This file is indexed.

/usr/share/pyshared/Scientific/Visualization/VPython.py is in python-scientific 2.8-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
# VPython interface
#
# Written by: Konrad Hinsen <hinsen@cnrs-orleans.fr>
# Last revision: 2006-6-12
#

"""
Definitions of simple 3D graphics objects and scenes containing them,
to be rendered using VPython
"""

from Scientific.Geometry import Transformation, Vector
import os, string, sys, tempfile
if not sys.modules.has_key('epydoc'):
    import visual

from Color import *

#
# Scene
#
class Scene:

    """
    VPython scene

    A VPython scene is a collection of graphics objects that can be
    shown in a VPython window. When the "view" method is called,
    a new window is created and the graphics objects are displayed
    in it.
    """

    def __init__(self, objects = None, **options):
        """
        @param objects: a list of graphics objects, or C{None} for
                        an empty scene
        @type objects: C{list} or C{NoneType}
        @param options: options as keyword arguments
        @keyword title: the window title (default: "VPython scene")
        @type title: C{str}
        @keyword width: the window width in pixels (default: 300)
        @type width: C{int}
        @keyword height: the window height in pixels (default: 300)
        @type height: C{int}
        @keyword background: the background color (default: "black")
        @type background: C{str}
        """
        if objects is None:
            self.objects = []
        elif type(objects) == type([]):
            self.objects = objects
        else:
            self.objects = [objects]
        self.options = {"title": "VPython Scene",
                        "width": 300,
                        "height": 300,
                        "background": "black"}
        for key, value in options.items():
            if self.options.has_key(key):
                self.options[key] = value
            else:
                raise ValueError("undefined option: " + repr(key))

    def __len__(self):
        """
        @returns: the number of graphics objects in the scene
        @rtype: C{int}
        """
        return len(self.objects)

    def __getitem__(self, item):
        """
        @param item: an index
        @type item: C{int}
        @returns: the graphics object at the index position
        @rtype: L{GraphicsObject}
        """
        return self.object[item]

    def addObject(self, object):
        """
        @param object: a graphics object to be added to the scene
        @type object: L{GraphicsObject}
        """
        self.objects.append(object)

    def view(self):
        """
        Open a VPython window for the scene
        """
        color = self.options["background"]
        if type(color) == type(''):
            color = ColorByName(color)
        self.window = visual.display(title = self.options["title"],
                                     width = self.options["width"],
                                     height = self.options["height"],
                                     background = color.rgb,
                                     exit = 0)
        for o in self.objects:
            o.display(self.window)

#
# Base classes for graphics objects
#
class GraphicsObject:

    """
    Graphics object for VPython

    This is an abstract base class. Use one of the subclasses to generate
    graphics.
    """

    def __init__(self, attr):
        """
        @param attr: graphics attributes specified by keywords
        @keyword material: color and surface properties
        @type material: L{Material}
        """
        self.attr = {}
        for key, value in attr.items():
            if key in self.attribute_names:
                self.attr[key] = value
            else:
                raise AttributeError('illegal attribute: ' + str(key))

    attribute_names = ['comment']

    def __getitem__(self, attr):
        """
        @param attr: the name of a graphics attribute
        @type attr: C{str}
        @returns: the value of the attribute, or C{None} if the attribute
                  is undefined
        """
        try:
            return self.attr[attr]
        except KeyError:
            return None

    def __setitem__(self, attr, value):
        """
        @param attr: the name of a graphics attribute
        @type attr: C{str}
        @param value: a new value for the attribute
        """
        self.attr[attr] = value

    def __copy__(self):
        return copy.deepcopy(self)


class ShapeObject(GraphicsObject):

    """
    Graphics objects representing geometrical shapes

    This is an abstract base class. Use one of the subclasses to generate
    graphics.
    """

    attribute_names = ['comment', 'material']

    def __add__(self, other):
        return Group([self]) + Group([other])

    def display(self, window):
        material = self.attr.get('material', None)
        if material is None:
            color = ColorByName('white')
        else:
            color = material.attr.get('emissive_color', None)
            if color is None:
                color = material.attr.get('diffuse_color', None)
            if color is None:
                color = ColorByName('white')
        window.foreground = color.rgb
        self.show(window)

#
# Specific shape objects
#
class Sphere(ShapeObject):

    """
    Sphere
    """
    
    def __init__(self, center, radius, **attr):
        """
        @param center: the center of the sphere
        @type center: L{Scientific.Geometry.Vector}
        @param radius: the sphere radius
        @type radius: positive number
        @param attr: graphics attributes as keyword parameters
        """
        self.center = center
        self.radius = radius
        ShapeObject.__init__(self, attr)

    def show(self, window):
        self.object = visual.sphere(pos=tuple(self.center), radius=self.radius)


class Cube(ShapeObject):

    """
    Cube

    The edges of a cube are always parallel to the coordinate axes.
    """
    
    def __init__(self, center, edge, **attr):
        """
        @param center: the center of the sphere
        @type center: L{Scientific.Geometry.Vector}
        @param edge: the length of an edge
        @type edge: positive number
        @param attr: graphics attributes as keyword parameters
        """
        self.center = center
        self.edge = edge
        ShapeObject.__init__(self, attr)

    def show(self, window):
        self.object = visual.box(pos = tuple(self.center),
                                 length = self.edge,
                                 height = self.edge,
                                 width = self.edge)


class Cylinder(ShapeObject):

    """
    Cylinder
    """

    def __init__(self, point1, point2, radius, **attr):
        """
        @param point1: first end point of the cylinder axis
        @type point1: L{Scientific.Geometry.Vector}
        @param point2: second end point of the cylinder axis
        @type point2: L{Scientific.Geometry.Vector}
        @param radius: the cylinder radius
        @type radius: positive number
        @param attr: graphics attributes as keyword parameters
        """
        self.point1 = point1
        self.point2 = point2
        self.radius = radius
        ShapeObject.__init__(self, attr)

    # accept "faces" for compatibility with VRML module
    attribute_names = ShapeObject.attribute_names + ['faces']

    def show(self, window):
        self.object = visual.cylinder(pos = tuple(self.point1),
                                      axis = tuple(self.point2-self.point1),
                                      radius = self.radius)

class Arrow(ShapeObject):

    """
    Arrow
    """

    def __init__(self, point1, point2, radius, **attr):
        """
        @param point1: starting point of the arrow
        @type point1: L{Scientific.Geometry.Vector}
        @param point2: the tip of the arrow
        @type point2: L{Scientific.Geometry.Vector}
        @param radius: the radius of the shaft
        @type radius: positive number
        @param attr: graphics attributes as keyword parameters
        """
        self.point1 = point1
        self.point2 = point2
        self.radius = radius
        ShapeObject.__init__(self, attr)

    def show(self, window):
        self.object = visual.arrow(pos = tuple(self.point1),
                                   axis = tuple(self.point2-self.point1),
                                   shaftwidth = self.radius)


class Cone(ShapeObject):

    """
    Cone
    """

    def __init__(self, point1, point2, radius, face = 1, **attr):
        """
        @param point1: the tip of the cone
        @type point1: L{Scientific.Geometry.Vector}
        @param point2: end point of the cone axis
        @type point2: L{Scientific.Geometry.Vector}
        @param radius: the radius at the base
        @type radius: positive number
        @param face: a boolean flag, specifying if the circular
                      bottom is visible
        @type face: C{bool}
        @param attr: graphics attributes as keyword parameters
        """
        self.point1 = point1
        self.point2 = point2
        self.radius = radius
        ShapeObject.__init__(self, attr)

    # accept "face" for compatibility with VRML module
    attribute_names = ShapeObject.attribute_names + ['face']

    def show(self, window):
        self.object = visual.cone(pos = tuple(self.point2),
                                  axis = tuple(self.point1-self.point2),
                                  radius = self.radius)

class PolyLines(ShapeObject):

    """
    Multiple connected lines
    """

    def __init__(self, points, **attr):
        """
        @param points: a sequence of points to be connected by lines
        @type points: sequence of L{Scientific.Geometry.Vector}
        @param attr: graphics attributes as keyword parameters
        """
        self.points = points
        ShapeObject.__init__(self, attr)

    def show(self, window):
        self.object = visual.curve(pos = map(tuple, self.points),
                                   color = window.foreground)


class Line(PolyLines):

    """
    Line
    """

    def __init__(self, point1, point2, **attr):
        """
        @param point1: first end point
        @type point1: L{Scientific.Geometry.Vector}
        @param point2: second end point
        @type point2: L{Scientific.Geometry.Vector}
        @param attr: graphics attributes as keyword parameters
        """
        apply(PolyLines.__init__, (self, [point1, point2]), attr)


class Polygons(ShapeObject):

    """
    Polygons
    """

    def __init__(self, points, index_lists, **attr):
        """
        @param points: a sequence of points
        @type points: sequence of L{Scientific.Geometry.Vector}
        @param index_lists: a sequence of index lists, one for each polygon.
                            The index list for a polygon defines which points
                            are vertices of the polygon.
        @type index_lists: sequence of C{list}
        @param attr: graphics attributes as keyword parameters
        """
        self.points = points
        self.index_lists = index_lists
        ShapeObject.__init__(self, attr)

    def show(self, window):
        for indices in self.index_lists:
            points = []
            for index in indices:
                points.append(tuple(self.points[index]))
            visual.convex(pos = points, color = window.foreground)

#
# Groups
#
class Group:

    """
    Base class for composite objects
    """

    def __init__(self, objects, **attr):
        self.objects = []
        for o in objects:
            if isGroup(o):
                self.objects = self.objects + o.objects
            else:
                self.objects.append(o)
        for key, value in attr.items():
            for o in self.objects:
                o[key] = value

    is_group = 1

    def __len__(self):
        return len(self.objects)

    def __getitem__(self, item):
        return self.object[item]

    def __coerce__(self, other):
        if not isGroup(other):
            other = Group([other])
        return (self, other)

    def __add__(self, other):
        return Group(self.objects + other.objects)

    def show(self, window):
        for o in self.objects:
            o.show(window)


def isGroup(x):
    return hasattr(x, 'is_group')


#
# Materials
#
class Material(GraphicsObject):

    """
    Material specification for graphics objects

    A material defines the color and surface properties of an object.
    """

    def __init__(self, **attr):
        """
        @param attr: material attributes as keyword arguments
        @keyword diffuse_color: the color of a diffusely reflecting surface
        @type diffuse_color: L{Color}
        @keyword emissive_color: the color of emitted light
        @type emissive_color: L{Color}
        """
        GraphicsObject.__init__(self, attr)

    attribute_names = GraphicsObject.attribute_names + \
                      ['ambient_color', 'diffuse_color', 'specular_color',
                       'emissive_color', 'shininess', 'transparency']

#
# Predefined materials
#
def DiffuseMaterial(color):
    """
    @param color: a color object or a predefined color name
    @type color: L{Color} or C{str}
    @returns: a material with the 'diffuse color' attribute set to color
    @rtype: L{Material}
    """
    if type(color) is type(''):
        color = ColorByName(color)
    try:
        return _diffuse_material_dict[color]
    except KeyError:
        m = Material(diffuse_color = color)
        _diffuse_material_dict[color] = m
        return m

_diffuse_material_dict = {}

def EmissiveMaterial(color):
    """
    @param color: a color object or a predefined color name
    @type color: L{Color} or C{str}
    @returns: a material with the 'emissive color' attribute set to color
    @rtype: L{Material}
    """
    if type(color) is type(''):
        color = ColorByName(color)
    try:
        return _emissive_material_dict[color]
    except KeyError:
        m = Material(emissive_color = color)
        _emissive_material_dict[color] = m
        return m

_emissive_material_dict = {}

#
# Test code
#
if __name__ == '__main__':

    if 0:
        from Scientific.Geometry import null, ex, ey, ez
        spheres = EmissiveMaterial('blue')
        links = EmissiveMaterial('orange')
        s1 = Sphere(null, 0.05, material = spheres)
        s2 = Sphere(ex, 0.05, material = spheres)
        s3 = Sphere(ey, 0.05, material = spheres)
        s4 = Sphere(ez, 0.05, material = spheres)
        a1 = Arrow(null, ex, 0.01, material = links)
        a2 = Arrow(null, ey, 0.01, material = links)
        a3 = Arrow(null, ez, 0.01, material = links)
        scene = Scene([s1, s2, s3, s4, a1, a2, a3])
        scene.view()

    if 0:
        scene = Scene([])
        scale = ColorScale(10.)
        for x in range(11):
            color = scale(x)
            m = Material(diffuse_color = color)
            scene.addObject(Cube(Vector(x,0.,0.), 0.2, material=m))
        scene.view()

    if 1:
        points = [Vector(0., 0., 0.),
                  Vector(0., 1., 0.),
                  Vector(1., 1., 0.),
                  Vector(1., 0., 0.),
                  Vector(1., 0., 1.),
                  Vector(1., 1., 1.)]
        indices = [[0, 1, 2, 3, 0], [3, 4, 5, 2, 3]]
        scene = Scene(Polygons(points, indices,
                               material=EmissiveMaterial('blue')))
        scene.view()

    if 0:
        points = [Vector(0., 0., 0.),
                  Vector(0., 1., 0.),
                  Vector(1., 1., 0.),
                  Vector(1., 0., 0.),
                  Vector(1., 0., 1.),
                  Vector(1., 1., 1.)]
        scene = Scene(PolyLines(points, material = EmissiveMaterial('green')))
        scene.view()