent if for some integer k, B**k is
        a zero matrix.

        Example:
            >>> from sympy import Matrix
            >>> a = Matrix([[0,0,0],[1,0,0],[1,1,0]])
            >>> a.is_nilpotent()
            True

            >>> a = Matrix([[1,0,1],[1,0,0],[1,1,0]])
            >>> a.is_nilpotent()
            False
        """
        if not self.is_square:
            raise NonSquareMatrixError("Nilpotency is valid only for square matrices")
        x = Dummy('x')
        if self.charpoly(x).args[0] == x**self.rows:
            return True
        return False

    def is_upper(self):
        """
        Check if matrix is an upper triangular matrix.

        Example:

        >>> from sympy import Matrix
        >>> m = Matrix(2,2,[1, 0, 0, 1])
        >>> m
        [1, 0]
        [0, 1]
        >>> m.is_upper()
        True

        >>> m = Matrix(3,3,[5, 1, 9, 0, 4 , 6, 0, 0, 5])
        >>> m
        [5, 1, 9]
        [0, 4, 6]
        [0, 0, 5]
        >>> m.is_upper()
        True

        >>> m = Matrix(2,3,[4, 2, 5, 6, 1, 1])
        >>> m
        [4, 2, 5]
        [6, 1, 1]
        >>> m.is_upper()
        False

        """
        for i in xrange(1, self.rows):
            for j in xrange(0, i):
                if self[i,j] != 0:
                    return False
        return True

    def is_lower(self):
        """
        Check if matrix is a lower triangular matrix.

        Example:

        >>> from sympy import Matrix
        >>> m = Matrix(2,2,[1, 0, 0, 1])
        >>> m
        [1, 0]
        [0, 1]
        >>> m.is_lower()
        True

        >>> m = Matrix(3,3,[2, 0, 0, 1, 4 , 0, 6, 6, 5])
        >>> m
        [2, 0, 0]
        [1, 4, 0]
        [6, 6, 5]
        >>> m.is_lower()
        True

        >>> from sympy.abc import x, y
        >>> m = Matrix(2,2,[x**2 + y, y**2 + x, 0, x + y])
        >>> m
        [x**2 + y, x + y**2]
        [       0,    x + y]
        >>> m.is_lower()
        False

        """
        for i in xrange(0, self.rows):
            for j in xrange(i+1, self.cols):
                if self[i, j] != 0:
                    return False
        return True

    def is_upper_hessenberg(self):
        """
        Checks if the matrix is the upper hessenberg form.

        The upper hessenberg matrix has zero entries
        below the first subdiagonal.

        Example:

        >>> from sympy.matrices import Matrix
        >>> a = Matrix([[1,4,2,3],[3,4,1,7],[0,2,3,4],[0,0,1,3]])
        >>> a
        [1, 4, 2, 3]
        [3, 4, 1, 7]
        [0, 2, 3, 4]
        [0, 0, 1, 3]
        >>> a.is_upper_hessenberg()
        True
        """
        for i in xrange(2, self.rows):
            for j in xrange(0, i - 1):
                if self[i,j] != 0:
                    return False
        return True

    def is_lower_hessenberg(self):
        r"""
        Checks if the matrix is in the lower hessenberg form.

        The lower hessenberg matrix has zero entries
        above the first superdiagonal.

        Example:

        >>> from sympy.matrices import Matrix
        >>> a = Matrix([[1,2,0,0],[5,2,3,0],[3,4,3,7],[5,6,1,1]])
        >>> a
        [1, 2, 0, 0]
        [5, 2, 3, 0]
        [3, 4, 3, 7]
        [5, 6, 1, 1]
        >>> a.is_lower_hessenberg()
        True
        """
        for i in xrange(0, self.rows):
            for j in xrange(i + 2, self.cols):
                if self[i, j] != 0:
                    return False
        return True

    def is_symbolic(self):
        for element in self.mat:
            if element.has(Symbol):
                return True
        return False

    def is_symmetric(self, simplify=True):
        """
        Check if matrix is symmetric matrix,
        that is square matrix and is equal to its transpose.

        By default, simplifications occur before testing symmetry.
        They can be skipped using 'simplify=False'; while speeding things a bit,
        this may however induce false negatives.

        Example:

        >>> from sympy import Matrix
        >>> m = Matrix(2,2,[0, 1, 1, 2])
        >>> m
        [0, 1]
        [1, 2]
        >>> m.is_symmetric()
        True

        >>> m = Matrix(2,2,[0, 1, 2, 0])
        >>> m
        [0, 1]
        [2, 0]
        >>> m.is_symmetric()
        False

        >>> m = Matrix(2,3,[0, 0, 0, 0, 0, 0])
        >>> m
        [0, 0, 0]
        [0, 0, 0]
        >>> m.is_symmetric()
        False

        >>> from sympy.abc import x, y
        >>> m = Matrix(3,3,[1, x**2 + 2*x + 1, y, (x + 1)**2 , 2, 0, y, 0, 3])
        >>> m
        [         1, x**2 + 2*x + 1, y]
        [(x + 1)**2,              2, 0]
        [         y,              0, 3]
        >>> m.is_symmetric()
        True

        If the matrix is already simplified, you may speed-up is_symmetric()
        test by using 'simplify=False'.

        >>> m.is_symmetric(simplify=False)
        False
        >>> m1 = m.expand()
        >>> m1.is_symmetric(simplify=False)
        True
        """
        if not self.is_square:
            return False
        if simplify:
            delta = self - self.transpose()
            delta.simplify()
            return delta == self.zeros((self.rows, self.cols))
        else:
            return self == self.transpose()

    def is_diagonal(self):
        """
        Check if matrix is diagonal,
        that is matrix in which the entries outside the main diagonal are all zero.

        Example:

        >>> from sympy import Matrix, diag
        >>> m = Matrix(2,2,[1, 0, 0, 2])
        >>> m
        [1, 0]
        [0, 2]
        >>> m.is_diagonal()
        True

        >>> m = Matrix(2,2,[1, 1, 0, 2])
        >>> m
        [1, 1]
        [0, 2]
        >>> m.is_diagonal()
        False

        >>> m = diag(1, 2, 3)
        >>> m
        [1, 0, 0]
        [0, 2, 0]
        [0, 0, 3]
        >>> m.is_diagonal()
        True

        See also: .is_lower(), is_upper() .is_diagonalizable()
        """
        for i in xrange(self.rows):
            for j in xrange(self.cols):
                if i != j and self[i, j] != 0:
                    return False
        return True

    def clone(self):
        return Matrix(self.rows, self.cols, lambda i, j: self[i, j])

    def det(self, method="bareis"):
        """
        Computes the matrix determinant using the method "method".

        Possible values for "method":
          bareis ... det_bareis
          berkowitz ... berkowitz_det
        """

        if method == "bareis":
            return self.det_bareis()
        elif method == "berkowitz":
            return self.berkowitz_det()
        else:
            raise ValueError("Determinant method unrecognized")

    def det_bareis(self):
        """Compute matrix determinant using Bareis' fraction-free
           algorithm which is an extension of the well known Gaussian
           elimination method. This approach is best suited for dense
           symbolic matrices and will result in a determinant with
           minimal number of fractions. It means that less term
           rewriting is needed on resulting formulae.

           TODO: Implement algorithm for sparse matrices (SFF).
        """
        if not self.is_square:
            raise NonSquareMatrixError()

        M, n = self[:,:], self.rows

        if n == 1:
            det = M[0, 0]
        elif n == 2:
            det = M[0, 0]*M[1, 1] - M[0, 1]*M[1, 0]
        else:
            sign = 1 # track current sign in case of column swap

            for k in range(n-1):
                # look for a pivot in the current column
                # and assume det == 0 if none is found
                if M[k, k] == 0:
                    for i in range(k+1, n):
                        if M[i, k] != 0:
                            M.row_swap(i, k)
                            sign *= -1
                            break
                    else:
                        return S.Zero

                # proceed with Bareis' fraction-free (FF)
                # form of Gaussian elimination algorithm
                for i in range(k+1, n):
                    for j in range(k+1, n):
                        D = M[k, k]*M[i, j] - M[i, k]*M[k, j]

                        if k > 0:
                            D /= M[k-1, k-1]

                        if D.is_Atom:
                            M[i, j] = D
                        else:
                            M[i, j] = cancel(D)

            det = sign * M[n-1, n-1]

        return det.expand()

    def adjugate(self, method="berkowitz"):
        """
        Returns the adjugate matrix.

        Adjugate matrix is the transpose of the cofactor matrix.

        http://en.wikipedia.org/wiki/Adjugate

        See also: .cofactorMatrix(), .T
        """

        return self.cofactorMatrix(method).T


    def inverse_LU(self, iszerofunc=_iszero):
        """
        Calculates the inverse using LU decomposition.
        """
        return self.LUsolve(self.eye(self.rows), iszerofunc=_iszero)

    def inverse_GE(self, iszerofunc=_iszero):
        """
        Calculates the inverse using Gaussian elimination.
        """
        if not self.is_square:
            raise NonSquareMatrixError()

        if self.det() == 0:
            raise ValueError("A Matrix must have non-zero determinant to invert.")

        big = self.row_join(self.eye(self.rows))
        red = big.rref(iszerofunc=iszerofunc)
        return red[0][:,big.rows:]

    def inverse_ADJ(self):
        """
        Calculates the inverse using the adjugate matrix and a determinant.
        """
        if not self.is_square:
            raise NonSquareMatrixError()

        d = self.berkowitz_det()
        if d == 0:
            raise ValueError("A Matrix must have non-zero determinant to invert.")

        return self.adjugate()/d

    def rref(self,simplified=False, iszerofunc=_iszero, simplify=sympy_simplify):
        """
        Take any matrix and return reduced row-echelon form and indices of pivot vars

        To simplify elements before finding nonzero pivots set simplified=True.
        To set a custom simplify function, use the simplify keyword argument.
        """
        # TODO: rewrite inverse_GE to use this
        pivots, r = 0, self[:,:]        # pivot: index of next row to contain a pivot
        pivotlist = []                  # indices of pivot variables (non-free)
        for i in range(r.cols):
            if pivots == r.rows:
                break
            if simplified:
                r[pivots,i] = simplify(r[pivots,i])
            if iszerofunc(r[pivots,i]):
                for k in range(pivots, r.rows):
                    if simplified and k > pivots:
                        r[k,i] = simplify(r[k,i])
                    if not iszerofunc(r[k,i]):
                        break
                if k == r.rows - 1 and iszerofunc(r[k,i]):
                    continue
                r.row_swap(pivots,k)
            scale = r[pivots,i]
            r.row(pivots, lambda x, _: x/scale)
            for j in range(r.rows):
                if j == pivots:
                    continue
                scale = r[j,i]
                r.row(j, lambda x, k: x - scale*r[pivots,k])
            pivotlist.append(i)
            pivots += 1
        return r, pivotlist

    def nullspace(self,simplified=False):
        """
        Returns list of vectors (Matrix objects) that span nullspace of self
        """
        reduced, pivots = self.rref(simplified)
        basis = []
        # create a set of vectors for the basis
        for i in range(self.cols - len(pivots)):
            basis.append(zeros((self.cols, 1)))
        # contains the variable index to which the vector corresponds
        basiskey, cur = [-1]*len(basis), 0
        for i in range(self.cols):
            if i not in pivots:
                basiskey[cur] = i
                cur += 1
        for i in range(self.cols):
            if i not in pivots: # free var, just set vector's ith place to 1
                basis[basiskey.index(i)][i,0] = 1
            else:               # add negative of nonpivot entry to corr vector
                for j in range(i+1, self.cols):
                    line = pivots.index(i)
                    if reduced[line, j] != 0:
                        if j in pivots:
                            # XXX: Is this the correct error?
                            raise NotImplementedError("Could not compute the nullspace of `self`.")
                        basis[basiskey.index(j)][i,0] = -1 * reduced[line, j]
        return basis

    def berkowitz(self):
        """The Berkowitz algorithm.

           Given N x N matrix with symbolic content, compute efficiently
           coefficients of characteristic polynomials of 'self' and all
           its square sub-matrices composed by removing both i-th row
           and column, without division in the ground domain.

           This method is particularly useful for computing determinant,
           principal minors and characteristic polynomial, when 'self'
           has complicated coefficients e.g. polynomials. Semi-direct
           usage of this algorithm is also important in computing
           efficiently sub-resultant PRS.

           Assuming that M is a square matrix of dimension N x N and
           I is N x N identity matrix,  then the following following
           definition of characteristic polynomial is begin used:

                          charpoly(M) = det(t*I - M)

           As a consequence, all polynomials generated by Berkowitz
           algorithm are monic.

           >>> from sympy import Matrix
           >>> from sympy.abc import x, y, z

           >>> M = Matrix([ [x,y,z], [1,0,0], [y,z,x] ])

           >>> p, q, r = M.berkowitz()

           >>> print p # 1 x 1 M's sub-matrix
           (1, -x)

           >>> print q # 2 x 2 M's sub-matrix
           (1, -x, -y)

           >>> print r # 3 x 3 M's sub-matrix
           (1, -2*x, x**2 - y*z - y, x*y - z**2)

           For more information on the implemented algorithm refer to:

           [1] S.J. Berkowitz, On computing the determinant in small
               parallel time using a small number of processors, ACM,
               Information Processing Letters 18, 1984, pp. 147-150

           [2] M. Keber, Division-Free computation of sub-resultants
               using Bezout matrices, Tech. Report MPI-I-2006-1-006,
               Saarbrucken, 2006

        """
        if not self.is_square:
            raise NonSquareMatrixError()

        A, N = self, self.rows
        transforms = [0] * (N-1)

        for n in xrange(N, 1, -1):
            T, k = zeros((n+1,n)), n - 1

            R, C = -A[k,:k], A[:k,k]
            A, a = A[:k,:k], -A[k,k]

            items = [ C ]

            for i in xrange(0, n-2):
                items.append(A * items[i])

            for i, B in enumerate(items):
                items[i] = (R * B)[0,0]

            items = [ S.One, a ] + items

            for i in xrange(n):
                T[i:,i] = items[:n-i+1]

            transforms[k-1] = T

        polys = [ Matrix([S.One, -A[0,0]]) ]

        for i, T in enumerate(transforms):
            polys.append(T * polys[i])

        return tuple(map(tuple, polys))

    def berkowitz_det(self):
        """Computes determinant using Berkowitz method."""
        poly = self.berkowitz()[-1]
        sign = (-1)**(len(poly)-1)
        return sign * poly[-1]

    def berkowitz_minors(self):
        """Computes principal minors using Berkowitz method."""
        sign, minors = S.NegativeOne, []

        for poly in self.berkowitz():
            minors.append(sign*poly[-1])
            sign = -sign

        return tuple(minors)

    def berkowitz_charpoly(self, x, simplify=sympy_simplify):
        """Computes characteristic polynomial minors using Berkowitz method."""
        return Poly(map(simplify, self.berkowitz()[-1]), x)

    charpoly = berkowitz_charpoly

    def berkowitz_eigenvals(self, **flags):
        """Computes eigenvalues of a Matrix using Berkowitz method. """
        return roots(self.berkowitz_charpoly(Dummy('x')), **flags)

    eigenvals = berkowitz_eigenvals

    def eigenvects(self, **flags):
        """Return list of triples (eigenval, multiplicity, basis)."""

        if 'multiple' in flags:
            del flags['multiple']

        out, vlist = [], self.eigenvals(**flags)

        for r, k in vlist.iteritems():
            tmp = self - eye(self.rows)*r
            basis = tmp.nullspace()
            # whether tmp.is_symbolic() is True or False, it is possible that
            # the basis will come back as [] in which case simplification is
            # necessary.
            if not basis:
                # The nullspace routine failed, try it again with simplification
                basis = tmp.nullspace(simplified=True)
                if not basis:
                    raise NotImplementedError("Can't evaluate eigenvector for eigenvalue %s" % r)
            out.append((r, k, basis))
        return out

    def singular_values(self):
        """
        Compute the singular values of a Matrix

        >>> from sympy import Matrix, Symbol, eye
        >>> x = Symbol('x', real=True)
        >>> A = Matrix([[0, 1, 0], [0, x, 0], [-1, 0, 0]])
        >>> print A.singular_values()
        [1, (x**2 + 1)**(1/2), 0]
        """
        # Compute eigenvalues of A.H A
        valmultpairs = (self.H*self).eigenvals()

        # Expands result from eigenvals into a simple list
        vals = []
        for k,v in valmultpairs.items():
            vals += [sqrt(k)]*v # dangerous! same k in several spots!

        # If sorting makes sense then sort
        if all(val.is_number for val in vals):
            vals.sort(reverse=True) # sort them in descending order

        return vals

    def condition_number(self):
        """
        Returns the condition number of a matrix.

        This is the maximum singular value divided by the minimum singular value

        >>> from sympy import Matrix, S
        >>> A = Matrix([[1, 0, 0], [0, 10, 0], [0,0,S.One/10]])
        >>> print A.condition_number()
        100
        """

        singularvalues = self.singular_values()
        return Max(*singularvalues) / Min(*singularvalues)

    def fill(self, value):
        """Fill the matrix with the scalar value."""
        self.mat = [value]*len(self)

    def __getattr__(self, attr):
        if attr in ('diff','integrate','limit'):
            def doit(*args):
                item_doit = lambda item: getattr(item, attr)(*args)
                return self.applyfunc( item_doit )
            return doit
        else:
            raise AttributeError("Matrix has no attribute %s." % attr)

    def integrate(self, *args):
        return Matrix(self.rows, self.cols, lambda i, j: self[i, j].integrate(*args))

    def limit(self, *args):
        return Matrix(self.rows, self.cols, lambda i, j: self[i, j].limit(*args))

    def diff(self, *args):
        return Matrix(self.rows, self.cols, lambda i, j: self[i, j].diff(*args))

    def vec(self):
        """
        Return the Matrix converted into a one column matrix by stacking columns

        >>> from sympy import Matrix
        >>> m=Matrix([ [1,3], [2,4] ])
        >>> m
        [1, 3]
        [2, 4]
        >>> m.vec()
        [1]
        [2]
        [3]
        [4]

        """
        return Matrix(len(self), 1, self.transpose().mat)

    def vech(self, diagonal=True, check_symmetry=True):
        """
        Return the unique elements of a symmetric Matrix as a one column matrix
        by stacking the elements in the lower triangle.

        Arguments:
        diagonal -- include the diagonal cells of self or not
        check_symmetry -- checks symmetry of self but not completely reliably

        >>> from sympy import Matrix
        >>> m=Matrix([ [1,2], [2,3] ])
        >>> m
        [1, 2]
        [2, 3]
        >>> m.vech()
        [1]
        [2]
        [3]
        >>> m.vech(diagonal=False)
        [2]

        """
        c = self.cols
        if c != self.rows:
            raise ShapeError("Matrix must be square")
        if check_symmetry:
            self.simplify()
            if self != self.transpose():
                raise ValueError("Matrix appears to be asymmetric; consider check_symmetry=False")
        count = 0
        if diagonal:
            v = zeros( (c * (c + 1) // 2, 1) )
            for j in xrange(c):
                for i in xrange(j,c):
                    v[count] = self[i,j]
                    count += 1
        else:
            v = zeros( (c * (c - 1) // 2, 1) )
            for j in xrange(c):
                for i in xrange(j+1,c):
                    v[count] = self[i,j]
                    count += 1
        return v

    def get_diag_blocks(self):
        """Obtains the square sub-matrices on the main diagonal of a square matrix.

        Useful for inverting symbolic matrices or solving systems of
        linear equations which may be decoupled by having a block diagonal
        structure.

        Example:

        >>> from sympy import Matrix, symbols
        >>> from sympy.abc import x, y, z
        >>> A = Matrix([[1, 3, 0, 0], [y, z*z, 0, 0], [0, 0, x, 0], [0, 0, 0, 0]])
        >>> a1, a2, a3 = A.get_diag_blocks()
        >>> a1
        [1,    3]
        [y, z**2]
        >>> a2
        [x]
        >>> a3
        [0]
        >>>

        """
        sub_blocks = []
        def recurse_sub_blocks(M):
            i = 1
            while i <= M.shape[0]:
                if i == 1:
                    to_the_right = M[0, i:]
                    to_the_bottom = M[i:, 0]
                else:
                    to_the_right = M[0:i, i:]
                    to_the_bottom = M[i:, 0:i]
                if any(to_the_right) or any(to_the_bottom):
                    i += 1
                    continue
                else:
                    sub_blocks.append(M[0:i, 0:i])
                    if M.shape == M[0:i, 0:i].shape:
                        return
                    else:
                        recurse_sub_blocks(M[i:, i:])
                        return
        recurse_sub_blocks(self)
        return sub_blocks

    def diagonalize(self, reals_only = False):
        """
        Return diagonalized matrix D and transformation P such as

            D = P^-1 * M * P

        where M is current matrix.

        Example:

        >>> from sympy import Matrix
        >>> m = Matrix(3,3,[1, 2, 0, 0, 3, 0, 2, -4, 2])
        >>> m
        [1,  2, 0]
        [0,  3, 0]
        [2, -4, 2]
        >>> (P, D) = m.diagonalize()
        >>> D
        [1, 0, 0]
        [0, 2, 0]
        [0, 0, 3]
        >>> P
        [-1/2, 0, -1/2]
        [   0, 0, -1/2]
        [   1, 1,    1]
        >>> P.inv() * m * P
        [1, 0, 0]
        [0, 2, 0]
        [0, 0, 3]

        See also: .is_diagonalizable(), .is_diagonal()
        """
        if not self.is_square:
            raise NonSquareMatrixError()
        if not self.is_diagonalizable(reals_only, False):
            self._diagonalize_clear_subproducts()
            raise MatrixError("Matrix is not diagonalizable")
        else:
            if self._eigenvects == None:
                self._eigenvects = self.eigenvects()
            diagvals = []
            P = Matrix(self.rows, 0, [])
            for eigenval, multiplicity, vects in self._eigenvects:
                for k in range(multiplicity):
                    diagvals.append(eigenval)
                    vec = vects[k]
                    P = P.col_insert(P.cols, vec)
            D = diag(*diagvals)
            self._diagonalize_clear_subproducts()
            return (P, D)

    def is_diagonalizable(self, reals_only = False, clear_subproducts=True):
        """
        Check if matrix is diagonalizable.

        If reals_only==True then check that diagonalized matrix consists of the only not complex values.

        Some subproducts could be used further in other methods to avoid double calculations,
        By default (if clear_subproducts==True) they will be deleted.

        Example:

        >>> from sympy import Matrix
        >>> m = Matrix(3,3,[1, 2, 0, 0, 3, 0, 2, -4, 2])
        >>> m
        [1,  2, 0]
        [0,  3, 0]
        [2, -4, 2]
        >>> m.is_diagonalizable()
        True
        >>> m = Matrix(2,2,[0, 1, 0, 0])
        >>> m
        [0, 1]
        [0, 0]
        >>> m.is_diagonalizable()
        False
        >>> m = Matrix(2,2,[0, 1, -1, 0])
        >>> m
        [ 0, 1]
        [-1, 0]
        >>> m.is_diagonalizable()
        True
        >>> m.is_diagonalizable(True)
        False

        """
        if not self.is_square:
            return False
        res = False
        self._is_symbolic = self.is_symbolic()
        self._is_symmetric = self.is_symmetric()
        self._eigenvects = None
        #if self._is_symbolic:
        #    self._diagonalize_clear_subproducts()
        #    raise NotImplementedError("Symbolic matrices are not implemented for diagonalization yet")
        self._eigenvects = self.eigenvects()
        all_iscorrect = True
        for eigenval, multiplicity, vects in self._eigenvects:
            if len(vects) != multiplicity:
                all_iscorrect = False
                break
            elif reals_only and not eigenval.is_real:
                all_iscorrect = False
                break
        res = all_iscorrect
        if clear_subproducts:
            self._diagonalize_clear_subproducts()
        return res

    def _diagonalize_clear_subproducts(self):
        del self._is_symbolic
        del self._is_symmetric
        del self._eigenvects

    def jordan_form(self, calc_transformation = True):
        """
        Return Jordan form J of current matrix.

        If calc_transformation is specified as False, then transformation P such that

              J = P^-1 * M * P

        will not be calculated.

        Note:

        Calculation of transformation P is not implemented yet

        Example:

        >>> from sympy import Matrix
        >>> m = Matrix(4, 4, [6, 5, -2, -3, -3, -1, 3, 3, 2, 1, -2, -3, -1, 1, 5, 5])
        >>> m
        [ 6,  5, -2, -3]
        [-3, -1,  3,  3]
        [ 2,  1, -2, -3]
        [-1,  1,  5,  5]

        >>> (P, J) = m.jordan_form()
        >>> J
        [2, 1, 0, 0]
        [0, 2, 0, 0]
        [0, 0, 2, 1]
        [0, 0, 0, 2]

        See also: jordan_cells()
        """
        (P, Jcells) = self.jordan_cells(calc_transformation)
        J = diag(*Jcells)
        return (P, J)

    def jordan_cells(self, calc_transformation = True):
        """
        Return a list of Jordan cells of current matrix.
        This list shape Jordan matrix J.

        If calc_transformation is specified as False, then transformation P such that

              J = P^-1 * M * P

        will not be calculated.

        Note:

        Calculation of transformation P is not implemented yet

        Example:

        >>> from sympy import Matrix
        >>> m = Matrix(4, 4, [6, 5, -2, -3, -3, -1, 3, 3, 2, 1, -2, -3, -1, 1, 5, 5])
        >>> m
        [ 6,  5, -2, -3]
        [-3, -1,  3,  3]
        [ 2,  1, -2, -3]
        [-1,  1,  5,  5]

        >>> (P, Jcells) = m.jordan_cells()
        >>> Jcells[0]
        [2, 1]
        [0, 2]
        >>> Jcells[1]
        [2, 1]
        [0, 2]

        See also: jordan_form()
        """
        if not self.is_square:
            raise NonSquareMatrixError()
        _eigenvects = self.eigenvects()
        Jcells = []
        for eigenval, multiplicity, vects in _eigenvects:
            geometrical = len(vects)
            if geometrical == multiplicity:
                Jcell = diag( *([eigenval] * multiplicity))
                Jcells.append(Jcell)
            elif geometrical==0:
                raise MatrixError("Matrix has the eigen vector with geometrical multiplicity equal zero.")
            else:
                sizes = self._jordan_split(multiplicity, geometrical)
                cells = []
                for size in sizes:
                    cell = jordan_cell(eigenval, size)
                    cells.append(cell)
                Jcells += cells
        return (None, Jcells)

    def _jordan_split(self, algebraical, geometrical):
            "return a list which sum is equal to 'algebraical' and length is equal to 'geometrical'"
            n1 = algebraical // geometrical
            res = [n1] * geometrical
            res[len(res)-1] += algebraical % geometrical
            assert sum(res) == algebraical
            return res

    def has(self, *patterns):
        """
        Test whether any subexpression matches any of the patterns.

        Examples:

        >>> from sympy import Matrix, Float
        >>> from sympy.abc import x, y
        >>> A = Matrix(((1, x), (0.2, 3)))
        >>> A.has(x)
        True
        >>> A.has(y)
        False
        >>> A.has(Float)
        True
        """
        return any(a.has(*patterns) for a in self.mat)

def matrix_multiply(A, B):
    """
    Matrix product A*B.

    A and B must be of appropriate dimensions.  If A is an m x k matrix, and B
    is a k x n matrix, the product will be an m x n matrix.

    Example:

    >>> from sympy import Matrix
    >>> A = Matrix([[1, 2, 3], [4, 5, 6]])
    >>> B = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
    >>> A*B
    [30, 36, 42]
    [66, 81, 96]
    >>> B*A
    Traceback (most recent call last):
    ...
    ShapeError
    >>>

    """
    # The following implmentation is equivalent, but about 5% slower
    #ma, na = A.shape
    #mb, nb = B.shape
    #
    #if na != mb:
    #    raise ShapeError()
    #product = Matrix(ma, nb, lambda i,j: 0)
    #for i in xrange(ma):
    #    for j in xrange(nb):
    #        s = 0
    #        for k in range(na):
    #            s += A[i, k]*B[k, j]
    #        product[i, j] = s
    #return product
    if A.shape[1] != B.shape[0]:
        raise ShapeError()
    blst = B.T.tolist()
    alst = A.tolist()
    return Matrix(A.shape[0], B.shape[1], lambda i, j:
                                        reduce(lambda k, l: k+l,
                                        map(lambda n, m: n*m,
                                        alst[i],
                                        blst[j])))

def matrix_multiply_elementwise(A, B):
    """Return the Hadamard product (elementwise product) of A and B

    >>> import sympy
    >>> A = sympy.Matrix([[0, 1, 2], [3, 4, 5]])
    >>> B = sympy.Matrix([[1, 10, 100], [100, 10, 1]])
    >>> print sympy.matrices.matrix_multiply_elementwise(A, B)
    [  0, 10, 200]
    [300, 40,   5]
    """
    if A.shape != B.shape:
        raise ShapeError()
    shape = A.shape
    return Matrix(shape[0], shape[1],
        lambda i, j: A[i,j] * B[i, j])

def matrix_add(A,B):
    """Return A+B"""
    if A.shape != B.shape:
        raise ShapeError()
    alst = A.tolist()
    blst = B.tolist()
    ret = [0]*A.shape[0]
    for i in xrange(A.shape[0]):
        ret[i] = map(lambda j,k: j+k, alst[i], blst[i])
    return Matrix(ret)

def zeros(dims):
    """Create zero matrix of dimensions dims = (d1,d2)"""
    n, m = _dims_to_nm(dims)
    return Matrix(n, m, [S.Zero]*m*n)

def ones(dims):
    """Create all-one matrix of dimensions dims = (d1,d2)"""
    n, m = _dims_to_nm( dims )
    return Matrix(n, m, [S.One]*m*n)

def eye(n):
    """Create square identity matrix n x n

    See also: diag()
    """
    n = int(n)
    out = zeros(n)
    for i in range(n):
        out[i, i] = S.One
    return out

def diag(*values):
    """Create diagonal matrix from a list as a diagonal values.

    Arguments might be matrices too, in case of it they are fitted in result matrix

    Example:

    >>> from sympy.matrices import diag, Matrix
    >>> diag(1, 2, 3)
    [1, 0, 0]
    [0, 2, 0]
    [0, 0, 3]

    >>> from sympy.abc import x, y, z
    >>> a = Matrix([x, y, z])
    >>> b = Matrix([[1, 2], [3, 4]])
    >>> c = Matrix([[5, 6]])
    >>> diag(a, 7, b, c)
    [x, 0, 0, 0, 0, 0]
    [y, 0, 0, 0, 0, 0]
    [z, 0, 0, 0, 0, 0]
    [0, 7, 0, 0, 0, 0]
    [0, 0, 1, 2, 0, 0]
    [0, 0, 3, 4, 0, 0]
    [0, 0, 0, 0, 5, 6]

    See also: eye()
    """
    rows = 0
    cols = 0
    for m in values:
        if isinstance(m, Matrix):
            rows += m.rows
            cols += m.cols
        else:
            rows += 1
            cols += 1
    res = zeros((rows, cols))
    i_row = 0
    i_col = 0
    for m in values:
        if isinstance(m, Matrix):
            res[i_row:i_row + m.rows, i_col:i_col + m.cols] = m
            i_row += m.rows
            i_col += m.cols
        else:
            res[i_row, i_col] = m
            i_row += 1
            i_col += 1
    return res

def block_diag(matrices):
    """
    Warning: this function is deprecated. See .diag()

    """
    import warnings
    warnings.warn("block_diag() is deprecated, use diag() instead", DeprecationWarning)
    return diag(*matrices)

def jordan_cell(eigenval, n):
    """
    Create matrix of Jordan cell kind:

    Example:

    >>> from sympy.matrices.matrices import jordan_cell
    >>> from sympy.abc import x
    >>> jordan_cell(x, 4)
    [x, 1, 0, 0]
    [0, x, 1, 0]
    [0, 0, x, 1]
    [0, 0, 0, x]
    """
    n = int(n)
    out = zeros(n)
    for i in range(n-1):
        out[i, i] = eigenval
        out[i, i+1] = S.One
    out[n-1, n-1] = eigenval
    return out

def randMatrix(r,c,min=0,max=99,seed=[]):
    """Create random matrix r x c"""
    if seed == []:
        prng = random.Random()  # use system time
    else:
        prng = random.Random(seed)
    return Matrix(r,c,lambda i,j: prng.randint(min,max))

def hessian(f, varlist):
    """Compute Hessian matrix for a function f

    see: http://en.wikipedia.org/wiki/Hessian_matrix
    """
    # f is the expression representing a function f, return regular matrix
    if is_sequence(varlist):
        m = len(varlist)
        if not m:
            raise ShapeError("`len(varlist)` must not be zero.")
    elif isinstance(varlist, Matrix):
        m = varlist.cols
        if not m:
            raise ShapeError("`varlist.cols` must not be zero.")
        if varlist.rows != 1:
            raise ShapeError("`varlist` must be a row vector.")
    else:
        raise ValueError("Improper variable list in hessian function")
    if not getattr(f, 'diff'):
        # check differentiability
        raise ValueError("Function `f` (%s) is not differentiable" % f)
    out = zeros(m)
    for i in range(m):
        for j in range(i,m):
            out[i,j] = f.diff(varlist[i]).diff(varlist[j])
    for i in range(m):
        for j in range(i):
            out[i,j] = out[j,i]
    return out

def GramSchmidt(vlist, orthog=False):
    out = []
    m = len(vlist)
    for i in range(m):
        tmp = vlist[i]
        for j in range(i):
            tmp -= vlist[i].project(out[j])
        if tmp == Matrix([[0,0,0]]):
            raise ValueError("GramSchmidt: vector set not linearly independent")
        out.append(tmp)
    if orthog:
        for i in range(len(out)):
            out[i] = out[i].normalized()
    return out

def wronskian(functions, var, method='bareis'):
    """Compute Wronskian for [] of functions

                   | f1       f2        ...   fn      |
                   | f1'      f2'       ...   fn'     |
                   |  .        .        .      .      |
    W(f1,...,fn) = |  .        .         .     .      |
                   |  .        .          .    .      |
                   |  (n)      (n)            (n)     |
                   | D   (f1) D   (f2)  ...  D   (fn) |

    see: http://en.wikipedia.org/wiki/Wronskian
    """

    for index in xrange(0, len(functions)):
        functions[index] = sympify(functions[index])
    n = len(functions)
    if n == 0:
        return 1
    W = Matrix(n, n, lambda i,j: functions[i].diff(var, j) )
    return W.det(method)

def casoratian(seqs, n, zero=True):
    """Given linear difference operator L of order 'k' and homogeneous
       equation Ly = 0 we want to compute kernel of L, which is a set
       of 'k' sequences: a(n), b(n), ... z(n).

       Solutions of L are linearly independent iff their Casoratian,
       denoted as C(a, b, ..., z), do not vanish for n = 0.

       Casoratian is defined by k x k determinant:

                  +  a(n)     b(n)     . . . z(n)     +
                  |  a(n+1)   b(n+1)   . . . z(n+1)   |
                  |    .         .     .        .     |
                  |    .         .       .      .     |
                  |    .         .         .    .     |
                  +  a(n+k-1) b(n+k-1) . . . z(n+k-1) +

       It proves very useful in rsolve_hyper() where it is applied
       to a generating set of a recurrence to factor out linearly
       dependent solutions and return a basis.

       >>> from sympy import Symbol, casoratian, factorial
       >>> n = Symbol('n', integer=True)

       Exponential and factorial are linearly independent:

       >>> casoratian([2**n, factorial(n)], n) != 0
       True

    """
    seqs = map(sympify, seqs)

    if not zero:
        f = lambda i, j: seqs[j].subs(n, n+i)
    else:
        f = lambda i, j: seqs[j].subs(n, i)

    k = len(seqs)

    return Matrix(k, k, f).det()

# Add sympify converters
def _matrix_sympify(matrix):
    raise SympifyError('Matrix cannot be sympified')
converter[Matrix] = _matrix_sympify
del _matrix_sympify


class SparseMatrix(Matrix):
    """Sparse matrix"""

    def __init__(self, *args):
        if len(args) == 3 and callable(args[2]):
            op = args[2]
            if not isinstance(args[0], (int, Integer)) or not isinstance(args[1], (int, Integer)):
                raise TypeError("`args[0]` and `args[1]` must both be integers.")
            self.rows = args[0]
            self.cols = args[1]
            self.mat = {}
            for i in range(self.rows):
                for j in range(self.cols):
                    value = sympify(op(i,j))
                    if value != 0:
                        self.mat[(i,j)] = value
        elif len(args)==3 and isinstance(args[0],int) and \
                isinstance(args[1],int) and is_sequence(args[2]):
            self.rows = args[0]
            self.cols = args[1]
            mat = args[2]
            self.mat = {}
            for i in range(self.rows):
                for j in range(self.cols):
                    value = sympify(mat[i*self.cols+j])
                    if value != 0:
                        self.mat[(i,j)] = value
        elif len(args)==3 and isinstance(args[0],int) and \
                isinstance(args[1],int) and isinstance(args[2], dict):
            self.rows = args[0]
            self.cols = args[1]
            self.mat = {}
            # manual copy, copy.deepcopy() doesn't work
            for key in args[2].keys():
                self.mat[key] = args[2][key]
        else:
            if len(args) == 1:
                mat = args[0]
            else:
                mat = args
            if not is_sequence(mat[0]):
                mat = [ [element] for element in mat ]
            self.rows = len(mat)
            self.cols = len(mat[0])
            self.mat = {}
            for i in range(self.rows):
                if len(mat[i]) != self.cols:
                    raise ValueError("All arguments must have the same length.")
                for j in range(self.cols):
                    value = sympify(mat[i][j])
                    if value != 0:
                        self.mat[(i,j)] = value

    def __getitem__(self, key):
        if isinstance(key, slice) or isinstance(key, int):
            lo, hi = self.slice2bounds(key, len(self))
            L = []
            for i in range(lo, hi):
                m,n = self.rowdecomp(i)
                if (m,n) in self.mat:
                    L.append(self.mat[(m,n)])
                else:
                    L.append(0)
            if len(L) == 1:
                return L[0]
            else:
                return L
        if len(key) != 2:
            raise ValueError("`key` must be of length 2.")

        if isinstance(key[0], int) and isinstance(key[1], int):
            i,j=self.key2ij(key)
            if (i, j) in self.mat:
                return self.mat[(i,j)]
            else:
                return 0
        elif isinstance(key[0], slice) or isinstance(key[1], slice):
            return self.submatrix(key)
        else:
            raise IndexError("Index out of range: a[%s]"%repr(key))

    def rowdecomp(self, num):
        nmax = len(self)
        if not (0 <= num < nmax) or not (0 <= -num < nmax):
            raise ValueError("`num` must satisfy 0 <= `num` < `self.rows*" +
                "*self.cols` (%d) and 0 <= -num < " % nmax +
                "`self.rows*self.cols` (%d) to apply redecomp()." % nmax)
        i, j = 0, num
        while j >= self.cols:
            j -= self.cols
            i += 1
        return i,j

    def __setitem__(self, key, value):
        # almost identical, need to test for 0
        if len(key) != 2:
            raise ValueError("`key` must be of length 2.")

        if isinstance(key[0], slice) or isinstance(key[1], slice):
            if isinstance(value, Matrix):
                self.copyin_matrix(key, value)
            if is_sequence(value):
                self.copyin_list(key, value)
        else:
            i,j=self.key2ij(key)
            testval = sympify(value)
            if testval != 0:
                self.mat[(i,j)] = testval
            elif (i,j) in self.mat:
                del self.mat[(i,j)]

    def row_del(self, k):
        newD = {}
        for (i,j) in self.mat.keys():
            if i==k:
                pass
            elif i > k:
                newD[i-1,j] = self.mat[i,j]
            else:
                newD[i,j] = self.mat[i,j]
        self.mat = newD
        self.rows -= 1

    def col_del(self, k):
        newD = {}
        for (i,j) in self.mat.keys():
            if j==k:
                pass
            elif j > k:
                newD[i,j-1] = self.mat[i,j]
            else:
                newD[i,j] = self.mat[i,j]
        self.mat = newD
        self.cols -= 1

    def toMatrix(self):
        l = []
        for i in range(self.rows):
            c = []
            l.append(c)
            for j in range(self.cols):
                if (i, j) in self.mat:
                    c.append(self[i, j])
                else:
                    c.append(0)
        return Matrix(l)

    def row_list(self):
        """
        Returns a Row-sorted list of non-zero elements of the matrix.

        >>> from sympy.matrices import SparseMatrix
        >>> a=SparseMatrix((1,2),(3,4))
        >>> a
        [1, 2]
        [3, 4]
        >>> a.RL
        [(0, 0, 1), (0, 1, 2), (1, 0, 3), (1, 1, 4)]
        """

        new=[]
        for i in range(self.rows):
            for j in range(self.cols):
                value = self[(i,j)]
                if value!=0:
                    new.append((i,j,value))
        return new

    RL = property(row_list,None,None,"Alternate faster representation")

    def col_list(self):
        """
        Returns a Column-sorted list of non-zero elements of the matrix.
        >>> from sympy.matrices import SparseMatrix
        >>> a=SparseMatrix((1,2),(3,4))
        >>> a
        [1, 2]
        [3, 4]
        >>> a.CL
        [(0, 0, 1), (1, 0, 3), (0, 1, 2), (1, 1, 4)]
        """
        new=[]
        for j in range(self.cols):
            for i in range(self.rows):
                value = self[(i,j)]
                if value!=0:
                    new.append((i,j,value))
        return new

    CL = property(col_list,None,None,"Alternate faster representation")

    def transpose(self):
        """
        Returns the transposed SparseMatrix of this SparseMatrix
        >>> from sympy.matrices import SparseMatrix
        >>> a = SparseMatrix((1,2),(3,4))
        >>> a
        [1, 2]
        [3, 4]
        >>> a.T
        [1, 3]
        [2, 4]
        """
        tran = SparseMatrix(self.cols,self.rows,{})
        for key,value in self.mat.iteritems():
            tran.mat[key[1],key[0]]=value
        return tran

    T = property(transpose,None,None,"Matrix transposition.")


    def __add__(self, other):
        if isinstance(other, SparseMatrix):
            return self.add(other)
        else:
            raise NotImplementedError("Only SparseMatrix + SparseMatrix supported")

    def __radd__(self, other):
        if isinstance(other, SparseMatrix):
            return self.add(other)
        else:
            raise NotImplementedError("Only SparseMatrix + SparseMatrix supported")

    def add(self, other):
        """
        Add two sparse matrices with dictionary representation.

        >>> from sympy.matrices.matrices import SparseMatrix
        >>> A = SparseMatrix(5, 5, lambda i, j : i * j + i)
        >>> A
        [0, 0,  0,  0,  0]
        [1, 2,  3,  4,  5]
        [2, 4,  6,  8, 10]
        [3, 6,  9, 12, 15]
        [4, 8, 12, 16, 20]
        >>> B = SparseMatrix(5, 5, lambda i, j : i + 2 * j)
        >>> B
        [0, 2, 4,  6,  8]
        [1, 3, 5,  7,  9]
        [2, 4, 6,  8, 10]
        [3, 5, 7,  9, 11]
        [4, 6, 8, 10, 12]
        >>> A + B
        [0,  2,  4,  6,  8]
        [2,  5,  8, 11, 14]
        [4,  8, 12, 16, 20]
        [6, 11, 16, 21, 26]
        [8, 14, 20, 26, 32]
        """
        if self.shape != other.shape:
            raise ShapeError()
        a, b = self.mat.keys(), other.mat.keys()
        a.sort()
        b.sort()
        i = j = 0
        c = {}
        while i < len(a) or j < len(b):
            if j >= len(b) or (i < len(a) and a[i] < b[j]):
                c[a[i]] = self.mat[a[i]]
                i = i + 1
                continue
            elif i >= len(a) or (j < len(b) and a[i] > b[j]):
                c[b[j]] = other.mat[b[j]]
                j = j + 1
                continue
            else:
                c[a[i]] = self.mat[a[i]] + other.mat[b[j]]
                i = i + 1
                j = j + 1
        return SparseMatrix(self.rows, self.cols, c)



    # from here to end all functions are same as in matrices.py
    # with Matrix replaced with SparseMatrix
    def copyin_list(self, key, value):
        if not is_sequence(value):
            raise TypeError("`value` must be of type list or tuple.")
        self.copyin_matrix(key, SparseMatrix(value))

    def multiply(self,b):
        """Returns self*b """

        def dotprod(a,b,i,j):
            if a.cols != b.rows:
                raise ShapeError("`self.cols` must equal `b.rows`.")
            r=0
            for x in range(a.cols):
                r+=a[i,x]*b[x,j]
            return r

        r = SparseMatrix(self.rows, b.cols, lambda i,j: dotprod(self,b,i,j))
        if r.rows == 1 and r.cols ==1:
            return r[0,0]
        return r

    def submatrix(self, keys):
        if not isinstance(keys[0], slice) and not isinstance(keys[1], slice):
            raise TypeError("Both elements of `keys` must be slice objects.")
        rlo, rhi = self.slice2bounds(keys[0], self.rows)
        clo, chi = self.slice2bounds(keys[1], self.cols)
        if not ( 0<=rlo<=rhi and 0<=clo<=chi ):
            raise IndexError("Slice indices out of range: a[%s]"%repr(keys))
        return SparseMatrix(rhi-rlo, chi-clo, lambda i,j: self[i+rlo, j+clo])

    def reshape(self, _rows, _cols):
        if len(self) != _rows*_cols:
            print "Invalid reshape parameters %d %d" % (_rows, _cols)
        newD = {}
        for i in range(_rows):
            for j in range(_cols):
                m,n = self.rowdecomp(i*_cols + j)
                if (m,n) in self.mat:
                    newD[(i,j)] = self.mat[(m,n)]
        return SparseMatrix(_rows, _cols, newD)

    def cross(self, b):
        if not is_sequence(b, include=Matrix):
            raise TypeError("`b` must be an ordered iterable or Matrix, not %s." %
                type(b))
        if not (self.rows == 1 and self.cols == 3 or \
                self.rows == 3 and self.cols == 1 ) and \
                (b.rows == 1 and b.cols == 3 or \
                b.rows == 3 and b.cols == 1):
            raise ShapeError("Dimensions incorrect for cross product")
        else:
            return SparseMatrix(1,3,((self[1]*b[2] - self[2]*b[1]),
                               (self[2]*b[0] - self[0]*b[2]),
                               (self[0]*b[1] - self[1]*b[0])))


    def zeros(self, dims):
        """Returns a dims = (d1,d2) matrix of zeros."""
        n, m = _dims_to_nm( dims )
        return SparseMatrix(n,m,{})

    def eye(self, n):
        tmp = SparseMatrix(n,n,lambda i,j:0)
        for i in range(tmp.rows):
            tmp[i,i] = 1
        return tmp


def list2numpy(l):
    """Converts python list of SymPy expressions to a NumPy array."""
    from numpy import empty
    a = empty(len(l), dtype=object)
    for i, s in enumerate(l):
        a[i] = s
    return a

def matrix2numpy(m):
    """Converts SymPy's matrix to a NumPy array."""
    from numpy import empty
    a = empty(m.shape, dtype=object)
    for i in range(m.rows):
        for j in range(m.cols):
            a[i, j] = m[i, j]
    return a

def a2idx(a):
    """
    Tries to convert "a" to an index, returns None on failure.

    The result of a2idx() (if not None) can be safely used as an index to
    arrays/matrices.
    """
    if hasattr(a, "__int__"):
        return int(a)
    if hasattr(a, "__index__"):
        return a.__index__()

def symarray(prefix, shape):
    """Create a numpy ndarray of symbols (as an object array).

    The created symbols are named prefix_i1_i2_...  You should thus provide a
    non-empty prefix if you want your symbols to be unique for different output
    arrays, as Sympy symbols with identical names are the same object.

    Parameters
    ----------

    prefix : string
      A prefix prepended to the name of every symbol.

    shape : int or tuple
      Shape of the created array.  If an int, the array is one-dimensional; for
      more than one dimension the shape must be a tuple.

    Examples
    --------

    >> from sympy import symarray
    >> symarray('', 3)
    [_0 _1 _2]

    If you want multiple symarrays to contain distinct symbols, you *must*
    provide unique prefixes:

    >> a = symarray('', 3)
    >> b = symarray('', 3)
    >> a[0] is b[0]
    True
    >> a = symarray('a', 3)
    >> b = symarray('b', 3)
    >> a[0] is b[0]
    False

    Creating symarrays with a prefix:
    >> symarray('a', 3)
    [a_0 a_1 a_2]

    For more than one dimension, the shape must be given as a tuple:
    >> symarray('a', (2,3))
    [[a_0_0 a_0_1 a_0_2]
    [a_1_0 a_1_1 a_1_2]]
    >> symarray('a', (2,3,2))
    [[[a_0_0_0 a_0_0_1]
      [a_0_1_0 a_0_1_1]
      [a_0_2_0 a_0_2_1]]
    <BLANKLINE>
     [[a_1_0_0 a_1_0_1]
      [a_1_1_0 a_1_1_1]
      [a_1_2_0 a_1_2_1]]]

    """
    try:
        import numpy as np
    except ImportError:
        raise ImportError("symarray requires numpy to be installed")

    arr = np.empty(shape, dtype=object)
    for index in np.ndindex(shape):
        arr[index] = Symbol('%s_%s' % (prefix, '_'.join(map(str, index))))
    return arr

def _separate_eig_results(res):
    eigvals = [item[0] for item in res]
    multiplicities = [item[1] for item in res]
    eigvals = flatten([[val]*mult for val, mult in zip(eigVals, multiplicities)])
    eigvects = flatten([item[2] for item in res])
    return eigvals, eigvects