This file is indexed.

/usr/share/pyshared/brian/utils/circular.py is in python-brian 1.3.1-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
# ----------------------------------------------------------------------------------
# Copyright ENS, INRIA, CNRS
# Contributors: Romain Brette (brette@di.ens.fr) and Dan Goodman (goodman@di.ens.fr)
# 
# Brian is a computer program whose purpose is to simulate models
# of biological neural networks.
# 
# This software is governed by the CeCILL license under French law and
# abiding by the rules of distribution of free software.  You can  use, 
# modify and/ or redistribute the software under the terms of the CeCILL
# license as circulated by CEA, CNRS and INRIA at the following URL
# "http://www.cecill.info". 
# 
# As a counterpart to the access to the source code and  rights to copy,
# modify and redistribute granted by the license, users are provided only
# with a limited warranty  and the software's author,  the holder of the
# economic rights,  and the successive licensors  have only  limited
# liability. 
# 
# In this respect, the user's attention is drawn to the risks associated
# with loading,  using,  modifying and/or developing or reproducing the
# software by the user in light of its specific status of free software,
# that may mean  that it is complicated to manipulate,  and  that  also
# therefore means  that it is reserved for developers  and  experienced
# professionals having in-depth computer knowledge. Users are therefore
# encouraged to load and test the software's suitability as regards their
# requirements in conditions enabling the security of their systems and/or 
# data to be ensured and,  more generally, to use and operate it in the 
# same conditions as regards security. 
# 
# The fact that you are presently reading this means that you have had
# knowledge of the CeCILL license and that you accept its terms.
# ----------------------------------------------------------------------------------
# 
'''
Circular arrays

Ideas for speed improvements: use put, putmask and take with mode='wrap' and out=...
'''
from numpy import *
from scipy import weave
import bisect
import os
import warnings
from ..globalprefs import get_global_preference

__all__ = ['CircularVector', 'SpikeContainer']


class CircularVector(object):
    '''
    A vector with circular structure.
    Variables:
    * X = the data (array of size n)
    * cursor = current position in the array (where the 0 index is)
    '''
    def __init__(self, n, dtype=float, useweave=False, compiler=None): # pylint: disable-msg=W0621
        '''
        n is the size of the vector.
        '''
        self.X = zeros(n, dtype=dtype)
        self.dtype = dtype
        self.cursor = 0
        self.n = n
        self._useweave = useweave
        if useweave:
            self._optimisedreturnarray = zeros(n, dtype=dtype)
            self._cpp_compiler = compiler
            self._extra_compile_args = ['-O3']
            if self._cpp_compiler == 'gcc':
                self._extra_compile_args += get_global_preference('gcc_options') # ['-march=native', '-ffast-math']
        else:
            self._cpp_compiler = ''

    def reinit(self):
        self.X[:] = zeros(self.n, self.dtype)
        self.cursor = 0

    def advance(self, k):
        self.cursor = (self.cursor + k) % self.n

    def __len__(self):
        return self.n

    def __getitem__(self, i):
        '''
        V[i]
        '''
        return self.X[(self.cursor + i) % self.n]

    def __setitem__(self, i, x):
        '''
        V[i]=x
        '''
        self.X[(self.cursor + i) % self.n] = x

    def __getslice__(self, i, j):
        n = self.n
        i0 = (self.cursor + i) % n # pylint: disable-msg=W0621
        j0 = (self.cursor + j) % n # pylint: disable-msg=W0621
        if j0 >= i0:
            return self.X[i0:j0]
        else:
            #return self.X[range(i0,n)+range(0,j0)]
            return concatenate((self.X[i0:], self.X[0:j0])) # this version is MUCH faster

    def get_conditional(self, i, j, min, max, offset=0):
        """
        Returns only those vectors with values between min and max
        
        This rather specialised usage of a circular vector is for the
        benefit of the SpikeContainer class get_spikes method, which is
        in turn used by the NeuronGroup.get_spikes method.
        
        It returns v-offset for those elements v in self[i:j] such that min<v<max. 
        """
        if self._useweave:
            n = self.n
            i0 = int((self.cursor + i) % n) # pylint: disable-msg=W0612,W0621
            j0 = int((self.cursor + j) % n) # pylint: disable-msg=W0612
            X = self.X # pylint: disable-msg=W0612
            ret = self._optimisedreturnarray
            code = """
                    int numgot = 0;
                    for(int k=i0;k!=j0;k=(k+1)%n)
                    {
                        int Xk = X(k);
                        if(Xk>=min && Xk<max)
                            ret(numgot++)=Xk-offset;
                    }
                    return_val = numgot;
                    """
            numgot = weave.inline(code, ['n', 'i0', 'j0', 'X', 'ret', 'offset', 'min', 'max'],
                                     compiler=self._cpp_compiler,
                                     type_converters=weave.converters.blitz,
                                     extra_compile_args=self._extra_compile_args)
            return ret[0:numgot]
        else:
            spikes = self[i:j]
            spikes = spikes[bisect.bisect_left(spikes, min):bisect.bisect_left(spikes, max)]
            if offset: spikes = spikes - offset
            return spikes

    def __setslice__(self, i, j, W):
        # NB: S[4:1] does not give a circular slice but only []
        # Should we change that behaviour?
        # TODO: speed improvements
        if j > i:
            n = self.n
            i0 = (self.cursor + i) % n # pylint: disable-msg=W0621
            j0 = (self.cursor + j) % n
            if j0 > i0:
                self.X[i0:j0] = W
            elif isinstance(W, ndarray):
                self.X[i0:] = W[0:n - i0]
                self.X[0:j0] = W[n - i0:n - i0 + j0]

    def __repr__(self):
        return repr(hstack((self[0:self.n - 1], self[self.n - 1:self.n])))

    def __print__(self):
        return (hstack((self[0:self.n - 1], self[self.n - 1:self.n]))).__print__()


class SpikeContainer(object):
    '''
    An object that stores previous spikes.
    S[0] is an array of the last spikes (neuron indexes).
    S[1] is an array with the spikes at time t-dt, etc.
    S[0:50] contains all spikes in last 50 bins.
    '''
    def __init__(self, m, useweave=False, compiler=None):
        '''
        n = maximum number of spikes stored (not used anymore)
        m = maximum number of bins stored
        '''
        if m < 2: m = 2
        self.S = CircularVector(2, dtype=int, useweave=useweave, compiler=compiler)
        self.ind = CircularVector(m + 1, dtype=int, useweave=useweave, compiler=compiler) # indexes of bins
        self.remaining_space = 1
        self._useweave = useweave

    def reinit(self):
        self.S.reinit()
        self.ind.reinit()

    def push(self, spikes):
        '''
        Stores spikes in the array at time dt.
        '''
        ns = len(spikes)
        self.remaining_space += (self.ind[2] - self.ind[1]) % self.S.n
        while ns >= self.remaining_space:
            # double size of array
            S = self.S
            newS = CircularVector(2 * S.n, dtype=int, useweave=S._useweave, compiler=S._cpp_compiler)
            newS.X[:S.n - S.cursor] = S.X[S.cursor:]
            newS.X[S.n - S.cursor:S.n] = S.X[:S.cursor]
            newS.cursor = S.n
            self.S = newS
            self.ind.X = (self.ind.X - S.cursor) % S.n
            self.ind.X[self.ind.X == 0] = S.n
            self.remaining_space += S.n
        self.S[0:ns] = spikes
        self.S.advance(ns)
        self.ind.advance(1)
        self.ind[0] = self.S.cursor
        self.remaining_space -= ns

    def lastspikes(self):
        '''
        Returns S[0].
        '''
        return self.S[self.ind[-1] - self.S.cursor:self.S.n]

    def __getitem__(self, i):
        '''
        S[i]: returns the spikes at time t-i*dt.
        '''
        # NB: this could be optimized
        return self.S[self.ind[-i - 1] - self.S.cursor:self.ind[-i] - self.S.cursor + self.S.n]

    # optimised version of the above, but the speed improvement is not very much, might be
    # better to just wait and write a fully C/C++ version of the whole library
    def get_spikes(self, delay, origin, N):
        """
        Returns those spikes in self[delay] between origin and origin+N
        """
        return self.S.get_conditional(self.ind[-delay - 1] - self.S.cursor, \
                                     self.ind[-delay] - self.S.cursor + self.S.n, \
                                     origin, origin + N, origin)

    def __getslice__(self, i, j):
        return self.S[self.ind[-j] - self.S.cursor:self.ind[-i] - self.S.cursor + self.S.n]

    def __repr__(self):
        return "Spike container."

    def __print__(self):
        return self.__repr__()

try:
    import ccircular.ccircular as _ccircular
    class SpikeContainer(_ccircular.SpikeContainer):
        def __init__(self, m, useweave=False, compiler=None):
            _ccircular.SpikeContainer.__init__(self, m)
    #warnings.warn('Using C++ SpikeContainer')
except ImportError:
    pass

# I am not sure that class below is useful!
class ModInt(object):
    '''
    A number in Z/nZ, i.e., modulo n.
    Variables:
    * x = number modulo n
    * n
    Implemented: additions and subtraction.
    N.B.: not a very useful class.
    '''
    def __init__(self, x, n):
        self.x = x
        self.n = n

    def __add__(self, m):
        if isinstance(m, ModInt):
            assert self.n == m.n
            return ModInt((self.x + m.x) % self.n, self.n)
        else:
            return ModInt((self.x + m) % self.n, self.n)

    def __radd__(self, m):
        if isinstance(m, ModInt):
            assert self.n == m.n
            return ModInt((self.x + m.x) % self.n, self.n)
        else:
            return ModInt((self.x + m) % self.n, self.n)

    def __sub__(self, m):
        if isinstance(m, ModInt):
            assert self.n == m.n
            return ModInt((self.x - m.x) % self.n, self.n)
        else:
            return ModInt((self.x - m) % self.n, self.n)

    def __repr__(self):
        return str(self.x) + ' [' + str(self.n) + ']'

    def __print__(self):
        return self.__repr__()