/usr/bin/pyevolve-graph is in python-pyevolve 0.6~rc1+svn398+dfsg-2.
This file is owned by root:root, with mode 0o755.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 | #!/usr/bin/python
# This code is part of Pyevolve.
# It requires matplotlib v.0.98.5.0+
from optparse import OptionParser
from optparse import OptionGroup
def graph_pop_heatmap_raw(all, minimize, colormap="jet", filesave=None):
pylab.imshow(all, aspect="auto", interpolation="gaussian", cmap=matplotlib.cm.__dict__[colormap])
pylab.title("Plot of pop. raw scores along the generations")
pylab.xlabel('Population')
pylab.ylabel('Generations')
pylab.grid(True)
pylab.colorbar()
if filesave:
pylab.savefig(filesave)
print "Graph saved to %s file !" % (filesave,)
else:
pylab.show()
def graph_pop_heatmap_fitness(all, minimize, colormap="jet", filesave=None):
pylab.imshow(all, aspect="equal", interpolation="gaussian", cmap=matplotlib.cm.__dict__[colormap])
pylab.title("Plot of pop. fitness scores along the generations")
pylab.xlabel('Population')
pylab.ylabel('Generations')
pylab.grid(True)
pylab.colorbar()
if filesave:
pylab.savefig(filesave)
print "Graph saved to %s file !" % (filesave,)
else:
pylab.show()
def graph_diff_raw(all, minimize, filesave=None):
x = []
diff_raw_y = []
diff_fit_y = []
for it in all:
x.append(it["generation"])
diff_raw_y.append(it["rawMax"] - it["rawMin"])
diff_fit_y.append(it["fitMax"] - it["fitMin"])
pylab.figure()
pylab.subplot(211)
pylab.plot(x, diff_raw_y, "g", label="Raw difference", linewidth=1.2)
pylab.fill_between(x, diff_raw_y, color="g", alpha=0.1)
diff_raw_max= max(diff_raw_y)
gen_max_raw = x[diff_raw_y.index(diff_raw_max)]
pylab.annotate("Maximum (%.2f)" % (diff_raw_max,), xy=(gen_max_raw, diff_raw_max), xycoords='data',
xytext=(-150, -20), textcoords='offset points',
arrowprops=dict(arrowstyle="->",
connectionstyle="arc"),
)
pylab.xlabel("Generation (#)")
pylab.ylabel("Raw difference")
pylab.title("Plot of evolution identified by '%s'" % (options.identify))
pylab.grid(True)
pylab.legend(prop=FontProperties(size="smaller"))
pylab.subplot(212)
pylab.plot(x, diff_fit_y, "b", label="Fitness difference", linewidth=1.2)
pylab.fill_between(x, diff_fit_y, color="b", alpha=0.1)
diff_fit_max= max(diff_fit_y)
gen_max_fit = x[diff_fit_y.index(diff_fit_max)]
pylab.annotate("Maximum (%.2f)" % (diff_fit_max,), xy=(gen_max_fit, diff_fit_max), xycoords='data',
xytext=(-150, -20), textcoords='offset points',
arrowprops=dict(arrowstyle="->",
connectionstyle="arc"),
)
pylab.xlabel("Generation (#)")
pylab.ylabel("Fitness difference")
pylab.grid(True)
pylab.legend(prop=FontProperties(size="smaller"))
if filesave:
pylab.savefig(filesave)
print "Graph saved to %s file !" % (filesave,)
else:
pylab.show()
def graph_maxmin_raw(all, minimize, filesave=None):
x = []
max_y = []
min_y = []
std_dev_y = []
avg_y = []
for it in all:
x.append(it["generation"])
max_y.append(it["rawMax"])
min_y.append(it["rawMin"])
std_dev_y.append(it["rawDev"])
avg_y.append(it["rawAve"])
pylab.figure()
pylab.plot(x, max_y, "g", label="Max raw", linewidth=1.2)
pylab.plot(x, min_y, "r", label="Min raw", linewidth=1.2)
pylab.plot(x, avg_y, "b", label="Avg raw", linewidth=1.2)
pylab.plot(x, std_dev_y, "k", label="Std Dev raw", linewidth=1.2)
pylab.fill_between(x, min_y, max_y, color="g", alpha=0.1, label="Diff max/min")
if minimize: raw_max = min(min_y)
else: raw_max= max(max_y)
if minimize: gen_max = x[min_y.index(raw_max)]
else: gen_max = x[max_y.index(raw_max)]
min_std = min(std_dev_y)
gen_min_std = x[std_dev_y.index(min_std)]
max_std = max(std_dev_y)
gen_max_std = x[std_dev_y.index(max_std)]
if minimize: annot_label = "Minimum (%.2f)" % (raw_max,)
else: annot_label = "Maximum (%.2f)" % (raw_max,)
pylab.annotate(annot_label, xy=(gen_max, raw_max), xycoords='data',
xytext=(8, 15), textcoords='offset points',
arrowprops=dict(arrowstyle="->",
connectionstyle="arc"),
)
pylab.annotate("Min StdDev (%.2f)" % (min_std,), xy=(gen_min_std, min_std), xycoords='data',
xytext=(8, 15), textcoords='offset points',
arrowprops=dict(arrowstyle="->",
connectionstyle="arc"),
)
pylab.annotate("Max StdDev (%.2f)" % (max_std,), xy=(gen_max_std, max_std), xycoords='data',
xytext=(8, 15), textcoords='offset points',
arrowprops=dict(arrowstyle="->",
connectionstyle="arc"),
)
pylab.xlabel("Generation (#)")
pylab.ylabel("Raw score")
pylab.title("Plot of evolution identified by '%s' (raw scores)" % (options.identify))
pylab.grid(True)
pylab.legend(prop=FontProperties(size="smaller"))
if filesave:
pylab.savefig(filesave)
print "Graph saved to %s file !" % (filesave,)
else:
pylab.show()
def graph_maxmin_fitness(all, minimize, filesave=None):
x = []
max_y = []
min_y = []
avg_y = []
for it in all:
x.append(it["generation"])
max_y.append(it["fitMax"])
min_y.append(it["fitMin"])
avg_y.append(it["fitAve"])
pylab.figure()
pylab.plot(x, max_y, "g", label="Max fitness")
pylab.plot(x, min_y, "r", label="Min fitness")
pylab.plot(x, avg_y, "b", label="Avg fitness")
pylab.fill_between(x, min_y, max_y, color="g", alpha=0.1, label="Diff max/min")
if minimize: raw_max = min(min_y)
else: raw_max = max(max_y)
if minimize: gen_max = x[min_y.index(raw_max)]
else: gen_max = x[max_y.index(raw_max)]
if minimize: annot_label = "Minimum (%.2f)" % (raw_max,)
else: annot_label = "Maximum (%.2f)" % (raw_max,)
pylab.annotate(annot_label, xy=(gen_max, raw_max), xycoords='data',
xytext=(8, 15), textcoords='offset points',
arrowprops=dict(arrowstyle="->",
connectionstyle="arc"),
)
pylab.xlabel("Generation (#)")
pylab.ylabel("Fitness score")
pylab.title("Plot of evolution identified by '%s' (fitness scores)" % (options.identify))
pylab.grid(True)
pylab.legend(prop=FontProperties(size="smaller"))
if filesave:
pylab.savefig(filesave)
print "Graph saved to %s file !" % (filesave,)
else:
pylab.show()
def graph_errorbars_raw(all, minimize, filesave=None):
x = []
y = []
yerr_max = []
yerr_min = []
for it in all:
x.append(it["generation"])
y.append(it["rawAve"])
ymax = it["rawMax"] - it["rawAve"]
ymin = it["rawAve"] - it["rawMin"]
yerr_max.append(ymax)
yerr_min.append(ymin)
pylab.figure()
pylab.errorbar(x, y, [yerr_min, yerr_max], ecolor="g")
pylab.xlabel('Generation (#)')
pylab.ylabel('Raw score Min/Avg/Max')
pylab.title("Plot of evolution identified by '%s' (raw scores)" % (options.identify))
pylab.grid(True)
if filesave:
pylab.savefig(filesave)
print "Graph saved to %s file !" % (filesave,)
else:
pylab.show()
def graph_errorbars_fitness(all, minimize, filesave=None):
x = []
y = []
yerr_max = []
yerr_min = []
for it in all:
x.append(it["generation"])
y.append(it["fitAve"])
ymax = it["fitMax"] - it["fitAve"]
ymin = it["fitAve"] - it["fitMin"]
yerr_max.append(ymax)
yerr_min.append(ymin)
pylab.figure()
pylab.errorbar(x, y, [yerr_min, yerr_max], ecolor="g")
pylab.xlabel('Generation (#)')
pylab.ylabel('Fitness score Min/Avg/Max')
pylab.title("Plot of evolution identified by '%s' (fitness scores)" % (options.identify))
pylab.grid(True)
if filesave:
pylab.savefig(filesave)
print "Graph saved to %s file !" % (filesave,)
else:
pylab.show()
def graph_compare_raw(all, minimize, id_list, filesave=None):
colors_list = ["g", "b", "r", "k", "m", "y"]
index = 0
pylab.figure()
for it_out in all:
x = []
max_y = []
min_y = []
for it in it_out:
x.append(it["generation"])
max_y.append(it["rawMax"])
min_y.append(it["rawMin"])
if minimize:
pylab.plot(x, max_y, colors_list[index], linewidth=0.05)
pylab.plot(x, min_y, colors_list[index], label="Raw min (%s)" % (id_list[index],), linewidth=1.3)
else:
pylab.plot(x, max_y, colors_list[index], label="Raw max (%s)" % (id_list[index],), linewidth=1.3)
pylab.plot(x, min_y, colors_list[index], linewidth=0.05)
pylab.fill_between(x, min_y, max_y, color=colors_list[index], alpha=0.06,)
index += 1
pylab.xlabel("Generation (#)")
pylab.ylabel("Raw score")
pylab.title("Plot of evolution identified by '%s' (raw scores)" % ('many',))
pylab.grid(True)
pylab.legend(prop=FontProperties(size="smaller"))
if filesave:
pylab.savefig(filesave)
print "Graph saved to %s file !" % (filesave,)
else:
pylab.show()
def graph_compare_fitness(all, minimize, id_list, filesave=None):
colors_list = ["g", "b", "r", "k", "m", "y"]
index = 0
pylab.figure()
for it_out in all:
x = []
max_y = []
min_y = []
for it in it_out:
x.append(it["generation"])
max_y.append(it["fitMax"])
min_y.append(it["fitMin"])
if minimize:
pylab.plot(x, max_y, colors_list[index], linewidth=0.05)
pylab.plot(x, min_y, colors_list[index], label="Fitness min (%s)" % (id_list[index],), linewidth=1.3)
else:
pylab.plot(x, max_y, colors_list[index], label="Fitness max (%s)" % (id_list[index],), linewidth=1.3)
pylab.plot(x, min_y, colors_list[index], linewidth=0.05)
pylab.fill_between(x, min_y, max_y, color=colors_list[index], alpha=0.06,)
index += 1
pylab.xlabel("Generation (#)")
pylab.ylabel("Fitness score")
pylab.title("Plot of evolution identified by '%s' (fitness scores)" % ('many',))
pylab.grid(True)
pylab.legend(prop=FontProperties(size="smaller"))
if filesave:
pylab.savefig(filesave)
print "Graph saved to %s file !" % (filesave,)
else:
pylab.show()
if __name__ == "__main__":
from pyevolve import __version__ as pyevolve_version
from pyevolve import __author__ as pyevolve_author
popGraph = False
print "Pyevolve %s - Graph Plot Tool" % (pyevolve_version,)
print "By %s\n" % (pyevolve_author,)
parser = OptionParser()
parser.add_option("-f", "--file", dest="dbfile",
help="Database file to read (default is 'pyevolve.db').", metavar="FILENAME", default="pyevolve.db")
parser.add_option("-i", "--identify", dest="identify",
help="The identify of evolution.", metavar="IDENTIFY")
parser.add_option("-o", "--outfile", dest="outfile",
help="""Write the graph image to a file (don't use extension, just the filename, default is png format, but you can change using --extension (-e) parameter).""",
metavar="OUTFILE")
parser.add_option("-e", "--extension", dest="extension",
help="""Graph image file format. Supported options (formats) are: emf, eps, pdf, png, ps, raw, rgba, svg, svgz. Default is 'png'.""",
metavar="EXTENSION", default="png")
parser.add_option("-g", "--genrange", dest="genrange",
help="""This is the generation range of the graph, ex: 1:30 (interval between 1 and 30).""",
metavar="GENRANGE")
parser.add_option("-l", "--lindrange", dest="lindrange",
help="""This is the individual range of the graph, ex: 1:30 (individuals between 1 and 30), only applies to heatmaps.""",
metavar="LINDRANGE")
parser.add_option("-c", "--colormap", dest="colormap",
help="""Sets the Color Map for the graph types 8 and 9. Some options are: summer, bone, gray, hot, jet, cooper, spectral. The default is 'jet'.""",
metavar="COLORMAP", default="jet")
parser.add_option("-m", "--minimize", action="store_true",
help="Sets the 'Minimize' mode, default is the Maximize mode. This option makes sense if you are minimizing your evaluation function.", dest="minimize")
group = OptionGroup(parser, "Graph types", "This is the supported graph types")
group.add_option("-0", action="store_true", help="Write all graphs to files. Graph types: 1, 2, 3, 4 and 5.", dest="all_graphs")
group.add_option("-1", action="store_true", help="Error bars graph (raw scores).", dest="errorbars_raw")
group.add_option("-2", action="store_true", help="Error bars graph (fitness scores).", dest="errorbars_fitness")
group.add_option("-3", action="store_true", help="Max/min/avg/std. dev. graph (raw scores).", dest="maxmin_raw")
group.add_option("-4", action="store_true", help="Max/min/avg graph (fitness scores).", dest="maxmin_fitness")
group.add_option("-5", action="store_true", help="Raw and Fitness min/max difference graph.", dest="diff_raw")
group.add_option("-6", action="store_true", help="Compare best raw score of two or more evolutions (you must specify the identify comma-separed list with --identify (-i) parameter, like 'one, two, three'), the maximum is 6 items.", dest="compare_raw")
group.add_option("-7", action="store_true", help="Compare best fitness score of two or more evolutions (you must specify the identify comma-separed list with --identify (-i) parameter, like 'one, two, three'), the maximum is 6 items.", dest="compare_fitness")
group.add_option("-8", action="store_true", help="Show a heat map of population raw score distribution between generations.", dest="pop_heatmap_raw")
group.add_option("-9", action="store_true", help="Show a heat map of population fitness score distribution between generations.", dest="pop_heatmap_fitness")
parser.add_option_group(group)
(options, args) = parser.parse_args()
if options.identify and (not options.errorbars_raw
and not options.errorbars_fitness
and not options.maxmin_raw
and not options.maxmin_fitness
and not options.diff_raw
and not options.all_graphs
and not options.compare_raw
and not options.pop_heatmap_raw
and not options.pop_heatmap_fitness
and not options.compare_fitness):
parser.error("You must choose one graph type !")
if (not options.identify) or (not options.dbfile):
parser.print_help()
exit()
print "Loading modules...."
import os.path
if not os.path.exists(options.dbfile):
print "Database file '%s' not found !" % (options.dbfile, )
exit()
import pylab
from matplotlib.font_manager import FontProperties
import matplotlib.cm
import sqlite3
import math
import os
print "Loading database and creating graph..."
identify_list = options.identify.split(",")
identify_list = map(str.strip, identify_list)
all = None
if options.pop_heatmap_raw or options.pop_heatmap_fitness:
conn = sqlite3.connect(options.dbfile)
conn.row_factory = sqlite3.Row
c = conn.cursor()
if options.genrange:
genrange = options.genrange.split(":")
ret = c.execute("select distinct generation from population where identify = ? and generation between ? and ?", (options.identify, genrange[0], genrange[1]))
else:
ret = c.execute("select distinct generation from population where identify = ?", (options.identify,))
generations = ret.fetchall()
if len(generations) <= 0:
print "No generation data found for the identify '%s' !" % (options.identify,)
exit()
all = []
for gen in generations:
pop_tmp = []
if options.lindrange:
individual_range = options.lindrange.split(":")
ret = c.execute("""
select * from population
where identify = ?
and generation = ?
and individual between ? and ?
""", (options.identify, gen[0], individual_range[0], individual_range[1]))
else:
ret = c.execute("""
select * from population
where identify = ?
and generation = ?
""", (options.identify, gen[0]))
ret_fetch = ret.fetchall()
for it in ret_fetch:
if options.pop_heatmap_raw:
pop_tmp.append(it["raw"])
else:
pop_tmp.append(it["fitness"])
all.append(pop_tmp)
ret.close()
conn.close()
if len(all) <= 0:
print "No statistic data found for the identify '%s' !" % (options.identify,)
exit()
print "%d generations found !" % (len(all),)
popGraph = True
if len(identify_list) == 1 and not popGraph:
if options.compare_raw or options.compare_fitness:
parser.error("You can't use this graph type with only one identify !")
conn = sqlite3.connect(options.dbfile)
conn.row_factory = sqlite3.Row
c = conn.cursor()
if options.genrange:
genrange = options.genrange.split(":")
ret = c.execute("select * from statistics where identify = ? and generation between ? and ?", (options.identify, genrange[0], genrange[1]))
else:
ret = c.execute("select * from statistics where identify = ?", (options.identify,))
all = ret.fetchall()
ret.close()
conn.close()
if len(all) <= 0:
print "No statistic data found for the identify '%s' !" % (options.identify,)
exit()
print "%d generations found !" % (len(all),)
elif len(identify_list) > 1 and not popGraph:
all = []
if (not options.compare_raw) and (not options.compare_fitness):
parser.error("You can't use many ids with this graph type !")
conn = sqlite3.connect(options.dbfile)
conn.row_factory = sqlite3.Row
c = conn.cursor()
for item in identify_list:
if options.genrange:
genrange = options.genrange.split(":")
ret = c.execute("select * from statistics where identify = ? and generation between ? and ?", (item, genrange[0], genrange[1]))
else:
ret = c.execute("select * from statistics where identify = ?", (item,))
fetchall = ret.fetchall()
if len(fetchall) > 0:
all.append(fetchall)
ret.close()
conn.close()
if len(all) <= 0:
print "No statistic data found for the identify list '%s' !" % (options.identify,)
exit()
print "%d identify found !" % (len(all),)
if options.errorbars_raw:
if options.outfile: graph_errorbars_raw(all, options.minimize, options.outfile + "." + options.extension)
else: graph_errorbars_raw(all, options.minimize)
if options.errorbars_fitness:
if options.outfile: graph_errorbars_fitness(all, options.minimize, options.outfile + "." + options.extension)
else: graph_errorbars_fitness(all, options.minimize)
if options.maxmin_raw:
if options.outfile: graph_maxmin_raw(all, options.minimize, options.outfile + "." + options.extension)
else: graph_maxmin_raw(all, options.minimize)
if options.maxmin_fitness:
if options.outfile: graph_maxmin_fitness(all, options.minimize, options.outfile + "." + options.extension)
else: graph_maxmin_fitness(all, options.minimize)
if options.diff_raw:
if options.outfile: graph_diff_raw(all, options.minimize, options.outfile + "." + options.extension)
else: graph_diff_raw(all, options.minimize)
if options.all_graphs:
all_graph_functions = [graph_errorbars_raw, graph_errorbars_fitness, graph_maxmin_raw,
graph_maxmin_fitness, graph_diff_raw]
if options.outfile:
parser.error("You can't specify one file to all graphs !")
dirname = "graphs_" + options.identify
if not os.path.isdir(dirname):
os.mkdir(dirname)
for graph in all_graph_functions:
filename = dirname + "/"
filename += options.identify + "_" + graph.__name__[6:]
filename += "." + options.extension
graph(all, options.minimize, filename)
print "\n\tDone ! The graphs was saved in the directory '%s'" % (dirname)
if options.compare_raw:
if options.outfile: graph_compare_raw(all, options.minimize, identify_list, options.outfile + "." + options.extension)
else: graph_compare_raw(all, options.minimize, identify_list )
if options.compare_fitness:
if options.outfile: graph_compare_fitness(all, options.minimize, identify_list, options.outfile + "." + options.extension)
else: graph_compare_fitness(all, options.minimize, identify_list )
if options.pop_heatmap_raw:
if options.outfile: graph_pop_heatmap_raw(all, options.minimize, options.colormap, options.outfile + "." + options.extension)
else: graph_pop_heatmap_raw(all, options.minimize, options.colormap)
if options.pop_heatmap_fitness:
if options.outfile: graph_pop_heatmap_fitness(all, options.minimize, options.colormap, options.outfile + "." + options.extension)
else: graph_pop_heatmap_fitness(all, options.minimize, options.colormap)
|