/usr/share/pyshared/ferari/binary.py is in python-ferari 1.0.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 | # Copyright (C) 2006 Robert C. Kirby
#
# This file is part of FErari.
#
# FErari is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# FErari is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with FErari. If not, see <http://www.gnu.org/licenses/>.
#
# First added: 2005-04-01
# Last changed: 2006-04-05
import sigdig, numpy, string, graph, pg, util
from xpermutations import xuniqueCombinations
eps = util.eps
# This are distance measures used in the (hopefully)
# now obsolete brute-force O(n^2) method of forming
# the graph
def edplus( u , v ):
"""Returns the Hamming distance (number of nonzero vectors)
between u and v, after rounding both vectors to 5 significant
digits"""
ur = sigdig.vec_round_sig( u , 5 )
vr = sigdig.vec_round_sig( v , 5 )
return util.nnz( ur - vr )
def edminus( u , v ):
"""Returns the Hamming distance (number of nonzero vectors)
between u and -v, after rounding both vectors to 5 significant
digits"""
ur = sigdig.vec_round_sig( u , 5 )
vr = sigdig.vec_round_sig( v , 5 )
return util.nnz( ur + vr )
def colinear( u , v ):
"""Returns 0 if both vectors are 0, 1 if they are colinear,
and the length of the vectors if they are not."""
d = len( u )
z = numpy.zeros( u.shape , "d" )
uzhuh = numpy.alltrue( numpy.allclose( u , z ) )
vzhuh = numpy.alltrue( numpy.allclose( v , z ) )
if uzhuh and vzhuh:
return 0
elif uzhuh or vzhuh:
return d
else:
uhat = util.unit_vector( u )
vhat = util.unit_vector( v )
if numpy.alltrue( numpy.allclose( uhat , vhat ) ) \
or numpy.alltrue( numpy.allclose( uhat , -vhat ) ):
return 1
else:
return d
def rho( u , v ):
"""Amalgamates several complexity-reducing relations into
a single function for the purposes of the brute-force
graph construction"""
ep = edplus( u , v )
em = edminus( u , v )
c = colinear( u , v )
m = min( em , ep , c )
if ep == m:
l = "edp"
elif em == m:
l = "edm"
else:
l = "c"
return (m,l)
def get_graph( vecs , dist ):
"""Brute force construction of the CRR graph."""
G = dict( [ (v,{}) for v in vecs ] )
for (u,v) in xuniqueCombinations( vecs.keys() , 2 ):
(w,l) = dist( vecs[u] , vecs[v] )
G[u][v] = (w,l)
G[v][u] = (w,l)
return G
def get_graph_clever( vecs ):
"""This builds a (possibly unconnected) graph based on
Hamming distance and colinearity, but it typically works in
O(n log n) time. Lack of connectedness is not a problem,
as we can apply Prim's algorithm to each connected component."""
digits = 11
n = len( vecs )
d = len( vecs.itervalues().next() )
vecs = dict( [ (i,sigdig.vec_round_sig(v,digits)) \
for (i,v) in vecs.iteritems() ] )
G = dict( [ (i,{}) for i in vecs ] )
# compute positive/negative Hamming distance between all the vectors
# need to set up array of hash tables of unique entries in
# position i to keys of vectors with that value in position i
Gbig = dict( [ ((1,i),{}) for i in vecs ] + \
[ ((-1,i),{}) for i in vecs ] )
tables = [ {} for i in range(d)]
for i in vecs:
for j in range(d):
vj = vecs[i][j]
if vj in tables[j]:
tables[j][vj].append( (1,i) )
else:
tables[j][vj] = [(1,i)]
mvj = -vecs[i][j]
if mvj in tables[j]:
tables[j][mvj].append( (-1,i) )
else:
tables[j][mvj] = [(-1,i)]
sgncode = { 1:"edp" , -1:"edm" }
# create the graph mapping \pm each vector to \pm each other
# vector, *if* they share a common entry
for j in range(d):
for vj in tables[j]:
for (tup1,tup2) in \
xuniqueCombinations( tables[j][vj] , 2 ):
if tup2 in Gbig[tup1]:
Gbig[tup1][tup2] -= 1
Gbig[tup2][tup1] -= 1
else:
Gbig[tup1][tup2] = d-1
Gbig[tup2][tup1] = d-1
# this extracts the minimum Hamming distance between
# +v1,+v2 and +v1,-v2 and writes it into the graph
for i1 in vecs:
nbs = [ i2 for (sgn,i2) in Gbig[(1,i1)] if i2 > i1 ]
for i2 in nbs:
wp = Gbig[(1,i1)].get((1,i2),d)
wm = Gbig[(1,i1)].get((-1,i2),d)
if wp <= wm:
G[i1][i2] = (wp,"edp")
G[i2][i1] = (wp,"edp")
else:
G[i1][i2] = (wm,"edm")
G[i2][i1] = (wm,"edm")
# now I need to write in colinear vectors.
# first, filter out zeros
z = numpy.zeros( (d,),"d" )
remaining = dict( [ x for x in vecs.iteritems() \
if not numpy.alltrue( \
numpy.allclose( x[1] , z , eps ) ) ] )
# then, call pg to get colinear terms
Ls = pg.rp_line_finder( remaining , 1 )
for L in Ls:
for (i1,i2) in xuniqueCombinations( list(L) , 2 ):
if i2 in G[i1]:
if G[i1][i2][0] >= 1:
G[i1][i2] = (1,"c")
G[i2][i1] = (1,"c")
# this is a sanity check to make sure I didn't screw up
for i in G:
for j in G[i]:
if G[i][j][0] != rho(vecs[i],vecs[j])[0]:
print "foo"
print G[i][j],rho(vecs[i],vecs[j])
print vecs[i], vecs[j]
print
return G
def process_bf( vecs ):
"""Takes a dictionary mapping vector labels to the numpy.array
objects, and returns the minimum spanning tree of the associated
CRR graph. This runs in something like O(n^2) plus the cost
of forming the minimum spanning tree. Officically, it's O(n^3)
because I'm doing a suboptimal MST implementation, but the cost
seems dominated by building the graph rather than the MST in
the regime I've considered. Eventually I should implement
a better MST algorithm if this is a bottleneck"""
return graph.prim( get_graph( vecs , rho ) )
def process( vecs ):
"""Uses efficient graph construction algorithm then
returns the minimum spanning forest."""
# G = get_graph_clever( vecs )
G = get_graph( vecs , rho )
return reduce( lambda a,b: graph.merge_disjoint( a , b ) , \
map( graph.prim , \
graph.connectedComponents( G ) ) )
def snip( mst , Adict ):
"""Takes the mst as input. For each node, if the cost of
doing the dot product by brute force is less than or equal to the
cost of using the parent, remove that dependency. This transforms
the tree to a forest, which is actually good for data dependency
and locality"""
forest = {}
for v in mst:
if not mst[v]:
forest[v] = {}
else:
num_nz = util.nnz( Adict[v] )
mst_cost = mst[v].values()[0][0]
if num_nz <= mst_cost:
forest[v] = {}
else:
forest[v] = mst[v]
return forest
def cost( g , vecs ):
"""Takes a MST graph constructed in process and returns
the sum of edge weights plus the number of nonzeros in the root;
this is the total MAPs needed to form an element stiffness matrix."""
w = 0
for u in g:
if g[u]:
v = g[u].keys()[0]
w += g[u][v][0]
else:
w += util.nnz( vecs[u] )
return w
def nodep_code( u ):
"""Abstract code for a dot product performed by brute force"""
return [ (u[i],1,i) for i in range(len(u)) \
if abs(u[i]) > 1.e-6 ]
# returns the abstract code
# associated with various dependencies
# u^t g is assumed known, v^t is to be computed.
# v^t g = u^t g + ( v - u )^t g
def ep_code( Adict , i1 , i2 ):
"""Returns abstract code for computing the dot product
of Adict[i2] from Adict[i1] using positive Hamming distance"""
u = Adict[i1]
v = Adict[i2]
diff = v - u
diffinds = []
# which indices matter?
for i in range( len( diff ) ):
if abs( diff[i] ) >= 1.e-4:
diffinds.append(i)
oplist = [ (1.0,0,i1) ]
for i in diffinds:
oplist.append( (diff[i],1,i) )
return oplist
# returns the abstract code
# associated with various dependencies
# u^t g is assumed known, v^t is to be computed.
# v^t g = -u^t g + ( v + u )^t g
def em_code( Adict , i1 , i2 ):
"""Returns abstract code for computing the dot product
of Adict[i2] from Adict[i1] using negative Hamming distance"""
u = Adict[i1]
v = Adict[i2]
diff = v + u
diffinds = []
# which indices matter?
for i in range( len( diff ) ):
if abs( diff[i] ) >= 1.e-4:
diffinds.append(i)
oplist = [ (-1.0,0,i1) ]
for i in diffinds:
oplist.append( (diff[i],1,i) )
return oplist
# v^t g = v[0]/u[0] ( u^t g )
def c_code( A , i1 , i2 ):
"""Returns abstract code for computing Adict[i2]^t g from
Adict[i1]^t g using colinearity."""
u = numpy.reshape( A[i1] , (-1,) )
v = numpy.reshape( A[i2] , (-1,) )
i=0
while abs(u[i]) < 1.e-6 and i<len(u):
i+=1
alpha = v[i] / u[i]
return [ ( alpha , 0 , i1 ) ]
def abstract_code( mst , A0 , Adict , foo ):
"""Takes the MST as input and returns a list modeling
primitive abstract syntax for the optimized code """
if foo == 1:
Afoo = numpy.reshape( A0 , (A0.shape[0],-1) )
elif foo == 2:
Afoo = numpy.reshape( A0 , (A0.shape[0],A0.shape[1],-1) )
else:
raise Exception, "foo barfed"
A = Afoo
ts = graph.topsort( mst )
ops = []
for k in ts:
if mst[k]:
if len( mst[k] ) == 1:
p = mst[k].iterkeys().next()
if mst[k][p][1] == 'c':
ops.append( ( k , c_code( A , p , k ) ) )
elif mst[k][p][1] == 'edp':
ops.append( ( k , ep_code( A , p , k ) ) )
elif mst[k][p][1] == 'edm':
ops.append( ( k , em_code( A , p , k ) ) )
else:
ops.append( ( k , nodep_code(A[k]) ) )
else:
ops.append( ( k , nodep_code( A[k] ) ) )
return ops
def opt_code( A0 , p , Adict ):
"""Constructs optimized code from the original reference
tensor, the minimimum spanning tree, and the dictionary."""
if len( Adict.keys()[0] ) != 2:
raise RuntimeError, "Illegal input"
cs = abstract_code( p , A0 , Adict , 2)
code_list = []
def flatten(iota):
return iota[0]*A0.shape[0] + iota[1]
def convert( a ):
if a[1] == 0:
return (a[0],a[1],flatten(a[2]))
else:
return a
for c in cs:
lvalue = (0,flatten(c[0]))
rvalue = map( convert , c[1] )
code_list.append( (lvalue,rvalue) )
return code_list
def opt_code_action( A0 , p , Adict ):
"""Constructs optimized code from the original reference
tensor, the minimimum spanning tree, and the dictionary."""
if len( Adict.keys()[0] ) != 1:
raise RuntimeError, "Illegal input"
cs = abstract_code( p , A0 , Adict , 1)
code_list = []
def flatten( iota ): return iota[0]
def convert( a ):
if a[1] == 0:
return (a[0],a[1],flatten(a[2]))
else:
return a
for c in cs:
lvalue = (0,flatten(c[0]))
rvalue = map(convert,c[1])
code_list.append( (lvalue,rvalue) )
return code_list
def optimize( A0 ):
"""Takes the reference tensor as input and returns
abstract code for forming the element tensor."""
Adict = {}
for i in range( A0.shape[0] ):
for j in range( A0.shape[1] ):
Adict[i,j] = sigdig.vec_round_sig( \
numpy.reshape( A0[i,j] , (-1,) ) , 10 )
p = process( Adict )
p = snip( p , Adict )
# print cost( p , Adict )
return opt_code(A0,p,Adict )
def optimize_action( A0 ):
"""Takes the reference tensor as input and
returns abstract code for forming the action of the
element matrix on a vector."""
Adict = {}
for i in range( A0.shape[0] ):
Adict[(i,)] = sigdig.vec_round_sig( numpy.reshape( A0[i],(-1,) ), \
10 )
p = process( Adict )
p = snip( p , Adict )
return opt_code_action( A0 , p , Adict )
def main():
import build_tensors
shape = "tetrahedron"
degree = 1
A0 = build_tensors.laplacianform(shape,degree)
for c in optimize_action( A0 ):
print c
print
# for c in optimize( A0 ):
# print c
if __name__ == "__main__":
main()
|