/usr/share/pyshared/deap/gp.py is in python-deap 0.7.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 | # This file is part of DEAP.
#
# DEAP is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as
# published by the Free Software Foundation, either version 3 of
# the License, or (at your option) any later version.
#
# DEAP is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with DEAP. If not, see <http://www.gnu.org/licenses/>.
"""The :mod:`gp` module provides the methods and classes to perform
Genetic Programming with DEAP. It essentially contains the classes to
build a Genetic Program Tree, and the functions to evaluate it.
This module support both strongly and loosely typed GP.
"""
import copy
import random
import base
from itertools import repeat
from collections import defaultdict
# Define the name of type for any types.
__type__ = None
## GP Tree utility functions
def evaluate(expr, pset=None):
"""Evaluate the expression *expr* into a string if *pset* is None
or into Python code if *pset* is not None.
"""
def _stringify(expr):
try:
func = expr[0]
return str(func(*[_stringify(value) for value in expr[1:]]))
except TypeError:
return str(expr)
if not pset is None:
try:
return eval(_stringify(expr), pset.func_dict)
except MemoryError:
raise MemoryError,("DEAP : Error in tree evaluation :"
" Python cannot evaluate a tree with a height bigger than 90. "
"To avoid this problem, you should use bloat control on your "
"operators. See the DEAP documentation for more information. "
"DEAP will now abort.")
else:
return _stringify(expr)
def evaluateADF(seq):
"""Evaluate a list of ADF and return a dict mapping the ADF name with its
lambda function.
"""
adfdict = {}
for i, expr in enumerate(reversed(seq[1:])):
func = lambdify(expr.pset, expr)
adfdict.update({expr.pset.__name__ : func})
for expr2 in reversed(seq[1:i+1]):
expr2.pset.func_dict.update(adfdict)
return adfdict
def lambdify(pset, expr):
"""Return a lambda function of the expression *expr*.
.. note::
This function is a stripped version of the lambdify
function of sympy0.6.6.
"""
expr = evaluate(expr)
args = ",".join(a for a in pset.arguments)
lstr = "lambda %s: %s" % (args, expr)
try:
return eval(lstr, dict(pset.func_dict))
except MemoryError:
raise MemoryError,("DEAP : Error in tree evaluation :"
" Python cannot evaluate a tree with a height bigger than 90. "
"To avoid this problem, you should use bloat control on your "
"operators. See the DEAP documentation for more information. "
"DEAP will now abort.")
def lambdifyList(expr):
"""Return a lambda function created from a list of trees. The first
element of the list is the main tree, and the following elements are
automatically defined functions (ADF) that can be called by the first
tree.
"""
adfdict = evaluateADF(expr)
expr[0].pset.func_dict.update(adfdict)
return lambdify(expr[0].pset, expr[0])
## Loosely + Strongly Typed GP
class Primitive(object):
"""Class that encapsulates a primitive and when called with arguments it
returns the Python code to call the primitive with the arguments.
>>> import operator
>>> pr = Primitive(operator.mul, (int, int), int)
>>> pr("1", "2")
'mul(1, 2)'
"""
def __init__(self, primitive, args, ret = __type__):
self.name = primitive.__name__
self.arity = len(args)
self.args = args
self.ret = ret
args = ", ".join(repeat("%s", self.arity))
self.seq = "%s(%s)" % (self.name, args)
def __call__(self, *args):
return self.seq % args
def __repr__(self):
return self.name
class Operator(Primitive):
"""Class that encapsulates an operator and when called with arguments it
returns the Python code to call the operator with the arguments. It acts
as the Primitive class, but instead of returning a function and its
arguments, it returns an operator and its operands.
>>> import operator
>>> op = Operator(operator.mul, (int, int), int)
>>> op("1", "2")
'(1 * 2)'
>>> op2 = Operator(operator.neg, (int,), int)
>>> op2(1)
'-(1)'
"""
symbols = {"add" : "+", "sub" : "-", "mul" : "*", "div" : "/", "neg" : "-",
"and_" : "and", "or_" : "or", "not_" : "not",
"lt" : "<", "eq" : "==", "gt" : ">", "geq" : ">=", "leq" : "<="}
def __init__(self, operator, args, ret = __type__):
Primitive.__init__(self, operator, args, ret)
if len(args) == 1:
self.seq = "%s(%s)" % (self.symbols[self.name], "%s")
elif len(args) == 2:
self.seq = "(%s %s %s)" % ("%s", self.symbols[self.name], "%s")
else:
raise ValueError("Operator arity can be either 1 or 2.")
class Terminal(object):
"""Class that encapsulates terminal primitive in expression. Terminals can
be symbols, values, or 0-arity functions.
"""
def __init__(self, terminal, ret = __type__):
self.ret = ret
try:
self.value = terminal.__name__
except AttributeError:
self.value = terminal
def __call__(self):
return self
def __repr__(self):
return str(self.value)
class Ephemeral(Terminal):
"""Class that encapsulates a terminal which value is set at run-time.
The value of the `Ephemeral` can be regenerated with the method `regen`.
"""
def __init__(self, func, ret = __type__):
self.func = func
Terminal.__init__(self, self.func(), ret)
def regen(self):
"""Regenerate the ephemeral value."""
self.value = self.func()
class EphemeralGenerator(object):
"""Class that generates `Ephemeral` to be added to an expression."""
def __init__(self, ephemeral, ret = __type__):
self.ret = ret
self.name = ephemeral.__name__
self.func = ephemeral
def __call__(self):
return Ephemeral(self.func, self.ret)
def __repr__(self):
return self.name
class PrimitiveSetTyped(object):
"""Class that contains the primitives that can be used to solve a
Strongly Typed GP problem. The set also defined the researched
function return type, and input arguments type and number.
"""
def __init__(self, name, in_types, ret_type, prefix = "ARG"):
self.terminals = defaultdict(list)
self.primitives = defaultdict(list)
self.arguments = []
self.func_dict = dict()
self.terms_count = 0
self.prims_count = 0
self.adfs_count = 0
self.__name__ = name
self.ret = ret_type
self.ins = in_types
for i, type_ in enumerate(in_types):
self.arguments.append(prefix + ("%s" % i))
PrimitiveSetTyped.addTerminal(self, self.arguments[-1], type_)
def renameArguments(self, new_args):
"""Rename function arguments with new arguments name *new_args*.
"""
for i, argument in enumerate(self.arguments):
if new_args.has_key(argument):
self.arguments[i] = new_args[argument]
for terminals in self.terminals.values():
for terminal in terminals:
if ( isinstance(terminal, Terminal) and
new_args.has_key(terminal.value) ):
terminal.value = new_args[terminal.value]
def addPrimitive(self, primitive, in_types, ret_type):
"""Add a primitive to the set.
*primitive* is a callable object or a function.
*in_types* is a list of argument's types the primitive takes.
*ret_type* is the type returned by the primitive.
"""
try:
prim = Operator(primitive, in_types, ret_type)
except (KeyError, ValueError):
prim = Primitive(primitive, in_types, ret_type)
self.primitives[ret_type].append(prim)
self.func_dict[primitive.__name__] = primitive
self.prims_count += 1
def addTerminal(self, terminal, ret_type):
"""Add a terminal to the set.
*terminal* is an object, or a function with no arguments.
*ret_type* is the type of the terminal.
"""
if callable(terminal):
self.func_dict[terminal.__name__] = terminal
prim = Terminal(terminal, ret_type)
self.terminals[ret_type].append(prim)
self.terms_count += 1
def addEphemeralConstant(self, ephemeral, ret_type):
"""Add an ephemeral constant to the set. An ephemeral constant
is a no argument function that returns a random value. The value
of the constant is constant for a Tree, but may differ from one
Tree to another.
*ephemeral* function with no arguments that returns a random value.
*ret_type* is the type of the object returned by the function.
"""
prim = EphemeralGenerator(ephemeral, ret_type)
self.terminals[ret_type].append(prim)
self.terms_count += 1
def addADF(self, adfset):
"""Add an Automatically Defined Function (ADF) to the set.
*adfset* is a PrimitiveSetTyped containing the primitives with which
the ADF can be built.
"""
prim = Primitive(adfset, adfset.ins, adfset.ret)
self.primitives[adfset.ret].append(prim)
self.prims_count += 1
@property
def terminalRatio(self):
"""Return the ratio of the number of terminals on the number of all
kind of primitives.
"""
return self.terms_count / float(self.terms_count + self.prims_count)
class PrimitiveSet(PrimitiveSetTyped):
"""Class same as :class:`~deap.gp.PrimitiveSetTyped`, except there is no
definition of type.
"""
def __init__(self, name, arity, prefix="ARG"):
args = [__type__]*arity
PrimitiveSetTyped.__init__(self, name, args, __type__, prefix)
def addPrimitive(self, primitive, arity):
"""Add primitive *primitive* with arity *arity* to the set."""
assert arity > 0, "arity should be >= 1"
args = [__type__] * arity
PrimitiveSetTyped.addPrimitive(self, primitive, args, __type__)
def addTerminal(self, terminal):
"""Add a terminal to the set."""
PrimitiveSetTyped.addTerminal(self, terminal, __type__)
def addEphemeralConstant(self, ephemeral):
"""Add an ephemeral constant to the set."""
PrimitiveSetTyped.addEphemeralConstant(self, ephemeral, __type__)
class PrimitiveTree(base.Tree):
"""Tree class faster than base Tree, optimized for Primitives."""
pset = None
def _getstate(self):
state = []
for elem in self:
try:
state.append(elem._getstate())
except AttributeError:
state.append(elem)
return state
def __deepcopy__(self, memo):
"""Deepcopy a Tree by first converting it back to a list of list.
This deepcopy is faster than the default implementation. From
quick testing, up to 1.6 times faster, and at least 2 times less
function calls.
"""
new = self.__class__(self._getstate())
new.__dict__.update(copy.deepcopy(self.__dict__, memo))
return new
# Expression generation functions
def genFull(pset, min_, max_, type_=__type__):
"""Generate an expression where each leaf has a the same depth
between *min* and *max*.
"""
def condition(max_depth):
"""Expression generation stops when the depth is zero."""
return max_depth == 0
return _generate(pset, min_, max_, condition, type_)
def genGrow(pset, min_, max_, type_=__type__):
"""Generate an expression where each leaf might have a different depth
between *min* and *max*.
"""
def condition(max_depth):
"""Expression generation stops when the depth is zero or when
it is randomly determined that a a node should be a terminal.
"""
return max_depth == 0 or random.random() < pset.terminalRatio
return _generate(pset, min_, max_, condition, type_)
def genRamped(pset, min_, max_, type_=__type__):
"""Generate an expression with a PrimitiveSet *pset*.
Half the time, the expression is generated with :func:`~deap.gp.genGrow`,
the other half, the expression is generated with :func:`~deap.gp.genFull`.
"""
method = random.choice((genGrow, genFull))
return method(pset, min_, max_, type_)
def _generate(pset, min_, max_, condition, type_=__type__):
def genExpr(max_depth, type_):
if condition(max_depth):
term = random.choice(pset.terminals[type_])
expr = term()
else:
prim = random.choice(pset.primitives[type_])
expr = [prim]
args = (genExpr(max_depth-1, arg) for arg in prim.args)
expr.extend(args)
return expr
max_depth = random.randint(min_, max_)
expr = genExpr(max_depth, type_)
if not isinstance(expr, list):
expr = [expr]
return expr
######################################
# GP Crossovers #
######################################
def cxUniformOnePoint(ind1, ind2):
"""Randomly select in each individual and exchange each subtree with the
point as root between each individual.
"""
try:
index1 = random.randint(1, ind1.size-1)
index2 = random.randint(1, ind2.size-1)
except ValueError:
return ind1, ind2
sub1 = ind1.searchSubtreeDF(index1)
sub2 = ind2.searchSubtreeDF(index2)
ind1.setSubtreeDF(index1, sub2)
ind2.setSubtreeDF(index2, sub1)
return ind1, ind2
## Strongly Typed GP crossovers
def cxTypedOnePoint(ind1, ind2):
"""Randomly select in each individual and exchange each subtree with the
point as root between each individual. Since the node are strongly typed,
the operator then make sure the type of second node correspond to the type
of the first node. If it doesn't, it randomly selects another point in the
second individual and try again. It tries up to *5* times before
giving up on the crossover.
.. note::
This crossover is subject to change for a more effective method
of selecting the crossover points.
"""
# choose the crossover point in each individual
try:
index1 = random.randint(1, ind1.size-1)
index2 = random.randint(1, ind2.size-1)
except ValueError:
return ind1, ind2
subtree1 = ind1.searchSubtreeDF(index1)
subtree2 = ind2.searchSubtreeDF(index2)
type1 = subtree1.root.ret
type2 = subtree2.root.ret
# try to mate the trees
# if no crossover point is found after 5 it gives up trying
# mating individuals.
tries = 0
MAX_TRIES = 5
while not (type1 == type2) and tries < MAX_TRIES:
index2 = random.randint(1, ind2.size-1)
subtree2 = ind2.searchSubtreeDF(index2)
type2 = subtree2.root.ret
tries += 1
if type1 == type2:
sub1 = ind1.searchSubtreeDF(index1)
sub2 = ind2.searchSubtreeDF(index2)
ind1.setSubtreeDF(index1, sub2)
ind2.setSubtreeDF(index2, sub1)
return ind1, ind2
def cxOnePointLeafBiased(ind1, ind2, cxtermpb):
"""Randomly select crossover point in each individual and exchange each
subtree with the point as root between each individual.
This operator takes another parameter *cxtermpb*, which set the probability
to choose between a terminal or non-terminal crossover point.
For instance, as defined by Koza, non-terminal primitives are selected for
90% of the crossover points, and terminals for 10%, so *cxtermpb* should be
set to 0.1.
"""
size1, size2 = ind1.size, ind2.size
if size1 == 1 or size2 == 1:
return ind1, ind2
# Those were not implemented with set because random.choice()
# works only on sequencable iterables (it is not clear whether
# it would be faster to perform the conversion set->list or
# directly use lists)
termsList1 = [termIndex for termIndex in ind1.iter_leaf_idx]
termsList2 = [termIndex for termIndex in ind2.iter_leaf_idx]
primList1 = [i for i in xrange(1,size1) if i not in termsList1]
primList2 = [i for i in xrange(1,size2) if i not in termsList2]
if random.random() < cxtermpb or len(primList1) == 0:
# Choose a terminal from the first parent
index1 = random.choice(termsList1)
subtree1 = ind1.searchSubtreeDF(index1)
else:
# Choose a primitive (non-terminal) from the first parent
index1 = random.choice(primList1)
subtree1 = ind1.searchSubtreeDF(index1)
if random.random() < cxtermpb or len(primList2) == 0:
# Choose a terminal from the second parent
index2 = random.choice(termsList2)
subtree2 = ind2.searchSubtreeDF(index2)
else:
# Choose a primitive (non-terminal) from the second parent
index2 = random.choice(primList2)
subtree2 = ind2.searchSubtreeDF(index2)
ind1.setSubtreeDF(index1, subtree2)
ind2.setSubtreeDF(index2, subtree1)
return ind1, ind2
## Strongly Typed GP crossovers
def cxTypedOnePointLeafBiased(ind1, ind2, cxtermpb):
"""Randomly select crossover point in each individual and exchange each
subtree with the point as root between each individual. Since the node are
strongly typed, the operator then make sure the type of second node
correspond to the type of the first node. If it doesn't, it randomly
selects another point in the second individual and try again. It tries up
to *5* times before giving up on the crossover.
This operator takes another parameter *cxtermpb*, which set the probability
to choose between a terminal or non-terminal crossover point.
For instance, as defined by Koza, non-terminal primitives are selected for
90% of the crossover points, and terminals for 10%, so *cxtermpb* should be
set to 0.1.
.. note::
This crossover is subject to change for a more effective method
of selecting the crossover points.
"""
size1, size2 = ind1.size, ind2.size
if size1 == 1 or size2 == 1:
return ind1, ind2
# Those were not implemented with set because random.choice()
# works only on sequencable iterables (it is not clear whether
# it would be faster to perform the conversion set->list or
# directly use lists)
termsList1 = [termIndex for termIndex in ind1.iter_leaf_idx]
termsList2 = [termIndex for termIndex in ind2.iter_leaf_idx]
primList1 = [i for i in xrange(1,size1) if i not in termsList1]
primList2 = [i for i in xrange(1,size2) if i not in termsList2]
if random.random() < cxtermpb or len(primList1) == 0:
# Choose a terminal from the first parent
index1 = random.choice(termsList1)
subtree1 = ind1.searchSubtreeDF(index1)
else:
# Choose a primitive (non-terminal) from the first parent
index1 = random.choice(primList1)
subtree1 = ind1.searchSubtreeDF(index1)
if random.random() < cxtermpb or len(primList2) == 0:
# Choose a terminal from the second parent
index2 = random.choice(termsList2)
subtree2 = ind2.searchSubtreeDF(index2)
else:
# Choose a primitive (non-terminal) from the second parent
index2 = random.choice(primList2)
subtree2 = ind2.searchSubtreeDF(index2)
type1 = subtree1.root.ret
type2 = subtree2.root.ret
# try to mate the trees
# if no crossover point is found after MAX_CX_TRY
# the children are returned without modifications.
tries = 0
MAX_CX_TRY = 5
while not (type1 is type2) and tries != MAX_CX_TRY:
if random.random() < cxtermpb or len(primList2) == 0:
index2 = random.choice(termsList2)
subtree2 = ind2.searchSubtreeDF(index2)
else:
index2 = random.choice(primList2)
subtree2 = ind2.searchSubtreeDF(index2)
type2 = subtree2.root.ret
tries += 1
if type1 is type2:
ind1.setSubtreeDF(index1, subtree2)
ind2.setSubtreeDF(index2, subtree1)
return ind1, ind2
######################################
# GP Mutations #
######################################
def mutUniform(individual, expr):
"""Randomly select a point in the Tree, then replace the subtree with
the point as a root by a randomly generated expression. The expression
is generated using the method `expr`.
"""
index = random.randint(0, individual.size-1)
individual.setSubtreeDF(index, expr(pset=individual.pset))
return individual,
## Strongly Typed GP mutations
def mutTypedUniform(individual, expr):
"""The mutation of strongly typed GP expression is pretty easy. First,
it finds a subtree. Second, it has to identify the return type of the root
of this subtree. Third, it generates a new subtree with a root's type
corresponding to the original subtree root's type. Finally, the old
subtree is replaced by the new subtree.
"""
index = random.randint(0, individual.size-1)
subtree = individual.searchSubtreeDF(index)
individual.setSubtreeDF(index, expr(pset=individual.pset,
type_=subtree.root.ret))
return individual,
def mutTypedNodeReplacement(individual):
"""This operator mutates the individual *individual* that are subjected to
it. The operator randomly chooses a primitive in the individual
and replaces it with a randomly selected primitive in *pset* that takes
the same number of arguments.
This operator works on strongly typed trees as on normal GP trees.
"""
if individual.size < 2:
return individual,
index = random.randint(1, individual.size-1)
node = individual.searchSubtreeDF(index)
if node.size == 1:
subtree = random.choice(individual.pset.terminals[node.root.ret])()
individual.setSubtreeDF(index, subtree)
else:
# We're going to replace one of the *node* children
index = random.randint(1, len(node) - 1)
if node[index].size > 1:
prim_set = individual.pset.primitives[node[index].root.ret]
repl_node = random.choice(prim_set)
while repl_node.args != node[index].root.args:
repl_node = random.choice(prim_set)
node[index][0] = repl_node
else:
term_set = individual.pset.terminals[node[index].root.ret]
repl_node = random.choice(term_set)()
node[index] = repl_node
return individual,
def mutTypedEphemeral(individual, mode):
"""This operator works on the constants of the tree *ind*.
In *mode* ``"one"``, it will change the value of **one**
of the individual ephemeral constants by calling its generator function.
In *mode* ``"all"``, it will change the value of **all**
the ephemeral constants.
This operator works on strongly typed trees as on normal GP trees.
"""
if mode not in ["one", "all"]:
raise ValueError("Mode must be one of \"one\" or \"all\"")
ephemerals = []
for i in xrange(1, individual.size):
subtree = individual.searchSubtreeDF(i)
if hasattr(subtree.root.obj, 'regen'):
ephemerals.append(i)
if len(ephemerals) > 0:
if mode == "one":
ephemerals = [random.choice(ephemerals)]
elif mode == "all":
pass
for i in ephemerals:
individual.searchSubtreeDF(i).regen()
return individual,
def mutShrink(individual):
"""This operator shrinks the individual *individual* that are subjected to
it. The operator randomly chooses a branch in the individual and replaces
it with one of the branch's arguments (also randomly chosen).
This operator is not usable with STGP.
"""
if individual.size < 3 or individual.height <= 2:
return individual, # We don't want to "shrink" the root
index = random.randint(1, individual.size-2)
# Shrinking a terminal is useless
while individual.searchSubtreeDF(index).size == 1:
index = random.randint(1, individual.size-2)
deleted_node = individual.searchSubtreeDF(index)
repl_subtree_index = random.randint(1, len(deleted_node)-1)
individual.setSubtreeDF(index, deleted_node[repl_subtree_index])
return individual,
def mutTypedInsert(individual):
"""This operator mutate the GP tree of the *individual* passed and the
primitive set *expr*, by inserting a new branch at a random position in a
tree, using the original subtree at this position as one argument,
and if necessary randomly selecting terminal primitives
to complete the arguments of the inserted node.
Note that the original subtree will become one of the children of the new
primitive inserted, but not perforce the first (its position is
randomly selected if the new primitive has more than one child)
This operator works on strongly typed trees as on normal GP trees.
"""
pset = individual.pset
index = random.randint(0, individual.size-1)
node = individual.searchSubtreeDF(index)
if node.size > 1: # We do not need to deepcopy the leafs
node = copy.deepcopy(node)
new_primitive = random.choice(pset.primitives[node.root.ret])
inserted_list = [new_primitive]
for i in xrange(0, new_primitive.arity):
# Why don't we use expr to create the other subtrees?
# Bloat control?
new_child = random.choice(pset.terminals[new_primitive.args[i]])
inserted_list.append(new_child())
inserted_list[random.randint(1, new_primitive.arity)] = node
individual.setSubtreeDF(index, inserted_list)
return individual,
if __name__ == "__main__":
import doctest
doctest.testmod()
|