This file is indexed.

/usr/share/pyshared/deap/cma.py is in python-deap 0.7.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
#    This file is part of DEAP.
#
#    DEAP is free software: you can redistribute it and/or modify
#    it under the terms of the GNU Lesser General Public License as
#    published by the Free Software Foundation, either version 3 of
#    the License, or (at your option) any later version.
#
#    DEAP is distributed in the hope that it will be useful,
#    but WITHOUT ANY WARRANTY; without even the implied warranty of
#    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
#    GNU Lesser General Public License for more details.
#
#    You should have received a copy of the GNU Lesser General Public
#    License along with DEAP. If not, see <http://www.gnu.org/licenses/>.

#    Special thanks to Nikolaus Hansen for providing major part of 
#    this code. The CMA-ES algorithm is provided in many other languages
#    and advanced versions at http://www.lri.fr/~hansen/cmaesintro.html.

"""A module that provides support for the Covariance Matrix Adaptation 
Evolution Strategy.
"""

import logging
from math import sqrt, log, exp
import numpy
import random   # Only used to seed numpy.random
import sys      # Used to get maxint
import copy

numpy.random.seed(random.randint(0, sys.maxint))

_logger = logging.getLogger("deap.cma")
    
def esCMA(toolbox, population, ngen, halloffame=None, statistics=None):
    """The CMA-ES algorithm as described in Hansen, N. (2006). *The CMA
    Evolution Strategy: A Comparing Rewiew.*
    
    The provided *population* should be a list of one or more individuals.
    """
    _logger.info("Start of evolution")
        
    for g in xrange(ngen):
        _logger.info("Evolving generation %i", g)
        
        # Evaluate the individuals
        for ind in population:
            ind.fitness.values = toolbox.evaluate(ind)
        
        if halloffame is not None:
            halloffame.update(population)
        
        # Update the Strategy with the evaluated individuals
        toolbox.update(population)
        
        if statistics is not None:
            statistics.update(population)
            _logger.debug(statistics)

    _logger.info("End of (successful) evolution")

class CMAStrategy(object):
    """
    Additional configuration may be passed through the *params* argument as a 
    dictionary,
    
    +----------------+---------------------------+----------------------------+
    | Parameter      | Default                   | Details                    |
    +================+===========================+============================+
    | ``lambda_``    | ``floor(4 + 3 * log(N))`` | Number of children to      |
    |                |                           | produce at each generation,|
    |                |                           | ``N`` is the individual's  |
    |                |                           | size.                      |
    +----------------+---------------------------+----------------------------+
    | ``mu``         | ``floor(lambda_ / 2)``    | The number of parents to   | 
    |                |                           | keep from the              |
    |                |                           | lambda children.           |
    +----------------+---------------------------+----------------------------+
    | ``weights``    | ``"superlinear"``         | Decrease speed, can be     |
    |                |                           | ``"superlinear"``,         |
    |                |                           | ``"linear"`` or            |
    |                |                           | ``"equal"``.               |
    +----------------+---------------------------+----------------------------+
    | ``cs``         | ``(mueff + 2) /           | Cumulation constant for    |
    |                | (N + mueff + 3)``         | step-size.                 |
    +----------------+---------------------------+----------------------------+
    | ``damps``      | ``1 + 2 * max(0, sqrt((   | Damping for step-size.     |
    |                | mueff - 1) / (N + 1)) - 1)|                            |
    |                | + cs``                    |                            |
    +----------------+---------------------------+----------------------------+
    | ``ccum``       | ``4 / (N + 4)``           | Cumulation constant for    |
    |                |                           | covariance matrix.         |
    +----------------+---------------------------+----------------------------+
    | ``ccov1``      | ``2 / ((N + 1.3)^2 +      | Learning rate for rank-one |
    |                | mueff)``                  | update.                    |
    +----------------+---------------------------+----------------------------+
    | ``ccovmu``     | ``2 * (mueff - 2 + 1 /    | Learning rate for rank-mu  |
    |                | mueff) / ((N + 2)^2 +     | update.                    |
    |                | mueff)``                  |                            |
    +----------------+---------------------------+----------------------------+
    """
    def __init__(self, centroid, sigma, **kargs):
        self.params = kargs
        
        # Create a centroid as a numpy array
        self.centroid = numpy.array(centroid)
        
        self.dim = len(self.centroid)
        self.sigma = sigma
        self.pc = numpy.zeros(self.dim)
        self.ps = numpy.zeros(self.dim)
        self.chiN = sqrt(self.dim) * (1 - 1. / (4. * self.dim) + \
                                      1. / (21. * self.dim**2))
        
        self.B = numpy.identity(self.dim)
        self.C = numpy.identity(self.dim)
        self.diagD = numpy.ones(self.dim)
        self.BD = self.B * self.diagD

        self.cond = 1       
 
        self.lambda_ = self.params.get("lambda_", int(4 + 3 * log(self.dim)))
        
        self.update_count = 0
        
        self.computeParams(self.params)
        
    def generate(self, ind_init):
        """Generate a population from the current strategy using the 
        centroid individual as parent.
        """
        arz = numpy.random.standard_normal((self.lambda_, self.dim))
        arz = self.centroid + self.sigma * numpy.dot(arz, self.BD.T)
        return [ind_init(arzi) for arzi in arz]        
        
    def update(self, population):
        """Update the current covariance matrix strategy.
        """
        population.sort(key=lambda ind: ind.fitness, reverse=True)
        
        old_centroid = self.centroid
        self.centroid = numpy.dot(self.weights, population[0:self.mu])
        
        c_diff = self.centroid - old_centroid
        
        # Cumulation : update evolution path
        self.ps = (1 - self.cs) * self.ps \
             + sqrt(self.cs * (2 - self.cs) * self.mueff) / self.sigma \
             * numpy.dot(self.B, (1. / self.diagD) \
                          * numpy.dot(self.B.T, c_diff))
        
        hsig = float((numpy.linalg.norm(self.ps) / 
                sqrt(1. - (1. - self.cs)**(2. * (self.update_count + 1.))) / self.chiN
                < (1.4 + 2. / (self.dim + 1.))))

        self.update_count += 1
               
        self.pc = (1 - self.cc) * self.pc + hsig \
                  * sqrt(self.cc * (2 - self.cc) * self.mueff) / self.sigma \
                  * c_diff
                   
        # Update covariance matrix
        artmp = population[0:self.mu] - old_centroid
        self.C = (1 - self.ccov1 - self.ccovmu + (1 - hsig) \
                   * self.ccov1 * self.cc * (2 - self.cc)) * self.C \
                + self.ccov1 * numpy.outer(self.pc, self.pc) \
                + self.ccovmu * numpy.dot((self.weights * artmp.T), artmp) \
                / self.sigma**2
                
        
        self.sigma *= numpy.exp((numpy.linalg.norm(self.ps) / self.chiN - 1.) \
                                * self.cs / self.damps)
        
        self.diagD, self.B = numpy.linalg.eigh(self.C)
        indx = numpy.argsort(self.diagD)

        self.cond = self.diagD[indx[-1]]/self.diagD[indx[0]]

        self.diagD = self.diagD[indx]**0.5
        self.B = self.B[:, indx]
        self.BD = self.B * self.diagD
            
        arz = numpy.random.standard_normal((self.lambda_, self.dim))
        arz = self.centroid + self.sigma * numpy.dot(arz, self.BD.T)
        for ind, arzi in zip(population, arz):
            del ind[:]
            ind.extend(arzi)

    def computeParams(self, params):
        """Those parameters depends on lambda and need to computed again if it 
        changes during evolution.
        """
        self.mu = params.get("mu", self.lambda_ / 2)
        rweights = params.get("weights", "superlinear")
        if rweights == "superlinear":
            self.weights = log(self.mu + 0.5) - \
                        numpy.log(numpy.arange(1, self.mu + 1))
        elif rweights == "linear":
            self.weights = self.mu + 0.5 - numpy.arange(1, self.mu + 1)
        elif rweights == "equal":
            self.weights = numpy.ones(self.mu)
        else:
            pass    # Print some warning ?
        
        self.weights /= sum(self.weights)
        self.mueff = 1. / sum(self.weights**2)
        
        self.cc = params.get("ccum", 4. / (self.dim + 4.))
        self.cs = params.get("cs", (self.mueff + 2.) / 
                                   (self.dim + self.mueff + 3.))
        self.ccov1 = params.get("ccov1", 2. / ((self.dim + 1.3)**2 + \
                                         self.mueff))
        self.ccovmu = params.get("ccovmu", 2. * (self.mueff - 2. +  \
                                                 1. / self.mueff) / \
                                           ((self.dim + 2.)**2 + self.mueff))
        self.ccovmu = min(1 - self.ccov1, self.ccovmu)
        self.damps = 1. + 2. * max(0, sqrt((self.mueff - 1.) / \
                                            (self.dim + 1.)) - 1.) + self.cs
        self.damps = params.get("damps", self.damps)
        
class CMA1pLStrategy(object):
    def __init__(self, parent, sigma, **kargs):
        self.parent = parent
        self.sigma = sigma
        self.dim = len(self.parent)

        self.C = numpy.identity(self.dim)
        self.A = numpy.identity(self.dim)
        
        self.pc = numpy.zeros(self.dim)
        
        self.computeParams(kargs)
        self.psucc = self.ptarg
        
    def computeParams(self, params):
        # Selection :
        self.lambda_ = params.get("lambda_", 1)
        
        # Step size control :
        self.d = params.get("d", 1.0 + self.dim/(2.0*self.lambda_))
        self.ptarg = params.get("ptarg", 1.0/(5+sqrt(self.lambda_)/2.0))
        self.cp = params.get("cp", self.ptarg*self.lambda_/(2+self.ptarg*self.lambda_))
        
        # Covariance matrix adaptation
        self.cc = params.get("cc", 2.0/(self.dim+2.0))
        self.ccov = params.get("ccov", 2.0/(self.dim**2 + 6.0))
        self.pthresh = params.get("pthresh", 0.44)
    
    def generate(self, ind_init):
        # self.y = numpy.dot(self.A, numpy.random.standard_normal(self.dim))
        arz = numpy.random.standard_normal((self.lambda_, self.dim))
        arz = self.parent + self.sigma * numpy.dot(arz, self.A.T)        
        return [ind_init(arzi) for arzi in arz]
    
    def update(self, population):
        population.sort(key=lambda ind: ind.fitness, reverse=True)
        lambda_succ = sum(self.parent.fitness <= ind.fitness for ind in population)
        p_succ = float(lambda_succ) / self.lambda_
        self.psucc = (1-self.cp)*self.psucc + self.cp*p_succ
        
        if self.parent.fitness <= population[0].fitness:
            x_step = (population[0] - numpy.array(self.parent)) / self.sigma
            self.parent = copy.deepcopy(population[0])
            if self.psucc < self.pthresh:
                self.pc = (1 - self.cc)*self.pc + sqrt(self.cc * (2 - self.cc)) * x_step
                self.C = (1-self.ccov)*self.C + self.ccov * numpy.dot(self.pc, self.pc.T)
            else:
                self.pc = (1 - self.cc)*self.pc
                self.C = (1-self.ccov)*self.C + self.ccov * (numpy.dot(self.pc, self.pc.T) + self.cc*(2-self.cc)*self.C)

        self.sigma = self.sigma * exp(1.0/self.d * (self.psucc - self.ptarg)/(1.0-self.ptarg))
        
        # We use Cholesky since for now we have no use of eigen decomposition
        # Basically, Cholesky returns a matrix A as C = A*A.T
        # Eigen decomposition returns two matrix B and D^2 as C = B*D^2*B.T = B*D*D*B.T
        # So A == B*D
        # To compute the new individual we need to multiply each vector z by A
        # as y = centroid + sigma * A*z
        # So the Cholesky is more straightforward as we don't need to compute 
        # the squareroot of D^2, and multiply B and D in order to get A, we directly get A.
        # This can't be done (without cost) with the standard CMA-ES as the eigen decomposition is used
        # to compute covariance matrix inverse in the step-size evolutionary path computation.
        self.A = numpy.linalg.cholesky(self.C)
        
        arz = numpy.random.standard_normal((self.lambda_, self.dim))
        arz = self.parent + self.sigma * numpy.dot(arz, self.A.T)
        for ind, arzi in zip(population, arz):
            del ind[:]
            ind.extend(arzi)