/usr/share/pyshared/ply/yacc.py is in python-ply 3.4-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 | # -----------------------------------------------------------------------------
# ply: yacc.py
#
# Copyright (C) 2001-2011,
# David M. Beazley (Dabeaz LLC)
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# * Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
# * Neither the name of the David Beazley or Dabeaz LLC may be used to
# endorse or promote products derived from this software without
# specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
# -----------------------------------------------------------------------------
#
# This implements an LR parser that is constructed from grammar rules defined
# as Python functions. The grammer is specified by supplying the BNF inside
# Python documentation strings. The inspiration for this technique was borrowed
# from John Aycock's Spark parsing system. PLY might be viewed as cross between
# Spark and the GNU bison utility.
#
# The current implementation is only somewhat object-oriented. The
# LR parser itself is defined in terms of an object (which allows multiple
# parsers to co-exist). However, most of the variables used during table
# construction are defined in terms of global variables. Users shouldn't
# notice unless they are trying to define multiple parsers at the same
# time using threads (in which case they should have their head examined).
#
# This implementation supports both SLR and LALR(1) parsing. LALR(1)
# support was originally implemented by Elias Ioup (ezioup@alumni.uchicago.edu),
# using the algorithm found in Aho, Sethi, and Ullman "Compilers: Principles,
# Techniques, and Tools" (The Dragon Book). LALR(1) has since been replaced
# by the more efficient DeRemer and Pennello algorithm.
#
# :::::::: WARNING :::::::
#
# Construction of LR parsing tables is fairly complicated and expensive.
# To make this module run fast, a *LOT* of work has been put into
# optimization---often at the expensive of readability and what might
# consider to be good Python "coding style." Modify the code at your
# own risk!
# ----------------------------------------------------------------------------
__version__ = "3.4"
__tabversion__ = "3.2" # Table version
#-----------------------------------------------------------------------------
# === User configurable parameters ===
#
# Change these to modify the default behavior of yacc (if you wish)
#-----------------------------------------------------------------------------
yaccdebug = 1 # Debugging mode. If set, yacc generates a
# a 'parser.out' file in the current directory
debug_file = 'parser.out' # Default name of the debugging file
tab_module = 'parsetab' # Default name of the table module
default_lr = 'LALR' # Default LR table generation method
error_count = 3 # Number of symbols that must be shifted to leave recovery mode
yaccdevel = 0 # Set to True if developing yacc. This turns off optimized
# implementations of certain functions.
resultlimit = 40 # Size limit of results when running in debug mode.
pickle_protocol = 0 # Protocol to use when writing pickle files
import re, types, sys, os.path
# Compatibility function for python 2.6/3.0
if sys.version_info[0] < 3:
def func_code(f):
return f.func_code
else:
def func_code(f):
return f.__code__
# Compatibility
try:
MAXINT = sys.maxint
except AttributeError:
MAXINT = sys.maxsize
# Python 2.x/3.0 compatibility.
def load_ply_lex():
if sys.version_info[0] < 3:
import lex
else:
import ply.lex as lex
return lex
# This object is a stand-in for a logging object created by the
# logging module. PLY will use this by default to create things
# such as the parser.out file. If a user wants more detailed
# information, they can create their own logging object and pass
# it into PLY.
class PlyLogger(object):
def __init__(self,f):
self.f = f
def debug(self,msg,*args,**kwargs):
self.f.write((msg % args) + "\n")
info = debug
def warning(self,msg,*args,**kwargs):
self.f.write("WARNING: "+ (msg % args) + "\n")
def error(self,msg,*args,**kwargs):
self.f.write("ERROR: " + (msg % args) + "\n")
critical = debug
# Null logger is used when no output is generated. Does nothing.
class NullLogger(object):
def __getattribute__(self,name):
return self
def __call__(self,*args,**kwargs):
return self
# Exception raised for yacc-related errors
class YaccError(Exception): pass
# Format the result message that the parser produces when running in debug mode.
def format_result(r):
repr_str = repr(r)
if '\n' in repr_str: repr_str = repr(repr_str)
if len(repr_str) > resultlimit:
repr_str = repr_str[:resultlimit]+" ..."
result = "<%s @ 0x%x> (%s)" % (type(r).__name__,id(r),repr_str)
return result
# Format stack entries when the parser is running in debug mode
def format_stack_entry(r):
repr_str = repr(r)
if '\n' in repr_str: repr_str = repr(repr_str)
if len(repr_str) < 16:
return repr_str
else:
return "<%s @ 0x%x>" % (type(r).__name__,id(r))
#-----------------------------------------------------------------------------
# === LR Parsing Engine ===
#
# The following classes are used for the LR parser itself. These are not
# used during table construction and are independent of the actual LR
# table generation algorithm
#-----------------------------------------------------------------------------
# This class is used to hold non-terminal grammar symbols during parsing.
# It normally has the following attributes set:
# .type = Grammar symbol type
# .value = Symbol value
# .lineno = Starting line number
# .endlineno = Ending line number (optional, set automatically)
# .lexpos = Starting lex position
# .endlexpos = Ending lex position (optional, set automatically)
class YaccSymbol:
def __str__(self): return self.type
def __repr__(self): return str(self)
# This class is a wrapper around the objects actually passed to each
# grammar rule. Index lookup and assignment actually assign the
# .value attribute of the underlying YaccSymbol object.
# The lineno() method returns the line number of a given
# item (or 0 if not defined). The linespan() method returns
# a tuple of (startline,endline) representing the range of lines
# for a symbol. The lexspan() method returns a tuple (lexpos,endlexpos)
# representing the range of positional information for a symbol.
class YaccProduction:
def __init__(self,s,stack=None):
self.slice = s
self.stack = stack
self.lexer = None
self.parser= None
def __getitem__(self,n):
if n >= 0: return self.slice[n].value
else: return self.stack[n].value
def __setitem__(self,n,v):
self.slice[n].value = v
def __getslice__(self,i,j):
return [s.value for s in self.slice[i:j]]
def __len__(self):
return len(self.slice)
def lineno(self,n):
return getattr(self.slice[n],"lineno",0)
def set_lineno(self,n,lineno):
self.slice[n].lineno = lineno
def linespan(self,n):
startline = getattr(self.slice[n],"lineno",0)
endline = getattr(self.slice[n],"endlineno",startline)
return startline,endline
def lexpos(self,n):
return getattr(self.slice[n],"lexpos",0)
def lexspan(self,n):
startpos = getattr(self.slice[n],"lexpos",0)
endpos = getattr(self.slice[n],"endlexpos",startpos)
return startpos,endpos
def error(self):
raise SyntaxError
# -----------------------------------------------------------------------------
# == LRParser ==
#
# The LR Parsing engine.
# -----------------------------------------------------------------------------
class LRParser:
def __init__(self,lrtab,errorf):
self.productions = lrtab.lr_productions
self.action = lrtab.lr_action
self.goto = lrtab.lr_goto
self.errorfunc = errorf
def errok(self):
self.errorok = 1
def restart(self):
del self.statestack[:]
del self.symstack[:]
sym = YaccSymbol()
sym.type = '$end'
self.symstack.append(sym)
self.statestack.append(0)
def parse(self,input=None,lexer=None,debug=0,tracking=0,tokenfunc=None):
if debug or yaccdevel:
if isinstance(debug,int):
debug = PlyLogger(sys.stderr)
return self.parsedebug(input,lexer,debug,tracking,tokenfunc)
elif tracking:
return self.parseopt(input,lexer,debug,tracking,tokenfunc)
else:
return self.parseopt_notrack(input,lexer,debug,tracking,tokenfunc)
# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# parsedebug().
#
# This is the debugging enabled version of parse(). All changes made to the
# parsing engine should be made here. For the non-debugging version,
# copy this code to a method parseopt() and delete all of the sections
# enclosed in:
#
# #--! DEBUG
# statements
# #--! DEBUG
#
# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
def parsedebug(self,input=None,lexer=None,debug=None,tracking=0,tokenfunc=None):
lookahead = None # Current lookahead symbol
lookaheadstack = [ ] # Stack of lookahead symbols
actions = self.action # Local reference to action table (to avoid lookup on self.)
goto = self.goto # Local reference to goto table (to avoid lookup on self.)
prod = self.productions # Local reference to production list (to avoid lookup on self.)
pslice = YaccProduction(None) # Production object passed to grammar rules
errorcount = 0 # Used during error recovery
# --! DEBUG
debug.info("PLY: PARSE DEBUG START")
# --! DEBUG
# If no lexer was given, we will try to use the lex module
if not lexer:
lex = load_ply_lex()
lexer = lex.lexer
# Set up the lexer and parser objects on pslice
pslice.lexer = lexer
pslice.parser = self
# If input was supplied, pass to lexer
if input is not None:
lexer.input(input)
if tokenfunc is None:
# Tokenize function
get_token = lexer.token
else:
get_token = tokenfunc
# Set up the state and symbol stacks
statestack = [ ] # Stack of parsing states
self.statestack = statestack
symstack = [ ] # Stack of grammar symbols
self.symstack = symstack
pslice.stack = symstack # Put in the production
errtoken = None # Err token
# The start state is assumed to be (0,$end)
statestack.append(0)
sym = YaccSymbol()
sym.type = "$end"
symstack.append(sym)
state = 0
while 1:
# Get the next symbol on the input. If a lookahead symbol
# is already set, we just use that. Otherwise, we'll pull
# the next token off of the lookaheadstack or from the lexer
# --! DEBUG
debug.debug('')
debug.debug('State : %s', state)
# --! DEBUG
if not lookahead:
if not lookaheadstack:
lookahead = get_token() # Get the next token
else:
lookahead = lookaheadstack.pop()
if not lookahead:
lookahead = YaccSymbol()
lookahead.type = "$end"
# --! DEBUG
debug.debug('Stack : %s',
("%s . %s" % (" ".join([xx.type for xx in symstack][1:]), str(lookahead))).lstrip())
# --! DEBUG
# Check the action table
ltype = lookahead.type
t = actions[state].get(ltype)
if t is not None:
if t > 0:
# shift a symbol on the stack
statestack.append(t)
state = t
# --! DEBUG
debug.debug("Action : Shift and goto state %s", t)
# --! DEBUG
symstack.append(lookahead)
lookahead = None
# Decrease error count on successful shift
if errorcount: errorcount -=1
continue
if t < 0:
# reduce a symbol on the stack, emit a production
p = prod[-t]
pname = p.name
plen = p.len
# Get production function
sym = YaccSymbol()
sym.type = pname # Production name
sym.value = None
# --! DEBUG
if plen:
debug.info("Action : Reduce rule [%s] with %s and goto state %d", p.str, "["+",".join([format_stack_entry(_v.value) for _v in symstack[-plen:]])+"]",-t)
else:
debug.info("Action : Reduce rule [%s] with %s and goto state %d", p.str, [],-t)
# --! DEBUG
if plen:
targ = symstack[-plen-1:]
targ[0] = sym
# --! TRACKING
if tracking:
t1 = targ[1]
sym.lineno = t1.lineno
sym.lexpos = t1.lexpos
t1 = targ[-1]
sym.endlineno = getattr(t1,"endlineno",t1.lineno)
sym.endlexpos = getattr(t1,"endlexpos",t1.lexpos)
# --! TRACKING
# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# The code enclosed in this section is duplicated
# below as a performance optimization. Make sure
# changes get made in both locations.
pslice.slice = targ
try:
# Call the grammar rule with our special slice object
del symstack[-plen:]
del statestack[-plen:]
p.callable(pslice)
# --! DEBUG
debug.info("Result : %s", format_result(pslice[0]))
# --! DEBUG
symstack.append(sym)
state = goto[statestack[-1]][pname]
statestack.append(state)
except SyntaxError:
# If an error was set. Enter error recovery state
lookaheadstack.append(lookahead)
symstack.pop()
statestack.pop()
state = statestack[-1]
sym.type = 'error'
lookahead = sym
errorcount = error_count
self.errorok = 0
continue
# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
else:
# --! TRACKING
if tracking:
sym.lineno = lexer.lineno
sym.lexpos = lexer.lexpos
# --! TRACKING
targ = [ sym ]
# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# The code enclosed in this section is duplicated
# above as a performance optimization. Make sure
# changes get made in both locations.
pslice.slice = targ
try:
# Call the grammar rule with our special slice object
p.callable(pslice)
# --! DEBUG
debug.info("Result : %s", format_result(pslice[0]))
# --! DEBUG
symstack.append(sym)
state = goto[statestack[-1]][pname]
statestack.append(state)
except SyntaxError:
# If an error was set. Enter error recovery state
lookaheadstack.append(lookahead)
symstack.pop()
statestack.pop()
state = statestack[-1]
sym.type = 'error'
lookahead = sym
errorcount = error_count
self.errorok = 0
continue
# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
if t == 0:
n = symstack[-1]
result = getattr(n,"value",None)
# --! DEBUG
debug.info("Done : Returning %s", format_result(result))
debug.info("PLY: PARSE DEBUG END")
# --! DEBUG
return result
if t == None:
# --! DEBUG
debug.error('Error : %s',
("%s . %s" % (" ".join([xx.type for xx in symstack][1:]), str(lookahead))).lstrip())
# --! DEBUG
# We have some kind of parsing error here. To handle
# this, we are going to push the current token onto
# the tokenstack and replace it with an 'error' token.
# If there are any synchronization rules, they may
# catch it.
#
# In addition to pushing the error token, we call call
# the user defined p_error() function if this is the
# first syntax error. This function is only called if
# errorcount == 0.
if errorcount == 0 or self.errorok:
errorcount = error_count
self.errorok = 0
errtoken = lookahead
if errtoken.type == "$end":
errtoken = None # End of file!
if self.errorfunc:
global errok,token,restart
errok = self.errok # Set some special functions available in error recovery
token = get_token
restart = self.restart
if errtoken and not hasattr(errtoken,'lexer'):
errtoken.lexer = lexer
tok = self.errorfunc(errtoken)
del errok, token, restart # Delete special functions
if self.errorok:
# User must have done some kind of panic
# mode recovery on their own. The
# returned token is the next lookahead
lookahead = tok
errtoken = None
continue
else:
if errtoken:
if hasattr(errtoken,"lineno"): lineno = lookahead.lineno
else: lineno = 0
if lineno:
sys.stderr.write("yacc: Syntax error at line %d, token=%s\n" % (lineno, errtoken.type))
else:
sys.stderr.write("yacc: Syntax error, token=%s" % errtoken.type)
else:
sys.stderr.write("yacc: Parse error in input. EOF\n")
return
else:
errorcount = error_count
# case 1: the statestack only has 1 entry on it. If we're in this state, the
# entire parse has been rolled back and we're completely hosed. The token is
# discarded and we just keep going.
if len(statestack) <= 1 and lookahead.type != "$end":
lookahead = None
errtoken = None
state = 0
# Nuke the pushback stack
del lookaheadstack[:]
continue
# case 2: the statestack has a couple of entries on it, but we're
# at the end of the file. nuke the top entry and generate an error token
# Start nuking entries on the stack
if lookahead.type == "$end":
# Whoa. We're really hosed here. Bail out
return
if lookahead.type != 'error':
sym = symstack[-1]
if sym.type == 'error':
# Hmmm. Error is on top of stack, we'll just nuke input
# symbol and continue
lookahead = None
continue
t = YaccSymbol()
t.type = 'error'
if hasattr(lookahead,"lineno"):
t.lineno = lookahead.lineno
t.value = lookahead
lookaheadstack.append(lookahead)
lookahead = t
else:
symstack.pop()
statestack.pop()
state = statestack[-1] # Potential bug fix
continue
# Call an error function here
raise RuntimeError("yacc: internal parser error!!!\n")
# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# parseopt().
#
# Optimized version of parse() method. DO NOT EDIT THIS CODE DIRECTLY.
# Edit the debug version above, then copy any modifications to the method
# below while removing #--! DEBUG sections.
# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
def parseopt(self,input=None,lexer=None,debug=0,tracking=0,tokenfunc=None):
lookahead = None # Current lookahead symbol
lookaheadstack = [ ] # Stack of lookahead symbols
actions = self.action # Local reference to action table (to avoid lookup on self.)
goto = self.goto # Local reference to goto table (to avoid lookup on self.)
prod = self.productions # Local reference to production list (to avoid lookup on self.)
pslice = YaccProduction(None) # Production object passed to grammar rules
errorcount = 0 # Used during error recovery
# If no lexer was given, we will try to use the lex module
if not lexer:
lex = load_ply_lex()
lexer = lex.lexer
# Set up the lexer and parser objects on pslice
pslice.lexer = lexer
pslice.parser = self
# If input was supplied, pass to lexer
if input is not None:
lexer.input(input)
if tokenfunc is None:
# Tokenize function
get_token = lexer.token
else:
get_token = tokenfunc
# Set up the state and symbol stacks
statestack = [ ] # Stack of parsing states
self.statestack = statestack
symstack = [ ] # Stack of grammar symbols
self.symstack = symstack
pslice.stack = symstack # Put in the production
errtoken = None # Err token
# The start state is assumed to be (0,$end)
statestack.append(0)
sym = YaccSymbol()
sym.type = '$end'
symstack.append(sym)
state = 0
while 1:
# Get the next symbol on the input. If a lookahead symbol
# is already set, we just use that. Otherwise, we'll pull
# the next token off of the lookaheadstack or from the lexer
if not lookahead:
if not lookaheadstack:
lookahead = get_token() # Get the next token
else:
lookahead = lookaheadstack.pop()
if not lookahead:
lookahead = YaccSymbol()
lookahead.type = '$end'
# Check the action table
ltype = lookahead.type
t = actions[state].get(ltype)
if t is not None:
if t > 0:
# shift a symbol on the stack
statestack.append(t)
state = t
symstack.append(lookahead)
lookahead = None
# Decrease error count on successful shift
if errorcount: errorcount -=1
continue
if t < 0:
# reduce a symbol on the stack, emit a production
p = prod[-t]
pname = p.name
plen = p.len
# Get production function
sym = YaccSymbol()
sym.type = pname # Production name
sym.value = None
if plen:
targ = symstack[-plen-1:]
targ[0] = sym
# --! TRACKING
if tracking:
t1 = targ[1]
sym.lineno = t1.lineno
sym.lexpos = t1.lexpos
t1 = targ[-1]
sym.endlineno = getattr(t1,"endlineno",t1.lineno)
sym.endlexpos = getattr(t1,"endlexpos",t1.lexpos)
# --! TRACKING
# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# The code enclosed in this section is duplicated
# below as a performance optimization. Make sure
# changes get made in both locations.
pslice.slice = targ
try:
# Call the grammar rule with our special slice object
del symstack[-plen:]
del statestack[-plen:]
p.callable(pslice)
symstack.append(sym)
state = goto[statestack[-1]][pname]
statestack.append(state)
except SyntaxError:
# If an error was set. Enter error recovery state
lookaheadstack.append(lookahead)
symstack.pop()
statestack.pop()
state = statestack[-1]
sym.type = 'error'
lookahead = sym
errorcount = error_count
self.errorok = 0
continue
# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
else:
# --! TRACKING
if tracking:
sym.lineno = lexer.lineno
sym.lexpos = lexer.lexpos
# --! TRACKING
targ = [ sym ]
# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# The code enclosed in this section is duplicated
# above as a performance optimization. Make sure
# changes get made in both locations.
pslice.slice = targ
try:
# Call the grammar rule with our special slice object
p.callable(pslice)
symstack.append(sym)
state = goto[statestack[-1]][pname]
statestack.append(state)
except SyntaxError:
# If an error was set. Enter error recovery state
lookaheadstack.append(lookahead)
symstack.pop()
statestack.pop()
state = statestack[-1]
sym.type = 'error'
lookahead = sym
errorcount = error_count
self.errorok = 0
continue
# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
if t == 0:
n = symstack[-1]
return getattr(n,"value",None)
if t == None:
# We have some kind of parsing error here. To handle
# this, we are going to push the current token onto
# the tokenstack and replace it with an 'error' token.
# If there are any synchronization rules, they may
# catch it.
#
# In addition to pushing the error token, we call call
# the user defined p_error() function if this is the
# first syntax error. This function is only called if
# errorcount == 0.
if errorcount == 0 or self.errorok:
errorcount = error_count
self.errorok = 0
errtoken = lookahead
if errtoken.type == '$end':
errtoken = None # End of file!
if self.errorfunc:
global errok,token,restart
errok = self.errok # Set some special functions available in error recovery
token = get_token
restart = self.restart
if errtoken and not hasattr(errtoken,'lexer'):
errtoken.lexer = lexer
tok = self.errorfunc(errtoken)
del errok, token, restart # Delete special functions
if self.errorok:
# User must have done some kind of panic
# mode recovery on their own. The
# returned token is the next lookahead
lookahead = tok
errtoken = None
continue
else:
if errtoken:
if hasattr(errtoken,"lineno"): lineno = lookahead.lineno
else: lineno = 0
if lineno:
sys.stderr.write("yacc: Syntax error at line %d, token=%s\n" % (lineno, errtoken.type))
else:
sys.stderr.write("yacc: Syntax error, token=%s" % errtoken.type)
else:
sys.stderr.write("yacc: Parse error in input. EOF\n")
return
else:
errorcount = error_count
# case 1: the statestack only has 1 entry on it. If we're in this state, the
# entire parse has been rolled back and we're completely hosed. The token is
# discarded and we just keep going.
if len(statestack) <= 1 and lookahead.type != '$end':
lookahead = None
errtoken = None
state = 0
# Nuke the pushback stack
del lookaheadstack[:]
continue
# case 2: the statestack has a couple of entries on it, but we're
# at the end of the file. nuke the top entry and generate an error token
# Start nuking entries on the stack
if lookahead.type == '$end':
# Whoa. We're really hosed here. Bail out
return
if lookahead.type != 'error':
sym = symstack[-1]
if sym.type == 'error':
# Hmmm. Error is on top of stack, we'll just nuke input
# symbol and continue
lookahead = None
continue
t = YaccSymbol()
t.type = 'error'
if hasattr(lookahead,"lineno"):
t.lineno = lookahead.lineno
t.value = lookahead
lookaheadstack.append(lookahead)
lookahead = t
else:
symstack.pop()
statestack.pop()
state = statestack[-1] # Potential bug fix
continue
# Call an error function here
raise RuntimeError("yacc: internal parser error!!!\n")
# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# parseopt_notrack().
#
# Optimized version of parseopt() with line number tracking removed.
# DO NOT EDIT THIS CODE DIRECTLY. Copy the optimized version and remove
# code in the #--! TRACKING sections
# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
def parseopt_notrack(self,input=None,lexer=None,debug=0,tracking=0,tokenfunc=None):
lookahead = None # Current lookahead symbol
lookaheadstack = [ ] # Stack of lookahead symbols
actions = self.action # Local reference to action table (to avoid lookup on self.)
goto = self.goto # Local reference to goto table (to avoid lookup on self.)
prod = self.productions # Local reference to production list (to avoid lookup on self.)
pslice = YaccProduction(None) # Production object passed to grammar rules
errorcount = 0 # Used during error recovery
# If no lexer was given, we will try to use the lex module
if not lexer:
lex = load_ply_lex()
lexer = lex.lexer
# Set up the lexer and parser objects on pslice
pslice.lexer = lexer
pslice.parser = self
# If input was supplied, pass to lexer
if input is not None:
lexer.input(input)
if tokenfunc is None:
# Tokenize function
get_token = lexer.token
else:
get_token = tokenfunc
# Set up the state and symbol stacks
statestack = [ ] # Stack of parsing states
self.statestack = statestack
symstack = [ ] # Stack of grammar symbols
self.symstack = symstack
pslice.stack = symstack # Put in the production
errtoken = None # Err token
# The start state is assumed to be (0,$end)
statestack.append(0)
sym = YaccSymbol()
sym.type = '$end'
symstack.append(sym)
state = 0
while 1:
# Get the next symbol on the input. If a lookahead symbol
# is already set, we just use that. Otherwise, we'll pull
# the next token off of the lookaheadstack or from the lexer
if not lookahead:
if not lookaheadstack:
lookahead = get_token() # Get the next token
else:
lookahead = lookaheadstack.pop()
if not lookahead:
lookahead = YaccSymbol()
lookahead.type = '$end'
# Check the action table
ltype = lookahead.type
t = actions[state].get(ltype)
if t is not None:
if t > 0:
# shift a symbol on the stack
statestack.append(t)
state = t
symstack.append(lookahead)
lookahead = None
# Decrease error count on successful shift
if errorcount: errorcount -=1
continue
if t < 0:
# reduce a symbol on the stack, emit a production
p = prod[-t]
pname = p.name
plen = p.len
# Get production function
sym = YaccSymbol()
sym.type = pname # Production name
sym.value = None
if plen:
targ = symstack[-plen-1:]
targ[0] = sym
# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# The code enclosed in this section is duplicated
# below as a performance optimization. Make sure
# changes get made in both locations.
pslice.slice = targ
try:
# Call the grammar rule with our special slice object
del symstack[-plen:]
del statestack[-plen:]
p.callable(pslice)
symstack.append(sym)
state = goto[statestack[-1]][pname]
statestack.append(state)
except SyntaxError:
# If an error was set. Enter error recovery state
lookaheadstack.append(lookahead)
symstack.pop()
statestack.pop()
state = statestack[-1]
sym.type = 'error'
lookahead = sym
errorcount = error_count
self.errorok = 0
continue
# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
else:
targ = [ sym ]
# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# The code enclosed in this section is duplicated
# above as a performance optimization. Make sure
# changes get made in both locations.
pslice.slice = targ
try:
# Call the grammar rule with our special slice object
p.callable(pslice)
symstack.append(sym)
state = goto[statestack[-1]][pname]
statestack.append(state)
except SyntaxError:
# If an error was set. Enter error recovery state
lookaheadstack.append(lookahead)
symstack.pop()
statestack.pop()
state = statestack[-1]
sym.type = 'error'
lookahead = sym
errorcount = error_count
self.errorok = 0
continue
# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
if t == 0:
n = symstack[-1]
return getattr(n,"value",None)
if t == None:
# We have some kind of parsing error here. To handle
# this, we are going to push the current token onto
# the tokenstack and replace it with an 'error' token.
# If there are any synchronization rules, they may
# catch it.
#
# In addition to pushing the error token, we call call
# the user defined p_error() function if this is the
# first syntax error. This function is only called if
# errorcount == 0.
if errorcount == 0 or self.errorok:
errorcount = error_count
self.errorok = 0
errtoken = lookahead
if errtoken.type == '$end':
errtoken = None # End of file!
if self.errorfunc:
global errok,token,restart
errok = self.errok # Set some special functions available in error recovery
token = get_token
restart = self.restart
if errtoken and not hasattr(errtoken,'lexer'):
errtoken.lexer = lexer
tok = self.errorfunc(errtoken)
del errok, token, restart # Delete special functions
if self.errorok:
# User must have done some kind of panic
# mode recovery on their own. The
# returned token is the next lookahead
lookahead = tok
errtoken = None
continue
else:
if errtoken:
if hasattr(errtoken,"lineno"): lineno = lookahead.lineno
else: lineno = 0
if lineno:
sys.stderr.write("yacc: Syntax error at line %d, token=%s\n" % (lineno, errtoken.type))
else:
sys.stderr.write("yacc: Syntax error, token=%s" % errtoken.type)
else:
sys.stderr.write("yacc: Parse error in input. EOF\n")
return
else:
errorcount = error_count
# case 1: the statestack only has 1 entry on it. If we're in this state, the
# entire parse has been rolled back and we're completely hosed. The token is
# discarded and we just keep going.
if len(statestack) <= 1 and lookahead.type != '$end':
lookahead = None
errtoken = None
state = 0
# Nuke the pushback stack
del lookaheadstack[:]
continue
# case 2: the statestack has a couple of entries on it, but we're
# at the end of the file. nuke the top entry and generate an error token
# Start nuking entries on the stack
if lookahead.type == '$end':
# Whoa. We're really hosed here. Bail out
return
if lookahead.type != 'error':
sym = symstack[-1]
if sym.type == 'error':
# Hmmm. Error is on top of stack, we'll just nuke input
# symbol and continue
lookahead = None
continue
t = YaccSymbol()
t.type = 'error'
if hasattr(lookahead,"lineno"):
t.lineno = lookahead.lineno
t.value = lookahead
lookaheadstack.append(lookahead)
lookahead = t
else:
symstack.pop()
statestack.pop()
state = statestack[-1] # Potential bug fix
continue
# Call an error function here
raise RuntimeError("yacc: internal parser error!!!\n")
# -----------------------------------------------------------------------------
# === Grammar Representation ===
#
# The following functions, classes, and variables are used to represent and
# manipulate the rules that make up a grammar.
# -----------------------------------------------------------------------------
import re
# regex matching identifiers
_is_identifier = re.compile(r'^[a-zA-Z0-9_-]+$')
# -----------------------------------------------------------------------------
# class Production:
#
# This class stores the raw information about a single production or grammar rule.
# A grammar rule refers to a specification such as this:
#
# expr : expr PLUS term
#
# Here are the basic attributes defined on all productions
#
# name - Name of the production. For example 'expr'
# prod - A list of symbols on the right side ['expr','PLUS','term']
# prec - Production precedence level
# number - Production number.
# func - Function that executes on reduce
# file - File where production function is defined
# lineno - Line number where production function is defined
#
# The following attributes are defined or optional.
#
# len - Length of the production (number of symbols on right hand side)
# usyms - Set of unique symbols found in the production
# -----------------------------------------------------------------------------
class Production(object):
reduced = 0
def __init__(self,number,name,prod,precedence=('right',0),func=None,file='',line=0):
self.name = name
self.prod = tuple(prod)
self.number = number
self.func = func
self.callable = None
self.file = file
self.line = line
self.prec = precedence
# Internal settings used during table construction
self.len = len(self.prod) # Length of the production
# Create a list of unique production symbols used in the production
self.usyms = [ ]
for s in self.prod:
if s not in self.usyms:
self.usyms.append(s)
# List of all LR items for the production
self.lr_items = []
self.lr_next = None
# Create a string representation
if self.prod:
self.str = "%s -> %s" % (self.name," ".join(self.prod))
else:
self.str = "%s -> <empty>" % self.name
def __str__(self):
return self.str
def __repr__(self):
return "Production("+str(self)+")"
def __len__(self):
return len(self.prod)
def __nonzero__(self):
return 1
def __getitem__(self,index):
return self.prod[index]
# Return the nth lr_item from the production (or None if at the end)
def lr_item(self,n):
if n > len(self.prod): return None
p = LRItem(self,n)
# Precompute the list of productions immediately following. Hack. Remove later
try:
p.lr_after = Prodnames[p.prod[n+1]]
except (IndexError,KeyError):
p.lr_after = []
try:
p.lr_before = p.prod[n-1]
except IndexError:
p.lr_before = None
return p
# Bind the production function name to a callable
def bind(self,pdict):
if self.func:
self.callable = pdict[self.func]
# This class serves as a minimal standin for Production objects when
# reading table data from files. It only contains information
# actually used by the LR parsing engine, plus some additional
# debugging information.
class MiniProduction(object):
def __init__(self,str,name,len,func,file,line):
self.name = name
self.len = len
self.func = func
self.callable = None
self.file = file
self.line = line
self.str = str
def __str__(self):
return self.str
def __repr__(self):
return "MiniProduction(%s)" % self.str
# Bind the production function name to a callable
def bind(self,pdict):
if self.func:
self.callable = pdict[self.func]
# -----------------------------------------------------------------------------
# class LRItem
#
# This class represents a specific stage of parsing a production rule. For
# example:
#
# expr : expr . PLUS term
#
# In the above, the "." represents the current location of the parse. Here
# basic attributes:
#
# name - Name of the production. For example 'expr'
# prod - A list of symbols on the right side ['expr','.', 'PLUS','term']
# number - Production number.
#
# lr_next Next LR item. Example, if we are ' expr -> expr . PLUS term'
# then lr_next refers to 'expr -> expr PLUS . term'
# lr_index - LR item index (location of the ".") in the prod list.
# lookaheads - LALR lookahead symbols for this item
# len - Length of the production (number of symbols on right hand side)
# lr_after - List of all productions that immediately follow
# lr_before - Grammar symbol immediately before
# -----------------------------------------------------------------------------
class LRItem(object):
def __init__(self,p,n):
self.name = p.name
self.prod = list(p.prod)
self.number = p.number
self.lr_index = n
self.lookaheads = { }
self.prod.insert(n,".")
self.prod = tuple(self.prod)
self.len = len(self.prod)
self.usyms = p.usyms
def __str__(self):
if self.prod:
s = "%s -> %s" % (self.name," ".join(self.prod))
else:
s = "%s -> <empty>" % self.name
return s
def __repr__(self):
return "LRItem("+str(self)+")"
# -----------------------------------------------------------------------------
# rightmost_terminal()
#
# Return the rightmost terminal from a list of symbols. Used in add_production()
# -----------------------------------------------------------------------------
def rightmost_terminal(symbols, terminals):
i = len(symbols) - 1
while i >= 0:
if symbols[i] in terminals:
return symbols[i]
i -= 1
return None
# -----------------------------------------------------------------------------
# === GRAMMAR CLASS ===
#
# The following class represents the contents of the specified grammar along
# with various computed properties such as first sets, follow sets, LR items, etc.
# This data is used for critical parts of the table generation process later.
# -----------------------------------------------------------------------------
class GrammarError(YaccError): pass
class Grammar(object):
def __init__(self,terminals):
self.Productions = [None] # A list of all of the productions. The first
# entry is always reserved for the purpose of
# building an augmented grammar
self.Prodnames = { } # A dictionary mapping the names of nonterminals to a list of all
# productions of that nonterminal.
self.Prodmap = { } # A dictionary that is only used to detect duplicate
# productions.
self.Terminals = { } # A dictionary mapping the names of terminal symbols to a
# list of the rules where they are used.
for term in terminals:
self.Terminals[term] = []
self.Terminals['error'] = []
self.Nonterminals = { } # A dictionary mapping names of nonterminals to a list
# of rule numbers where they are used.
self.First = { } # A dictionary of precomputed FIRST(x) symbols
self.Follow = { } # A dictionary of precomputed FOLLOW(x) symbols
self.Precedence = { } # Precedence rules for each terminal. Contains tuples of the
# form ('right',level) or ('nonassoc', level) or ('left',level)
self.UsedPrecedence = { } # Precedence rules that were actually used by the grammer.
# This is only used to provide error checking and to generate
# a warning about unused precedence rules.
self.Start = None # Starting symbol for the grammar
def __len__(self):
return len(self.Productions)
def __getitem__(self,index):
return self.Productions[index]
# -----------------------------------------------------------------------------
# set_precedence()
#
# Sets the precedence for a given terminal. assoc is the associativity such as
# 'left','right', or 'nonassoc'. level is a numeric level.
#
# -----------------------------------------------------------------------------
def set_precedence(self,term,assoc,level):
assert self.Productions == [None],"Must call set_precedence() before add_production()"
if term in self.Precedence:
raise GrammarError("Precedence already specified for terminal '%s'" % term)
if assoc not in ['left','right','nonassoc']:
raise GrammarError("Associativity must be one of 'left','right', or 'nonassoc'")
self.Precedence[term] = (assoc,level)
# -----------------------------------------------------------------------------
# add_production()
#
# Given an action function, this function assembles a production rule and
# computes its precedence level.
#
# The production rule is supplied as a list of symbols. For example,
# a rule such as 'expr : expr PLUS term' has a production name of 'expr' and
# symbols ['expr','PLUS','term'].
#
# Precedence is determined by the precedence of the right-most non-terminal
# or the precedence of a terminal specified by %prec.
#
# A variety of error checks are performed to make sure production symbols
# are valid and that %prec is used correctly.
# -----------------------------------------------------------------------------
def add_production(self,prodname,syms,func=None,file='',line=0):
if prodname in self.Terminals:
raise GrammarError("%s:%d: Illegal rule name '%s'. Already defined as a token" % (file,line,prodname))
if prodname == 'error':
raise GrammarError("%s:%d: Illegal rule name '%s'. error is a reserved word" % (file,line,prodname))
if not _is_identifier.match(prodname):
raise GrammarError("%s:%d: Illegal rule name '%s'" % (file,line,prodname))
# Look for literal tokens
for n,s in enumerate(syms):
if s[0] in "'\"":
try:
c = eval(s)
if (len(c) > 1):
raise GrammarError("%s:%d: Literal token %s in rule '%s' may only be a single character" % (file,line,s, prodname))
if not c in self.Terminals:
self.Terminals[c] = []
syms[n] = c
continue
except SyntaxError:
pass
if not _is_identifier.match(s) and s != '%prec':
raise GrammarError("%s:%d: Illegal name '%s' in rule '%s'" % (file,line,s, prodname))
# Determine the precedence level
if '%prec' in syms:
if syms[-1] == '%prec':
raise GrammarError("%s:%d: Syntax error. Nothing follows %%prec" % (file,line))
if syms[-2] != '%prec':
raise GrammarError("%s:%d: Syntax error. %%prec can only appear at the end of a grammar rule" % (file,line))
precname = syms[-1]
prodprec = self.Precedence.get(precname,None)
if not prodprec:
raise GrammarError("%s:%d: Nothing known about the precedence of '%s'" % (file,line,precname))
else:
self.UsedPrecedence[precname] = 1
del syms[-2:] # Drop %prec from the rule
else:
# If no %prec, precedence is determined by the rightmost terminal symbol
precname = rightmost_terminal(syms,self.Terminals)
prodprec = self.Precedence.get(precname,('right',0))
# See if the rule is already in the rulemap
map = "%s -> %s" % (prodname,syms)
if map in self.Prodmap:
m = self.Prodmap[map]
raise GrammarError("%s:%d: Duplicate rule %s. " % (file,line, m) +
"Previous definition at %s:%d" % (m.file, m.line))
# From this point on, everything is valid. Create a new Production instance
pnumber = len(self.Productions)
if not prodname in self.Nonterminals:
self.Nonterminals[prodname] = [ ]
# Add the production number to Terminals and Nonterminals
for t in syms:
if t in self.Terminals:
self.Terminals[t].append(pnumber)
else:
if not t in self.Nonterminals:
self.Nonterminals[t] = [ ]
self.Nonterminals[t].append(pnumber)
# Create a production and add it to the list of productions
p = Production(pnumber,prodname,syms,prodprec,func,file,line)
self.Productions.append(p)
self.Prodmap[map] = p
# Add to the global productions list
try:
self.Prodnames[prodname].append(p)
except KeyError:
self.Prodnames[prodname] = [ p ]
return 0
# -----------------------------------------------------------------------------
# set_start()
#
# Sets the starting symbol and creates the augmented grammar. Production
# rule 0 is S' -> start where start is the start symbol.
# -----------------------------------------------------------------------------
def set_start(self,start=None):
if not start:
start = self.Productions[1].name
if start not in self.Nonterminals:
raise GrammarError("start symbol %s undefined" % start)
self.Productions[0] = Production(0,"S'",[start])
self.Nonterminals[start].append(0)
self.Start = start
# -----------------------------------------------------------------------------
# find_unreachable()
#
# Find all of the nonterminal symbols that can't be reached from the starting
# symbol. Returns a list of nonterminals that can't be reached.
# -----------------------------------------------------------------------------
def find_unreachable(self):
# Mark all symbols that are reachable from a symbol s
def mark_reachable_from(s):
if reachable[s]:
# We've already reached symbol s.
return
reachable[s] = 1
for p in self.Prodnames.get(s,[]):
for r in p.prod:
mark_reachable_from(r)
reachable = { }
for s in list(self.Terminals) + list(self.Nonterminals):
reachable[s] = 0
mark_reachable_from( self.Productions[0].prod[0] )
return [s for s in list(self.Nonterminals)
if not reachable[s]]
# -----------------------------------------------------------------------------
# infinite_cycles()
#
# This function looks at the various parsing rules and tries to detect
# infinite recursion cycles (grammar rules where there is no possible way
# to derive a string of only terminals).
# -----------------------------------------------------------------------------
def infinite_cycles(self):
terminates = {}
# Terminals:
for t in self.Terminals:
terminates[t] = 1
terminates['$end'] = 1
# Nonterminals:
# Initialize to false:
for n in self.Nonterminals:
terminates[n] = 0
# Then propagate termination until no change:
while 1:
some_change = 0
for (n,pl) in self.Prodnames.items():
# Nonterminal n terminates iff any of its productions terminates.
for p in pl:
# Production p terminates iff all of its rhs symbols terminate.
for s in p.prod:
if not terminates[s]:
# The symbol s does not terminate,
# so production p does not terminate.
p_terminates = 0
break
else:
# didn't break from the loop,
# so every symbol s terminates
# so production p terminates.
p_terminates = 1
if p_terminates:
# symbol n terminates!
if not terminates[n]:
terminates[n] = 1
some_change = 1
# Don't need to consider any more productions for this n.
break
if not some_change:
break
infinite = []
for (s,term) in terminates.items():
if not term:
if not s in self.Prodnames and not s in self.Terminals and s != 'error':
# s is used-but-not-defined, and we've already warned of that,
# so it would be overkill to say that it's also non-terminating.
pass
else:
infinite.append(s)
return infinite
# -----------------------------------------------------------------------------
# undefined_symbols()
#
# Find all symbols that were used the grammar, but not defined as tokens or
# grammar rules. Returns a list of tuples (sym, prod) where sym in the symbol
# and prod is the production where the symbol was used.
# -----------------------------------------------------------------------------
def undefined_symbols(self):
result = []
for p in self.Productions:
if not p: continue
for s in p.prod:
if not s in self.Prodnames and not s in self.Terminals and s != 'error':
result.append((s,p))
return result
# -----------------------------------------------------------------------------
# unused_terminals()
#
# Find all terminals that were defined, but not used by the grammar. Returns
# a list of all symbols.
# -----------------------------------------------------------------------------
def unused_terminals(self):
unused_tok = []
for s,v in self.Terminals.items():
if s != 'error' and not v:
unused_tok.append(s)
return unused_tok
# ------------------------------------------------------------------------------
# unused_rules()
#
# Find all grammar rules that were defined, but not used (maybe not reachable)
# Returns a list of productions.
# ------------------------------------------------------------------------------
def unused_rules(self):
unused_prod = []
for s,v in self.Nonterminals.items():
if not v:
p = self.Prodnames[s][0]
unused_prod.append(p)
return unused_prod
# -----------------------------------------------------------------------------
# unused_precedence()
#
# Returns a list of tuples (term,precedence) corresponding to precedence
# rules that were never used by the grammar. term is the name of the terminal
# on which precedence was applied and precedence is a string such as 'left' or
# 'right' corresponding to the type of precedence.
# -----------------------------------------------------------------------------
def unused_precedence(self):
unused = []
for termname in self.Precedence:
if not (termname in self.Terminals or termname in self.UsedPrecedence):
unused.append((termname,self.Precedence[termname][0]))
return unused
# -------------------------------------------------------------------------
# _first()
#
# Compute the value of FIRST1(beta) where beta is a tuple of symbols.
#
# During execution of compute_first1, the result may be incomplete.
# Afterward (e.g., when called from compute_follow()), it will be complete.
# -------------------------------------------------------------------------
def _first(self,beta):
# We are computing First(x1,x2,x3,...,xn)
result = [ ]
for x in beta:
x_produces_empty = 0
# Add all the non-<empty> symbols of First[x] to the result.
for f in self.First[x]:
if f == '<empty>':
x_produces_empty = 1
else:
if f not in result: result.append(f)
if x_produces_empty:
# We have to consider the next x in beta,
# i.e. stay in the loop.
pass
else:
# We don't have to consider any further symbols in beta.
break
else:
# There was no 'break' from the loop,
# so x_produces_empty was true for all x in beta,
# so beta produces empty as well.
result.append('<empty>')
return result
# -------------------------------------------------------------------------
# compute_first()
#
# Compute the value of FIRST1(X) for all symbols
# -------------------------------------------------------------------------
def compute_first(self):
if self.First:
return self.First
# Terminals:
for t in self.Terminals:
self.First[t] = [t]
self.First['$end'] = ['$end']
# Nonterminals:
# Initialize to the empty set:
for n in self.Nonterminals:
self.First[n] = []
# Then propagate symbols until no change:
while 1:
some_change = 0
for n in self.Nonterminals:
for p in self.Prodnames[n]:
for f in self._first(p.prod):
if f not in self.First[n]:
self.First[n].append( f )
some_change = 1
if not some_change:
break
return self.First
# ---------------------------------------------------------------------
# compute_follow()
#
# Computes all of the follow sets for every non-terminal symbol. The
# follow set is the set of all symbols that might follow a given
# non-terminal. See the Dragon book, 2nd Ed. p. 189.
# ---------------------------------------------------------------------
def compute_follow(self,start=None):
# If already computed, return the result
if self.Follow:
return self.Follow
# If first sets not computed yet, do that first.
if not self.First:
self.compute_first()
# Add '$end' to the follow list of the start symbol
for k in self.Nonterminals:
self.Follow[k] = [ ]
if not start:
start = self.Productions[1].name
self.Follow[start] = [ '$end' ]
while 1:
didadd = 0
for p in self.Productions[1:]:
# Here is the production set
for i in range(len(p.prod)):
B = p.prod[i]
if B in self.Nonterminals:
# Okay. We got a non-terminal in a production
fst = self._first(p.prod[i+1:])
hasempty = 0
for f in fst:
if f != '<empty>' and f not in self.Follow[B]:
self.Follow[B].append(f)
didadd = 1
if f == '<empty>':
hasempty = 1
if hasempty or i == (len(p.prod)-1):
# Add elements of follow(a) to follow(b)
for f in self.Follow[p.name]:
if f not in self.Follow[B]:
self.Follow[B].append(f)
didadd = 1
if not didadd: break
return self.Follow
# -----------------------------------------------------------------------------
# build_lritems()
#
# This function walks the list of productions and builds a complete set of the
# LR items. The LR items are stored in two ways: First, they are uniquely
# numbered and placed in the list _lritems. Second, a linked list of LR items
# is built for each production. For example:
#
# E -> E PLUS E
#
# Creates the list
#
# [E -> . E PLUS E, E -> E . PLUS E, E -> E PLUS . E, E -> E PLUS E . ]
# -----------------------------------------------------------------------------
def build_lritems(self):
for p in self.Productions:
lastlri = p
i = 0
lr_items = []
while 1:
if i > len(p):
lri = None
else:
lri = LRItem(p,i)
# Precompute the list of productions immediately following
try:
lri.lr_after = self.Prodnames[lri.prod[i+1]]
except (IndexError,KeyError):
lri.lr_after = []
try:
lri.lr_before = lri.prod[i-1]
except IndexError:
lri.lr_before = None
lastlri.lr_next = lri
if not lri: break
lr_items.append(lri)
lastlri = lri
i += 1
p.lr_items = lr_items
# -----------------------------------------------------------------------------
# == Class LRTable ==
#
# This basic class represents a basic table of LR parsing information.
# Methods for generating the tables are not defined here. They are defined
# in the derived class LRGeneratedTable.
# -----------------------------------------------------------------------------
class VersionError(YaccError): pass
class LRTable(object):
def __init__(self):
self.lr_action = None
self.lr_goto = None
self.lr_productions = None
self.lr_method = None
def read_table(self,module):
if isinstance(module,types.ModuleType):
parsetab = module
else:
if sys.version_info[0] < 3:
exec("import %s as parsetab" % module)
else:
env = { }
exec("import %s as parsetab" % module, env, env)
parsetab = env['parsetab']
if parsetab._tabversion != __tabversion__:
raise VersionError("yacc table file version is out of date")
self.lr_action = parsetab._lr_action
self.lr_goto = parsetab._lr_goto
self.lr_productions = []
for p in parsetab._lr_productions:
self.lr_productions.append(MiniProduction(*p))
self.lr_method = parsetab._lr_method
return parsetab._lr_signature
def read_pickle(self,filename):
try:
import cPickle as pickle
except ImportError:
import pickle
in_f = open(filename,"rb")
tabversion = pickle.load(in_f)
if tabversion != __tabversion__:
raise VersionError("yacc table file version is out of date")
self.lr_method = pickle.load(in_f)
signature = pickle.load(in_f)
self.lr_action = pickle.load(in_f)
self.lr_goto = pickle.load(in_f)
productions = pickle.load(in_f)
self.lr_productions = []
for p in productions:
self.lr_productions.append(MiniProduction(*p))
in_f.close()
return signature
# Bind all production function names to callable objects in pdict
def bind_callables(self,pdict):
for p in self.lr_productions:
p.bind(pdict)
# -----------------------------------------------------------------------------
# === LR Generator ===
#
# The following classes and functions are used to generate LR parsing tables on
# a grammar.
# -----------------------------------------------------------------------------
# -----------------------------------------------------------------------------
# digraph()
# traverse()
#
# The following two functions are used to compute set valued functions
# of the form:
#
# F(x) = F'(x) U U{F(y) | x R y}
#
# This is used to compute the values of Read() sets as well as FOLLOW sets
# in LALR(1) generation.
#
# Inputs: X - An input set
# R - A relation
# FP - Set-valued function
# ------------------------------------------------------------------------------
def digraph(X,R,FP):
N = { }
for x in X:
N[x] = 0
stack = []
F = { }
for x in X:
if N[x] == 0: traverse(x,N,stack,F,X,R,FP)
return F
def traverse(x,N,stack,F,X,R,FP):
stack.append(x)
d = len(stack)
N[x] = d
F[x] = FP(x) # F(X) <- F'(x)
rel = R(x) # Get y's related to x
for y in rel:
if N[y] == 0:
traverse(y,N,stack,F,X,R,FP)
N[x] = min(N[x],N[y])
for a in F.get(y,[]):
if a not in F[x]: F[x].append(a)
if N[x] == d:
N[stack[-1]] = MAXINT
F[stack[-1]] = F[x]
element = stack.pop()
while element != x:
N[stack[-1]] = MAXINT
F[stack[-1]] = F[x]
element = stack.pop()
class LALRError(YaccError): pass
# -----------------------------------------------------------------------------
# == LRGeneratedTable ==
#
# This class implements the LR table generation algorithm. There are no
# public methods except for write()
# -----------------------------------------------------------------------------
class LRGeneratedTable(LRTable):
def __init__(self,grammar,method='LALR',log=None):
if method not in ['SLR','LALR']:
raise LALRError("Unsupported method %s" % method)
self.grammar = grammar
self.lr_method = method
# Set up the logger
if not log:
log = NullLogger()
self.log = log
# Internal attributes
self.lr_action = {} # Action table
self.lr_goto = {} # Goto table
self.lr_productions = grammar.Productions # Copy of grammar Production array
self.lr_goto_cache = {} # Cache of computed gotos
self.lr0_cidhash = {} # Cache of closures
self._add_count = 0 # Internal counter used to detect cycles
# Diagonistic information filled in by the table generator
self.sr_conflict = 0
self.rr_conflict = 0
self.conflicts = [] # List of conflicts
self.sr_conflicts = []
self.rr_conflicts = []
# Build the tables
self.grammar.build_lritems()
self.grammar.compute_first()
self.grammar.compute_follow()
self.lr_parse_table()
# Compute the LR(0) closure operation on I, where I is a set of LR(0) items.
def lr0_closure(self,I):
self._add_count += 1
# Add everything in I to J
J = I[:]
didadd = 1
while didadd:
didadd = 0
for j in J:
for x in j.lr_after:
if getattr(x,"lr0_added",0) == self._add_count: continue
# Add B --> .G to J
J.append(x.lr_next)
x.lr0_added = self._add_count
didadd = 1
return J
# Compute the LR(0) goto function goto(I,X) where I is a set
# of LR(0) items and X is a grammar symbol. This function is written
# in a way that guarantees uniqueness of the generated goto sets
# (i.e. the same goto set will never be returned as two different Python
# objects). With uniqueness, we can later do fast set comparisons using
# id(obj) instead of element-wise comparison.
def lr0_goto(self,I,x):
# First we look for a previously cached entry
g = self.lr_goto_cache.get((id(I),x),None)
if g: return g
# Now we generate the goto set in a way that guarantees uniqueness
# of the result
s = self.lr_goto_cache.get(x,None)
if not s:
s = { }
self.lr_goto_cache[x] = s
gs = [ ]
for p in I:
n = p.lr_next
if n and n.lr_before == x:
s1 = s.get(id(n),None)
if not s1:
s1 = { }
s[id(n)] = s1
gs.append(n)
s = s1
g = s.get('$end',None)
if not g:
if gs:
g = self.lr0_closure(gs)
s['$end'] = g
else:
s['$end'] = gs
self.lr_goto_cache[(id(I),x)] = g
return g
# Compute the LR(0) sets of item function
def lr0_items(self):
C = [ self.lr0_closure([self.grammar.Productions[0].lr_next]) ]
i = 0
for I in C:
self.lr0_cidhash[id(I)] = i
i += 1
# Loop over the items in C and each grammar symbols
i = 0
while i < len(C):
I = C[i]
i += 1
# Collect all of the symbols that could possibly be in the goto(I,X) sets
asyms = { }
for ii in I:
for s in ii.usyms:
asyms[s] = None
for x in asyms:
g = self.lr0_goto(I,x)
if not g: continue
if id(g) in self.lr0_cidhash: continue
self.lr0_cidhash[id(g)] = len(C)
C.append(g)
return C
# -----------------------------------------------------------------------------
# ==== LALR(1) Parsing ====
#
# LALR(1) parsing is almost exactly the same as SLR except that instead of
# relying upon Follow() sets when performing reductions, a more selective
# lookahead set that incorporates the state of the LR(0) machine is utilized.
# Thus, we mainly just have to focus on calculating the lookahead sets.
#
# The method used here is due to DeRemer and Pennelo (1982).
#
# DeRemer, F. L., and T. J. Pennelo: "Efficient Computation of LALR(1)
# Lookahead Sets", ACM Transactions on Programming Languages and Systems,
# Vol. 4, No. 4, Oct. 1982, pp. 615-649
#
# Further details can also be found in:
#
# J. Tremblay and P. Sorenson, "The Theory and Practice of Compiler Writing",
# McGraw-Hill Book Company, (1985).
#
# -----------------------------------------------------------------------------
# -----------------------------------------------------------------------------
# compute_nullable_nonterminals()
#
# Creates a dictionary containing all of the non-terminals that might produce
# an empty production.
# -----------------------------------------------------------------------------
def compute_nullable_nonterminals(self):
nullable = {}
num_nullable = 0
while 1:
for p in self.grammar.Productions[1:]:
if p.len == 0:
nullable[p.name] = 1
continue
for t in p.prod:
if not t in nullable: break
else:
nullable[p.name] = 1
if len(nullable) == num_nullable: break
num_nullable = len(nullable)
return nullable
# -----------------------------------------------------------------------------
# find_nonterminal_trans(C)
#
# Given a set of LR(0) items, this functions finds all of the non-terminal
# transitions. These are transitions in which a dot appears immediately before
# a non-terminal. Returns a list of tuples of the form (state,N) where state
# is the state number and N is the nonterminal symbol.
#
# The input C is the set of LR(0) items.
# -----------------------------------------------------------------------------
def find_nonterminal_transitions(self,C):
trans = []
for state in range(len(C)):
for p in C[state]:
if p.lr_index < p.len - 1:
t = (state,p.prod[p.lr_index+1])
if t[1] in self.grammar.Nonterminals:
if t not in trans: trans.append(t)
state = state + 1
return trans
# -----------------------------------------------------------------------------
# dr_relation()
#
# Computes the DR(p,A) relationships for non-terminal transitions. The input
# is a tuple (state,N) where state is a number and N is a nonterminal symbol.
#
# Returns a list of terminals.
# -----------------------------------------------------------------------------
def dr_relation(self,C,trans,nullable):
dr_set = { }
state,N = trans
terms = []
g = self.lr0_goto(C[state],N)
for p in g:
if p.lr_index < p.len - 1:
a = p.prod[p.lr_index+1]
if a in self.grammar.Terminals:
if a not in terms: terms.append(a)
# This extra bit is to handle the start state
if state == 0 and N == self.grammar.Productions[0].prod[0]:
terms.append('$end')
return terms
# -----------------------------------------------------------------------------
# reads_relation()
#
# Computes the READS() relation (p,A) READS (t,C).
# -----------------------------------------------------------------------------
def reads_relation(self,C, trans, empty):
# Look for empty transitions
rel = []
state, N = trans
g = self.lr0_goto(C[state],N)
j = self.lr0_cidhash.get(id(g),-1)
for p in g:
if p.lr_index < p.len - 1:
a = p.prod[p.lr_index + 1]
if a in empty:
rel.append((j,a))
return rel
# -----------------------------------------------------------------------------
# compute_lookback_includes()
#
# Determines the lookback and includes relations
#
# LOOKBACK:
#
# This relation is determined by running the LR(0) state machine forward.
# For example, starting with a production "N : . A B C", we run it forward
# to obtain "N : A B C ." We then build a relationship between this final
# state and the starting state. These relationships are stored in a dictionary
# lookdict.
#
# INCLUDES:
#
# Computes the INCLUDE() relation (p,A) INCLUDES (p',B).
#
# This relation is used to determine non-terminal transitions that occur
# inside of other non-terminal transition states. (p,A) INCLUDES (p', B)
# if the following holds:
#
# B -> LAT, where T -> epsilon and p' -L-> p
#
# L is essentially a prefix (which may be empty), T is a suffix that must be
# able to derive an empty string. State p' must lead to state p with the string L.
#
# -----------------------------------------------------------------------------
def compute_lookback_includes(self,C,trans,nullable):
lookdict = {} # Dictionary of lookback relations
includedict = {} # Dictionary of include relations
# Make a dictionary of non-terminal transitions
dtrans = {}
for t in trans:
dtrans[t] = 1
# Loop over all transitions and compute lookbacks and includes
for state,N in trans:
lookb = []
includes = []
for p in C[state]:
if p.name != N: continue
# Okay, we have a name match. We now follow the production all the way
# through the state machine until we get the . on the right hand side
lr_index = p.lr_index
j = state
while lr_index < p.len - 1:
lr_index = lr_index + 1
t = p.prod[lr_index]
# Check to see if this symbol and state are a non-terminal transition
if (j,t) in dtrans:
# Yes. Okay, there is some chance that this is an includes relation
# the only way to know for certain is whether the rest of the
# production derives empty
li = lr_index + 1
while li < p.len:
if p.prod[li] in self.grammar.Terminals: break # No forget it
if not p.prod[li] in nullable: break
li = li + 1
else:
# Appears to be a relation between (j,t) and (state,N)
includes.append((j,t))
g = self.lr0_goto(C[j],t) # Go to next set
j = self.lr0_cidhash.get(id(g),-1) # Go to next state
# When we get here, j is the final state, now we have to locate the production
for r in C[j]:
if r.name != p.name: continue
if r.len != p.len: continue
i = 0
# This look is comparing a production ". A B C" with "A B C ."
while i < r.lr_index:
if r.prod[i] != p.prod[i+1]: break
i = i + 1
else:
lookb.append((j,r))
for i in includes:
if not i in includedict: includedict[i] = []
includedict[i].append((state,N))
lookdict[(state,N)] = lookb
return lookdict,includedict
# -----------------------------------------------------------------------------
# compute_read_sets()
#
# Given a set of LR(0) items, this function computes the read sets.
#
# Inputs: C = Set of LR(0) items
# ntrans = Set of nonterminal transitions
# nullable = Set of empty transitions
#
# Returns a set containing the read sets
# -----------------------------------------------------------------------------
def compute_read_sets(self,C, ntrans, nullable):
FP = lambda x: self.dr_relation(C,x,nullable)
R = lambda x: self.reads_relation(C,x,nullable)
F = digraph(ntrans,R,FP)
return F
# -----------------------------------------------------------------------------
# compute_follow_sets()
#
# Given a set of LR(0) items, a set of non-terminal transitions, a readset,
# and an include set, this function computes the follow sets
#
# Follow(p,A) = Read(p,A) U U {Follow(p',B) | (p,A) INCLUDES (p',B)}
#
# Inputs:
# ntrans = Set of nonterminal transitions
# readsets = Readset (previously computed)
# inclsets = Include sets (previously computed)
#
# Returns a set containing the follow sets
# -----------------------------------------------------------------------------
def compute_follow_sets(self,ntrans,readsets,inclsets):
FP = lambda x: readsets[x]
R = lambda x: inclsets.get(x,[])
F = digraph(ntrans,R,FP)
return F
# -----------------------------------------------------------------------------
# add_lookaheads()
#
# Attaches the lookahead symbols to grammar rules.
#
# Inputs: lookbacks - Set of lookback relations
# followset - Computed follow set
#
# This function directly attaches the lookaheads to productions contained
# in the lookbacks set
# -----------------------------------------------------------------------------
def add_lookaheads(self,lookbacks,followset):
for trans,lb in lookbacks.items():
# Loop over productions in lookback
for state,p in lb:
if not state in p.lookaheads:
p.lookaheads[state] = []
f = followset.get(trans,[])
for a in f:
if a not in p.lookaheads[state]: p.lookaheads[state].append(a)
# -----------------------------------------------------------------------------
# add_lalr_lookaheads()
#
# This function does all of the work of adding lookahead information for use
# with LALR parsing
# -----------------------------------------------------------------------------
def add_lalr_lookaheads(self,C):
# Determine all of the nullable nonterminals
nullable = self.compute_nullable_nonterminals()
# Find all non-terminal transitions
trans = self.find_nonterminal_transitions(C)
# Compute read sets
readsets = self.compute_read_sets(C,trans,nullable)
# Compute lookback/includes relations
lookd, included = self.compute_lookback_includes(C,trans,nullable)
# Compute LALR FOLLOW sets
followsets = self.compute_follow_sets(trans,readsets,included)
# Add all of the lookaheads
self.add_lookaheads(lookd,followsets)
# -----------------------------------------------------------------------------
# lr_parse_table()
#
# This function constructs the parse tables for SLR or LALR
# -----------------------------------------------------------------------------
def lr_parse_table(self):
Productions = self.grammar.Productions
Precedence = self.grammar.Precedence
goto = self.lr_goto # Goto array
action = self.lr_action # Action array
log = self.log # Logger for output
actionp = { } # Action production array (temporary)
log.info("Parsing method: %s", self.lr_method)
# Step 1: Construct C = { I0, I1, ... IN}, collection of LR(0) items
# This determines the number of states
C = self.lr0_items()
if self.lr_method == 'LALR':
self.add_lalr_lookaheads(C)
# Build the parser table, state by state
st = 0
for I in C:
# Loop over each production in I
actlist = [ ] # List of actions
st_action = { }
st_actionp = { }
st_goto = { }
log.info("")
log.info("state %d", st)
log.info("")
for p in I:
log.info(" (%d) %s", p.number, str(p))
log.info("")
for p in I:
if p.len == p.lr_index + 1:
if p.name == "S'":
# Start symbol. Accept!
st_action["$end"] = 0
st_actionp["$end"] = p
else:
# We are at the end of a production. Reduce!
if self.lr_method == 'LALR':
laheads = p.lookaheads[st]
else:
laheads = self.grammar.Follow[p.name]
for a in laheads:
actlist.append((a,p,"reduce using rule %d (%s)" % (p.number,p)))
r = st_action.get(a,None)
if r is not None:
# Whoa. Have a shift/reduce or reduce/reduce conflict
if r > 0:
# Need to decide on shift or reduce here
# By default we favor shifting. Need to add
# some precedence rules here.
sprec,slevel = Productions[st_actionp[a].number].prec
rprec,rlevel = Precedence.get(a,('right',0))
if (slevel < rlevel) or ((slevel == rlevel) and (rprec == 'left')):
# We really need to reduce here.
st_action[a] = -p.number
st_actionp[a] = p
if not slevel and not rlevel:
log.info(" ! shift/reduce conflict for %s resolved as reduce",a)
self.sr_conflicts.append((st,a,'reduce'))
Productions[p.number].reduced += 1
elif (slevel == rlevel) and (rprec == 'nonassoc'):
st_action[a] = None
else:
# Hmmm. Guess we'll keep the shift
if not rlevel:
log.info(" ! shift/reduce conflict for %s resolved as shift",a)
self.sr_conflicts.append((st,a,'shift'))
elif r < 0:
# Reduce/reduce conflict. In this case, we favor the rule
# that was defined first in the grammar file
oldp = Productions[-r]
pp = Productions[p.number]
if oldp.line > pp.line:
st_action[a] = -p.number
st_actionp[a] = p
chosenp,rejectp = pp,oldp
Productions[p.number].reduced += 1
Productions[oldp.number].reduced -= 1
else:
chosenp,rejectp = oldp,pp
self.rr_conflicts.append((st,chosenp,rejectp))
log.info(" ! reduce/reduce conflict for %s resolved using rule %d (%s)", a,st_actionp[a].number, st_actionp[a])
else:
raise LALRError("Unknown conflict in state %d" % st)
else:
st_action[a] = -p.number
st_actionp[a] = p
Productions[p.number].reduced += 1
else:
i = p.lr_index
a = p.prod[i+1] # Get symbol right after the "."
if a in self.grammar.Terminals:
g = self.lr0_goto(I,a)
j = self.lr0_cidhash.get(id(g),-1)
if j >= 0:
# We are in a shift state
actlist.append((a,p,"shift and go to state %d" % j))
r = st_action.get(a,None)
if r is not None:
# Whoa have a shift/reduce or shift/shift conflict
if r > 0:
if r != j:
raise LALRError("Shift/shift conflict in state %d" % st)
elif r < 0:
# Do a precedence check.
# - if precedence of reduce rule is higher, we reduce.
# - if precedence of reduce is same and left assoc, we reduce.
# - otherwise we shift
rprec,rlevel = Productions[st_actionp[a].number].prec
sprec,slevel = Precedence.get(a,('right',0))
if (slevel > rlevel) or ((slevel == rlevel) and (rprec == 'right')):
# We decide to shift here... highest precedence to shift
Productions[st_actionp[a].number].reduced -= 1
st_action[a] = j
st_actionp[a] = p
if not rlevel:
log.info(" ! shift/reduce conflict for %s resolved as shift",a)
self.sr_conflicts.append((st,a,'shift'))
elif (slevel == rlevel) and (rprec == 'nonassoc'):
st_action[a] = None
else:
# Hmmm. Guess we'll keep the reduce
if not slevel and not rlevel:
log.info(" ! shift/reduce conflict for %s resolved as reduce",a)
self.sr_conflicts.append((st,a,'reduce'))
else:
raise LALRError("Unknown conflict in state %d" % st)
else:
st_action[a] = j
st_actionp[a] = p
# Print the actions associated with each terminal
_actprint = { }
for a,p,m in actlist:
if a in st_action:
if p is st_actionp[a]:
log.info(" %-15s %s",a,m)
_actprint[(a,m)] = 1
log.info("")
# Print the actions that were not used. (debugging)
not_used = 0
for a,p,m in actlist:
if a in st_action:
if p is not st_actionp[a]:
if not (a,m) in _actprint:
log.debug(" ! %-15s [ %s ]",a,m)
not_used = 1
_actprint[(a,m)] = 1
if not_used:
log.debug("")
# Construct the goto table for this state
nkeys = { }
for ii in I:
for s in ii.usyms:
if s in self.grammar.Nonterminals:
nkeys[s] = None
for n in nkeys:
g = self.lr0_goto(I,n)
j = self.lr0_cidhash.get(id(g),-1)
if j >= 0:
st_goto[n] = j
log.info(" %-30s shift and go to state %d",n,j)
action[st] = st_action
actionp[st] = st_actionp
goto[st] = st_goto
st += 1
# -----------------------------------------------------------------------------
# write()
#
# This function writes the LR parsing tables to a file
# -----------------------------------------------------------------------------
def write_table(self,modulename,outputdir='',signature=""):
basemodulename = modulename.split(".")[-1]
filename = os.path.join(outputdir,basemodulename) + ".py"
try:
f = open(filename,"w")
f.write("""
# %s
# This file is automatically generated. Do not edit.
_tabversion = %r
_lr_method = %r
_lr_signature = %r
""" % (filename, __tabversion__, self.lr_method, signature))
# Change smaller to 0 to go back to original tables
smaller = 1
# Factor out names to try and make smaller
if smaller:
items = { }
for s,nd in self.lr_action.items():
for name,v in nd.items():
i = items.get(name)
if not i:
i = ([],[])
items[name] = i
i[0].append(s)
i[1].append(v)
f.write("\n_lr_action_items = {")
for k,v in items.items():
f.write("%r:([" % k)
for i in v[0]:
f.write("%r," % i)
f.write("],[")
for i in v[1]:
f.write("%r," % i)
f.write("]),")
f.write("}\n")
f.write("""
_lr_action = { }
for _k, _v in _lr_action_items.items():
for _x,_y in zip(_v[0],_v[1]):
if not _x in _lr_action: _lr_action[_x] = { }
_lr_action[_x][_k] = _y
del _lr_action_items
""")
else:
f.write("\n_lr_action = { ");
for k,v in self.lr_action.items():
f.write("(%r,%r):%r," % (k[0],k[1],v))
f.write("}\n");
if smaller:
# Factor out names to try and make smaller
items = { }
for s,nd in self.lr_goto.items():
for name,v in nd.items():
i = items.get(name)
if not i:
i = ([],[])
items[name] = i
i[0].append(s)
i[1].append(v)
f.write("\n_lr_goto_items = {")
for k,v in items.items():
f.write("%r:([" % k)
for i in v[0]:
f.write("%r," % i)
f.write("],[")
for i in v[1]:
f.write("%r," % i)
f.write("]),")
f.write("}\n")
f.write("""
_lr_goto = { }
for _k, _v in _lr_goto_items.items():
for _x,_y in zip(_v[0],_v[1]):
if not _x in _lr_goto: _lr_goto[_x] = { }
_lr_goto[_x][_k] = _y
del _lr_goto_items
""")
else:
f.write("\n_lr_goto = { ");
for k,v in self.lr_goto.items():
f.write("(%r,%r):%r," % (k[0],k[1],v))
f.write("}\n");
# Write production table
f.write("_lr_productions = [\n")
for p in self.lr_productions:
if p.func:
f.write(" (%r,%r,%d,%r,%r,%d),\n" % (p.str,p.name, p.len, p.func,p.file,p.line))
else:
f.write(" (%r,%r,%d,None,None,None),\n" % (str(p),p.name, p.len))
f.write("]\n")
f.close()
except IOError:
e = sys.exc_info()[1]
sys.stderr.write("Unable to create '%s'\n" % filename)
sys.stderr.write(str(e)+"\n")
return
# -----------------------------------------------------------------------------
# pickle_table()
#
# This function pickles the LR parsing tables to a supplied file object
# -----------------------------------------------------------------------------
def pickle_table(self,filename,signature=""):
try:
import cPickle as pickle
except ImportError:
import pickle
outf = open(filename,"wb")
pickle.dump(__tabversion__,outf,pickle_protocol)
pickle.dump(self.lr_method,outf,pickle_protocol)
pickle.dump(signature,outf,pickle_protocol)
pickle.dump(self.lr_action,outf,pickle_protocol)
pickle.dump(self.lr_goto,outf,pickle_protocol)
outp = []
for p in self.lr_productions:
if p.func:
outp.append((p.str,p.name, p.len, p.func,p.file,p.line))
else:
outp.append((str(p),p.name,p.len,None,None,None))
pickle.dump(outp,outf,pickle_protocol)
outf.close()
# -----------------------------------------------------------------------------
# === INTROSPECTION ===
#
# The following functions and classes are used to implement the PLY
# introspection features followed by the yacc() function itself.
# -----------------------------------------------------------------------------
# -----------------------------------------------------------------------------
# get_caller_module_dict()
#
# This function returns a dictionary containing all of the symbols defined within
# a caller further down the call stack. This is used to get the environment
# associated with the yacc() call if none was provided.
# -----------------------------------------------------------------------------
def get_caller_module_dict(levels):
try:
raise RuntimeError
except RuntimeError:
e,b,t = sys.exc_info()
f = t.tb_frame
while levels > 0:
f = f.f_back
levels -= 1
ldict = f.f_globals.copy()
if f.f_globals != f.f_locals:
ldict.update(f.f_locals)
return ldict
# -----------------------------------------------------------------------------
# parse_grammar()
#
# This takes a raw grammar rule string and parses it into production data
# -----------------------------------------------------------------------------
def parse_grammar(doc,file,line):
grammar = []
# Split the doc string into lines
pstrings = doc.splitlines()
lastp = None
dline = line
for ps in pstrings:
dline += 1
p = ps.split()
if not p: continue
try:
if p[0] == '|':
# This is a continuation of a previous rule
if not lastp:
raise SyntaxError("%s:%d: Misplaced '|'" % (file,dline))
prodname = lastp
syms = p[1:]
else:
prodname = p[0]
lastp = prodname
syms = p[2:]
assign = p[1]
if assign != ':' and assign != '::=':
raise SyntaxError("%s:%d: Syntax error. Expected ':'" % (file,dline))
grammar.append((file,dline,prodname,syms))
except SyntaxError:
raise
except Exception:
raise SyntaxError("%s:%d: Syntax error in rule '%s'" % (file,dline,ps.strip()))
return grammar
# -----------------------------------------------------------------------------
# ParserReflect()
#
# This class represents information extracted for building a parser including
# start symbol, error function, tokens, precedence list, action functions,
# etc.
# -----------------------------------------------------------------------------
class ParserReflect(object):
def __init__(self,pdict,log=None):
self.pdict = pdict
self.start = None
self.error_func = None
self.tokens = None
self.files = {}
self.grammar = []
self.error = 0
if log is None:
self.log = PlyLogger(sys.stderr)
else:
self.log = log
# Get all of the basic information
def get_all(self):
self.get_start()
self.get_error_func()
self.get_tokens()
self.get_precedence()
self.get_pfunctions()
# Validate all of the information
def validate_all(self):
self.validate_start()
self.validate_error_func()
self.validate_tokens()
self.validate_precedence()
self.validate_pfunctions()
self.validate_files()
return self.error
# Compute a signature over the grammar
def signature(self):
try:
from hashlib import md5
except ImportError:
from md5 import md5
try:
sig = md5()
if self.start:
sig.update(self.start.encode('latin-1'))
if self.prec:
sig.update("".join(["".join(p) for p in self.prec]).encode('latin-1'))
if self.tokens:
sig.update(" ".join(self.tokens).encode('latin-1'))
for f in self.pfuncs:
if f[3]:
sig.update(f[3].encode('latin-1'))
except (TypeError,ValueError):
pass
return sig.digest()
# -----------------------------------------------------------------------------
# validate_file()
#
# This method checks to see if there are duplicated p_rulename() functions
# in the parser module file. Without this function, it is really easy for
# users to make mistakes by cutting and pasting code fragments (and it's a real
# bugger to try and figure out why the resulting parser doesn't work). Therefore,
# we just do a little regular expression pattern matching of def statements
# to try and detect duplicates.
# -----------------------------------------------------------------------------
def validate_files(self):
# Match def p_funcname(
fre = re.compile(r'\s*def\s+(p_[a-zA-Z_0-9]*)\(')
for filename in self.files.keys():
base,ext = os.path.splitext(filename)
if ext != '.py': return 1 # No idea. Assume it's okay.
try:
f = open(filename)
lines = f.readlines()
f.close()
except IOError:
continue
counthash = { }
for linen,l in enumerate(lines):
linen += 1
m = fre.match(l)
if m:
name = m.group(1)
prev = counthash.get(name)
if not prev:
counthash[name] = linen
else:
self.log.warning("%s:%d: Function %s redefined. Previously defined on line %d", filename,linen,name,prev)
# Get the start symbol
def get_start(self):
self.start = self.pdict.get('start')
# Validate the start symbol
def validate_start(self):
if self.start is not None:
if not isinstance(self.start,str):
self.log.error("'start' must be a string")
# Look for error handler
def get_error_func(self):
self.error_func = self.pdict.get('p_error')
# Validate the error function
def validate_error_func(self):
if self.error_func:
if isinstance(self.error_func,types.FunctionType):
ismethod = 0
elif isinstance(self.error_func, types.MethodType):
ismethod = 1
else:
self.log.error("'p_error' defined, but is not a function or method")
self.error = 1
return
eline = func_code(self.error_func).co_firstlineno
efile = func_code(self.error_func).co_filename
self.files[efile] = 1
if (func_code(self.error_func).co_argcount != 1+ismethod):
self.log.error("%s:%d: p_error() requires 1 argument",efile,eline)
self.error = 1
# Get the tokens map
def get_tokens(self):
tokens = self.pdict.get("tokens",None)
if not tokens:
self.log.error("No token list is defined")
self.error = 1
return
if not isinstance(tokens,(list, tuple)):
self.log.error("tokens must be a list or tuple")
self.error = 1
return
if not tokens:
self.log.error("tokens is empty")
self.error = 1
return
self.tokens = tokens
# Validate the tokens
def validate_tokens(self):
# Validate the tokens.
if 'error' in self.tokens:
self.log.error("Illegal token name 'error'. Is a reserved word")
self.error = 1
return
terminals = {}
for n in self.tokens:
if n in terminals:
self.log.warning("Token '%s' multiply defined", n)
terminals[n] = 1
# Get the precedence map (if any)
def get_precedence(self):
self.prec = self.pdict.get("precedence",None)
# Validate and parse the precedence map
def validate_precedence(self):
preclist = []
if self.prec:
if not isinstance(self.prec,(list,tuple)):
self.log.error("precedence must be a list or tuple")
self.error = 1
return
for level,p in enumerate(self.prec):
if not isinstance(p,(list,tuple)):
self.log.error("Bad precedence table")
self.error = 1
return
if len(p) < 2:
self.log.error("Malformed precedence entry %s. Must be (assoc, term, ..., term)",p)
self.error = 1
return
assoc = p[0]
if not isinstance(assoc,str):
self.log.error("precedence associativity must be a string")
self.error = 1
return
for term in p[1:]:
if not isinstance(term,str):
self.log.error("precedence items must be strings")
self.error = 1
return
preclist.append((term,assoc,level+1))
self.preclist = preclist
# Get all p_functions from the grammar
def get_pfunctions(self):
p_functions = []
for name, item in self.pdict.items():
if name[:2] != 'p_': continue
if name == 'p_error': continue
if isinstance(item,(types.FunctionType,types.MethodType)):
line = func_code(item).co_firstlineno
file = func_code(item).co_filename
p_functions.append((line,file,name,item.__doc__))
# Sort all of the actions by line number
p_functions.sort()
self.pfuncs = p_functions
# Validate all of the p_functions
def validate_pfunctions(self):
grammar = []
# Check for non-empty symbols
if len(self.pfuncs) == 0:
self.log.error("no rules of the form p_rulename are defined")
self.error = 1
return
for line, file, name, doc in self.pfuncs:
func = self.pdict[name]
if isinstance(func, types.MethodType):
reqargs = 2
else:
reqargs = 1
if func_code(func).co_argcount > reqargs:
self.log.error("%s:%d: Rule '%s' has too many arguments",file,line,func.__name__)
self.error = 1
elif func_code(func).co_argcount < reqargs:
self.log.error("%s:%d: Rule '%s' requires an argument",file,line,func.__name__)
self.error = 1
elif not func.__doc__:
self.log.warning("%s:%d: No documentation string specified in function '%s' (ignored)",file,line,func.__name__)
else:
try:
parsed_g = parse_grammar(doc,file,line)
for g in parsed_g:
grammar.append((name, g))
except SyntaxError:
e = sys.exc_info()[1]
self.log.error(str(e))
self.error = 1
# Looks like a valid grammar rule
# Mark the file in which defined.
self.files[file] = 1
# Secondary validation step that looks for p_ definitions that are not functions
# or functions that look like they might be grammar rules.
for n,v in self.pdict.items():
if n[0:2] == 'p_' and isinstance(v, (types.FunctionType, types.MethodType)): continue
if n[0:2] == 't_': continue
if n[0:2] == 'p_' and n != 'p_error':
self.log.warning("'%s' not defined as a function", n)
if ((isinstance(v,types.FunctionType) and func_code(v).co_argcount == 1) or
(isinstance(v,types.MethodType) and func_code(v).co_argcount == 2)):
try:
doc = v.__doc__.split(" ")
if doc[1] == ':':
self.log.warning("%s:%d: Possible grammar rule '%s' defined without p_ prefix",
func_code(v).co_filename, func_code(v).co_firstlineno,n)
except Exception:
pass
self.grammar = grammar
# -----------------------------------------------------------------------------
# yacc(module)
#
# Build a parser
# -----------------------------------------------------------------------------
def yacc(method='LALR', debug=yaccdebug, module=None, tabmodule=tab_module, start=None,
check_recursion=1, optimize=0, write_tables=1, debugfile=debug_file,outputdir='',
debuglog=None, errorlog = None, picklefile=None):
global parse # Reference to the parsing method of the last built parser
# If pickling is enabled, table files are not created
if picklefile:
write_tables = 0
if errorlog is None:
errorlog = PlyLogger(sys.stderr)
# Get the module dictionary used for the parser
if module:
_items = [(k,getattr(module,k)) for k in dir(module)]
pdict = dict(_items)
else:
pdict = get_caller_module_dict(2)
# Collect parser information from the dictionary
pinfo = ParserReflect(pdict,log=errorlog)
pinfo.get_all()
if pinfo.error:
raise YaccError("Unable to build parser")
# Check signature against table files (if any)
signature = pinfo.signature()
# Read the tables
try:
lr = LRTable()
if picklefile:
read_signature = lr.read_pickle(picklefile)
else:
read_signature = lr.read_table(tabmodule)
if optimize or (read_signature == signature):
try:
lr.bind_callables(pinfo.pdict)
parser = LRParser(lr,pinfo.error_func)
parse = parser.parse
return parser
except Exception:
e = sys.exc_info()[1]
errorlog.warning("There was a problem loading the table file: %s", repr(e))
except VersionError:
e = sys.exc_info()
errorlog.warning(str(e))
except Exception:
pass
if debuglog is None:
if debug:
debuglog = PlyLogger(open(debugfile,"w"))
else:
debuglog = NullLogger()
debuglog.info("Created by PLY version %s (http://www.dabeaz.com/ply)", __version__)
errors = 0
# Validate the parser information
if pinfo.validate_all():
raise YaccError("Unable to build parser")
if not pinfo.error_func:
errorlog.warning("no p_error() function is defined")
# Create a grammar object
grammar = Grammar(pinfo.tokens)
# Set precedence level for terminals
for term, assoc, level in pinfo.preclist:
try:
grammar.set_precedence(term,assoc,level)
except GrammarError:
e = sys.exc_info()[1]
errorlog.warning("%s",str(e))
# Add productions to the grammar
for funcname, gram in pinfo.grammar:
file, line, prodname, syms = gram
try:
grammar.add_production(prodname,syms,funcname,file,line)
except GrammarError:
e = sys.exc_info()[1]
errorlog.error("%s",str(e))
errors = 1
# Set the grammar start symbols
try:
if start is None:
grammar.set_start(pinfo.start)
else:
grammar.set_start(start)
except GrammarError:
e = sys.exc_info()[1]
errorlog.error(str(e))
errors = 1
if errors:
raise YaccError("Unable to build parser")
# Verify the grammar structure
undefined_symbols = grammar.undefined_symbols()
for sym, prod in undefined_symbols:
errorlog.error("%s:%d: Symbol '%s' used, but not defined as a token or a rule",prod.file,prod.line,sym)
errors = 1
unused_terminals = grammar.unused_terminals()
if unused_terminals:
debuglog.info("")
debuglog.info("Unused terminals:")
debuglog.info("")
for term in unused_terminals:
errorlog.warning("Token '%s' defined, but not used", term)
debuglog.info(" %s", term)
# Print out all productions to the debug log
if debug:
debuglog.info("")
debuglog.info("Grammar")
debuglog.info("")
for n,p in enumerate(grammar.Productions):
debuglog.info("Rule %-5d %s", n, p)
# Find unused non-terminals
unused_rules = grammar.unused_rules()
for prod in unused_rules:
errorlog.warning("%s:%d: Rule '%s' defined, but not used", prod.file, prod.line, prod.name)
if len(unused_terminals) == 1:
errorlog.warning("There is 1 unused token")
if len(unused_terminals) > 1:
errorlog.warning("There are %d unused tokens", len(unused_terminals))
if len(unused_rules) == 1:
errorlog.warning("There is 1 unused rule")
if len(unused_rules) > 1:
errorlog.warning("There are %d unused rules", len(unused_rules))
if debug:
debuglog.info("")
debuglog.info("Terminals, with rules where they appear")
debuglog.info("")
terms = list(grammar.Terminals)
terms.sort()
for term in terms:
debuglog.info("%-20s : %s", term, " ".join([str(s) for s in grammar.Terminals[term]]))
debuglog.info("")
debuglog.info("Nonterminals, with rules where they appear")
debuglog.info("")
nonterms = list(grammar.Nonterminals)
nonterms.sort()
for nonterm in nonterms:
debuglog.info("%-20s : %s", nonterm, " ".join([str(s) for s in grammar.Nonterminals[nonterm]]))
debuglog.info("")
if check_recursion:
unreachable = grammar.find_unreachable()
for u in unreachable:
errorlog.warning("Symbol '%s' is unreachable",u)
infinite = grammar.infinite_cycles()
for inf in infinite:
errorlog.error("Infinite recursion detected for symbol '%s'", inf)
errors = 1
unused_prec = grammar.unused_precedence()
for term, assoc in unused_prec:
errorlog.error("Precedence rule '%s' defined for unknown symbol '%s'", assoc, term)
errors = 1
if errors:
raise YaccError("Unable to build parser")
# Run the LRGeneratedTable on the grammar
if debug:
errorlog.debug("Generating %s tables", method)
lr = LRGeneratedTable(grammar,method,debuglog)
if debug:
num_sr = len(lr.sr_conflicts)
# Report shift/reduce and reduce/reduce conflicts
if num_sr == 1:
errorlog.warning("1 shift/reduce conflict")
elif num_sr > 1:
errorlog.warning("%d shift/reduce conflicts", num_sr)
num_rr = len(lr.rr_conflicts)
if num_rr == 1:
errorlog.warning("1 reduce/reduce conflict")
elif num_rr > 1:
errorlog.warning("%d reduce/reduce conflicts", num_rr)
# Write out conflicts to the output file
if debug and (lr.sr_conflicts or lr.rr_conflicts):
debuglog.warning("")
debuglog.warning("Conflicts:")
debuglog.warning("")
for state, tok, resolution in lr.sr_conflicts:
debuglog.warning("shift/reduce conflict for %s in state %d resolved as %s", tok, state, resolution)
already_reported = {}
for state, rule, rejected in lr.rr_conflicts:
if (state,id(rule),id(rejected)) in already_reported:
continue
debuglog.warning("reduce/reduce conflict in state %d resolved using rule (%s)", state, rule)
debuglog.warning("rejected rule (%s) in state %d", rejected,state)
errorlog.warning("reduce/reduce conflict in state %d resolved using rule (%s)", state, rule)
errorlog.warning("rejected rule (%s) in state %d", rejected, state)
already_reported[state,id(rule),id(rejected)] = 1
warned_never = []
for state, rule, rejected in lr.rr_conflicts:
if not rejected.reduced and (rejected not in warned_never):
debuglog.warning("Rule (%s) is never reduced", rejected)
errorlog.warning("Rule (%s) is never reduced", rejected)
warned_never.append(rejected)
# Write the table file if requested
if write_tables:
lr.write_table(tabmodule,outputdir,signature)
# Write a pickled version of the tables
if picklefile:
lr.pickle_table(picklefile,signature)
# Build the parser
lr.bind_callables(pinfo.pdict)
parser = LRParser(lr,pinfo.error_func)
parse = parser.parse
return parser
|