/usr/share/pyshared/ferari/pg.py is in python-ferari 1.0.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 | # Copyright (C) 2006 Robert C. Kirby
#
# This file is part of FErari.
#
# FErari is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# FErari is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with FErari. If not, see <http://www.gnu.org/licenses/>.
#
# First added: 2005-04-01
# Last changed: 2006-04-01
import numpy,build_tensors,graph
from xpermutations import xuniqueCombinations
from numpy.random import rand
from numpy.linalg import svd, det
precision = 5
eps = .1**precision
def randproj( m , n ):
"""creates a random matrix in R^{m,n}"""
# maps from R^n to R^m
if m >= n:
A = rand( m , n )
[u,s,vt] = svd( A )
return u
else:
A = rand( n , m )
[u,s,vt] = svd(A)
return numpy.transpose(u)
def nnz( u ):
"""Returns the number of items in u that are farther away from
zero than eps."""
nnz_cur = 0
for ui in u:
if abs( ui ) > eps:
nnz_cur += 1
return nnz_cur
def nnz_cmp( x , y ):
"""Allows sorting according to the sparsity of the vectors"""
nnzx = nnz(x)
nnzy = nnz(y)
if nnzx < nnzy:
return -1
elif nnzx == nnzy:
return 0
else:
return 1
def compare( u , v ):
"""Lexicographic ordering that respects floating-point
fuzziness"""
if len(u) != len(v):
raise RuntimeError, "can't compare"
diff = u-v
for d in diff:
if abs(d) > eps:
if d < 0:
return -1
else:
return 1
return 0
def kvp_cmp( x , y ):
return compare( x[1] , y[1] )
def normalize_sign( u ):
"""Returns u or -u such that the first nonzero entry (up to eps)
is positive"""
for ui in u:
if abs(ui) > eps:
if ui < 0.0:
return -u
else:
return u
return u
def unit_vector( u ):
mau = max(abs(u))
if mau < eps:
raise RuntimeError, "barf: divide by zero"
return normalize_sign( u / mau )
def filterequal( vs , compare ):
"""vs is a list of key/value pairs such that equal values must be
adjacent in the list. Returns a list of lists, each of which is
the set of key/value pairs corresponding to equal items."""
outer_index = 0
equal_items = []
while outer_index < len( vs ):
cur_items = [ ]
inner_index = outer_index
while inner_index< len(vs) \
and compare( vs[inner_index] , \
vs[outer_index] ) == 0:
cur_items.append( vs[inner_index] )
inner_index += 1
equal_items.append( cur_items )
outer_index = inner_index
return equal_items
def rank( A ):
"""Returns the numerical rank of an array."""
u,s,vt = svd( A )
return len( [ si for si in s if abs( si ) > eps ] )
def cohyperplanar(bs,n):
"""Predicate indicating whether the members of bs span
an n-dimensional space"""
mat = numpy.array( bs )
return rank( numpy.array( mat ) ) == n
def strike_col( A , j ):
m,n = A.shape
return numpy.take( A , [ k for k in range(0,n) if k != j ] , 1 )
def normalized_cross( vecs ):
n,d = len( vecs ) , len( vecs[ 0 ] )
mat = numpy.array( vecs )
if n != d - 1:
for v in vecs:
print v
raise RuntimeError, "barf"
# normalize the cross product to have unit value to avoid
# rounding to zero in the cross product routine.
foo = numpy.array( \
[ (-1)**i * det(strike_col(mat,i)) \
for i in range( d ) ] )
foo /= max( abs( foo ) )
return normalize_sign( foo )
def bf_line_finder( vecs , m ):
tups = [ frozenset( t ) \
for t in xuniqueCombinations( vecs.keys() , m + 1 ) \
if cohyperplanar( [ vecs[i] for i in t ] , m ) ]
gr = dict( [ ( tup , {}) for tup in tups ] )
for (tup1,tup2) in xuniqueCombinations( tups , 2 ):
if len( tup1.intersection( tup2 ) ) == m:
gr[tup1][tup2] = (m,None)
gr[tup2][tup1] = (m,None)
ccs = graph.connectedComponents( gr )
Ls = []
for cc in ccs:
Lcur = set()
for k in cc:
Lcur.update( k )
Ls.append( Lcur )
return [ frozenset( L ) for L in Ls ]
def rp_line_finder( vecs , m ):
d = len( vecs.itervalues().next() )
udude = randproj(m+1,d)
pi_vecs = dict( [ (i,numpy.dot(udude,v ) ) \
for (i,v) in vecs.iteritems() ] )
pi_normals = [ (tup,normalized_cross( [ pi_vecs[t] for t in tup ]))\
for tup in xuniqueCombinations( pi_vecs.keys() , \
m ) ]
pi_normals.sort( kvp_cmp )
## for i,n in pi_normals:
## print i,n
eitems = filterequal( pi_normals , kvp_cmp )
Ls = []
for e in eitems:
if len( e ) > 1:
inds = set()
for (indlist,a) in e:
inds.update( indlist )
vs = numpy.array( [ vecs[i] for i in inds ] )
if rank( vs ) == m:
Ls.append( frozenset( inds ) )
else:
mini_vecs = dict( [ (i,vecs[i]) for i in inds ] )
Ls.extend( bf_line_finder( mini_vecs , m ) )
return Ls
def line_graph( Ls , m ):
"""Returns a graph whose elements are the members of Ls and whose
edges have weights that are the size of the intersection."""
gr = dict( [ (L,{}) for L in Ls ] )
for (L1,L2) in xuniqueCombinations(Ls,2):
n = len( L1.intersection(L2) )
if n > 0:
gr[L1][L2] = (m - n,None)
gr[L2][L1] = (m - n,None)
return gr
def gen_graph ( vecs , Ls , m ):
"""vecs is a dictionary of label/vector and Ls is a list of sets
indicating (hyper) lines in a partial geometry based on dependency
between m+1 things."""
lg = line_graph( Ls , m )
gg = {}
weights = dict( [ (L,m) for L in Ls ] )
while weights:
# pick a line with minimal weight
L = graph.argmin( weights )
w = weights[L]
weights.pop( L )
Ldone = L.intersection( gg )
# sanity check:
# if there are k items in Ldone and k <= m
# then the weight I get had better
# be m - k
lldone = len( Ldone )
if (lldone <= m and w != m - lldone) \
or (lldone > m and w != 0):
print ct
print L
print Ldone
print w
raise RuntimeError, "barf"
Ltodo = L.difference( Ldone )
roots = set()
for r in Ldone:
if len( roots ) == m:
break
else:
roots.add( r )
# pick the sparsest new elements as new generator members
Ltodo_list = list( Ltodo )
Ltodo_list.sort(nnz_cmp)
for r in Ltodo_list:
if len( roots ) == m:
break
else:
roots.add( r )
done_roots = roots.intersection( gg )
new_roots = roots.intersection( Ltodo )
# sanity check: length of new_roots
# ought to be equal to w
if len( new_roots ) != w:
raise RuntimeError, "barf"
# add new items to gg
for u in new_roots:
if u in gg:
raise RuntimeError, "barf"
gg[u] = {}
# new roots go into graph have no out-edges
# rest of Ltodo go into graph with out-edges to
# each member of the roots.
for u in Ltodo.difference( new_roots ):
if u in gg:
raise RuntimeError, "barf"
gg[u] = {}
for v in roots:
gg[u][v] = (m,None)
# update neighboring lines' weight
for Lnb in lg[L]:
if Lnb in weights:
weights[Lnb] = max( 0 , m - len( Lnb.intersection( gg ) ) )
return gg
def gen_graph_cost( gg , A0dict ):
"""Evaluates the total floating-point cost of the dot product
algorithm associated with a generation graph."""
cost = 0
for u in gg:
if len( gg[u] ) == 0:
cost += nnz( A0dict[u] )
elif len( gg[u] ) == 1:
cost += gg[u].values()[0][0]
else:
cost += len( gg[u] )
return cost
def process( vecs , mmax ):
first_index = vecs.iterkeys().next()
n = len( vecs )
d = len( vecs[first_index] )
z = numpy.zeros( (d,) , "d" )
def filterdict( source , filt ):
return dict( [ a for a in source.iteritems() \
if a[0] not in filt ] )
parents = {}
print "finding zeros..."
zeros = [ x for x in vecs.iteritems() \
if numpy.alltrue( numpy.allclose( x[1],z,eps ) ) ]
for z in zeros:
parents[z[0]] = {}
remaining = filterdict( vecs , parents )
print "down to %d vecs" % ( len( remaining ) , )
print "filtering equal vectors"
# create the list of projections of vectors, each with positive
# first nonzero entry
projected = [ (x[0],normalize_sign(x[1])) \
for x in remaining.iteritems() ]
projected.sort( kvp_cmp )
eitems = filterequal( projected , kvp_cmp )
for eit in eitems:
item_cur = eit[0]
for item in eit[1:]:
parents[item[0]] = { item_cur[0] : (0,"e") }
remaining = filterdict( remaining , parents )
print "done filtering equal vectors"
for m in range(1,mmax+1):
if len( remaining ) <= m:
break
print "filtering linear dependence of order " , m
Ls = rp_line_finder( remaining , m )
gg = gen_graph( remaining , Ls , m )
for u in gg:
if gg[u]:
parents[u] = dict( [ (v,(m,"lc")) for v in gg[u] ] )
remaining = filterdict( remaining , parents )
print "%s vectors remaining" % ( len(remaining,) )
for r in remaining:
parents[r] = {}
return parents
def process2( vecs , max_level ):
first_index = vecs.iterkeys().next()
n = len( vecs )
d = len( vecs[first_index] )
z = numpy.zeros( (d,) , "d" )
def filterdict( source , filt ):
return dict( [ a for a in source.iteritems() \
if a[0] not in filt ] )
parents = {}
nv = len( vecs )
zeros = [ x for x in vecs.iteritems() \
if numpy.alltrue( numpy.allclose( x[1],z,eps ) ) ]
nz = len( zeros )
nr = nv - nz
for z in zeros:
parents[z[0]] = {}
remaining = filterdict( vecs , parents )
projected = [ (x[0],normalize_sign(x[1])) \
for x in remaining.iteritems() ]
projected.sort( kvp_cmp )
eitems = filterequal( projected , kvp_cmp )
for eit in eitems:
item_cur = eit[0]
for item in eit[1:]:
parents[item[0]] = { item_cur[0] : (0,"e") }
remaining = filterdict( remaining , parents )
ne = nr - len( remaining )
nr = len( remaining )
print "done filtering equal vectors"
nactive = []
nleft = [nr]
curcost = []
for i in range(1,max_level+1):
print "filtering linear dependence of order " , i
print "%s vectors remain" % (nleft[-1],)
Ls = rp_line_finder( remaining , i )
# figure out who lives in linear relations, who doesn't
active = set()
for L in Ls:
for u in L:
active.add( u )
nactive.append( len( active ) )
print "%s elements are active" % (len(active),)
gg = gen_graph( remaining , Ls , i )
for u in gg:
if gg[u]:
parents[u] = dict( [(v,(i,"lc")) for v in gg[u] ] )
remaining = filterdict( remaining , parents )
nr = len( remaining )
nleft.append( nr )
print "%s remain now" % (nr,)
# temporarily add in everything remaining by brute force to the
# generation graph, compute the cost, and then remove them
for r in remaining:
parents[r] = {}
cc = gen_graph_cost( parents , vecs )
curcost.append( cc )
print "current cost is down to %s" % (cc,)
for r in remaining:
parents.pop( r )
for r in remaining:
parents[r] = {}
return parents,n,d,nz,ne,nleft,nactive,curcost
def process_gen_graph( vecs ):
"""Returns the generation graph for vectors active at
2-dependencies"""
first_index = vecs.iterkeys().next()
n = len( vecs )
d = len( vecs.itervalues().next() )
z = numpy.zeros( (d,) , "d" )
def filterdict( source , filt ):
return dict( [ a for a in source.iteritems() \
if a[0] not in filt ] )
parents = {}
print "finding zeros..."
zeros = [ x for x in vecs.iteritems() \
if numpy.alltrue( numpy.allclose( x[1],z,eps ) ) ]
for z in zeros:
parents[z[0]] = {}
remaining = filterdict( vecs , parents )
print "down to %d vecs" % ( len( remaining ) , )
print "filtering equal vectors"
projected = [ (x[0],normalize_sign(x[1])) \
for x in remaining.iteritems() ]
projected.sort( kvp_cmp )
eitems = filterequal( projected , kvp_cmp )
for eit in eitems:
item_cur = eit[0]
for item in eit[1:]:
parents[item[0]] = { item_cur[0] : (0,"e") }
remaining = filterdict( remaining , parents )
print "done filtering equal vectors"
for m in range(1,3):
if len( remaining ) <= m:
break
print "filtering linear dependence of order " , m
Ls = rp_line_finder( remaining , m )
gg = gen_graph( remaining , Ls , m )
for u in gg:
if gg[u]:
parents[u] = dict( [ (v,(m,"lc")) for v in gg[u] ] )
remaining = filterdict( remaining , parents )
print "%s vectors remaining" % ( len(remaining,) )
ggdot = graph.Dot( gg )
ggdot.save_image( "foo%d.png" % (m,) , "png")
for r in remaining:
parents[r] = {}
return parents
def main_gg():
shape="triangle"
degree=3
A0dict=build_tensors.laplacian(shape,degree)
process_gen_graph(A0dict)
def main():
import string
results = {}
shape = "triangle"
degrees = range(2,4)
max_level = 4
for degree in degrees:
A0dict = \
build_tensors.weighted_laplacian_coeff_first(shape,degree)
results[degree] = process2(A0dict,max_level)
# now let's print the table
# first row is heading
result_str = """
\\begin{tabular}{%s}
%s \\\\ \\hline
%s \\\\
%s \\\\
%s \\\\
%s \\\\
%s \\\\ \\hline
""" % ( string.join( ["c"]*(len(degrees)+1) , "|" ) , \
string.join( [""] + map(str,degrees) , " & ") , \
string.join( ["$n$"] + [str(a[1]) \
for a in results.values()] , " & ") , \
string.join( ["$d$"] + [str(a[2]) \
for a in results.values()] , " & ") , \
string.join( ["num zero"] + [str(a[3]) \
for a in results.values()] , " & ") , \
string.join( ["num equal"] + [str(a[4]) \
for a in results.values()] , " & ") , \
string.join( ["num colinear"] + [str(a[6][0]) \
for a in results.values()] , " & " ) )
for level in range(2,max_level+1):
result_str += """%s \\\\
%s \\\\
%s \\\\
%s \\\\ \\hline
""" % ( string.join( ["size for %d-search"%(level,)] + \
[ str(a[5][level-1]) \
for a in results.values()] , " & " ) , \
string.join( ["num with %d-dependency" % (level,) ] + \
[ str(a[6][level-1]) \
for a in results.values()] , " & " ) , \
string.join( ["generator size"] + \
[ str(a[5][level]) \
for a in results.values()] , " & " ) , \
string.join( ["MAPs"] + \
[ str(a[7][level-1]) \
for a in results.values()] , " & " ) )
result_str += "\\end{tabular}"
print result_str
if __name__ == "__main__":
main_gg()
|