/usr/share/pyshared/brian/stateupdater.py is in python-brian 1.3.1-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 | # ----------------------------------------------------------------------------------
# Copyright ENS, INRIA, CNRS
# Contributors: Romain Brette (brette@di.ens.fr) and Dan Goodman (goodman@di.ens.fr)
#
# Brian is a computer program whose purpose is to simulate models
# of biological neural networks.
#
# This software is governed by the CeCILL license under French law and
# abiding by the rules of distribution of free software. You can use,
# modify and/ or redistribute the software under the terms of the CeCILL
# license as circulated by CEA, CNRS and INRIA at the following URL
# "http://www.cecill.info".
#
# As a counterpart to the access to the source code and rights to copy,
# modify and redistribute granted by the license, users are provided only
# with a limited warranty and the software's author, the holder of the
# economic rights, and the successive licensors have only limited
# liability.
#
# In this respect, the user's attention is drawn to the risks associated
# with loading, using, modifying and/or developing or reproducing the
# software by the user in light of its specific status of free software,
# that may mean that it is complicated to manipulate, and that also
# therefore means that it is reserved for developers and experienced
# professionals having in-depth computer knowledge. Users are therefore
# encouraged to load and test the software's suitability as regards their
# requirements in conditions enabling the security of their systems and/or
# data to be ensured and, more generally, to use and operate it in the
# same conditions as regards security.
#
# The fact that you are presently reading this means that you have had
# knowledge of the CeCILL license and that you accept its terms.
# ----------------------------------------------------------------------------------
#
'''
Neuron StateUpdaters
'''
__all__ = ['StateUpdater', 'LinearStateUpdater', 'NonlinearStateUpdater',
'SynapticNoise', 'LazyStateUpdater', 'magic_state_updater',
'FunStateUpdater', 'get_linear_equations']
#from scipy.weave import blitz
from numpy import *
from scipy import linalg
from scipy.linalg import LinAlgError
from scipy import weave
from scipy.optimize import fsolve
import copy
from operator import isSequenceType
from inspection import *
from units import second, mvolt
from clock import guess_clock
import magic
from equations import *
from itertools import count
from units import Quantity
import warnings
from log import *
from globalprefs import *
from experimental.codegen import *
CStateUpdater = PythonStateUpdater = None
def magic_state_updater(model, clock=None, order=1, implicit=False, compile=False, freeze=False, \
method=None, check_units=True):
'''
Examines the set of differential equations in 'model' (Equations object) and
returns a StateUpdater object and the list of dynamic variables.
For example, the magic_state_updater function can determine if it
is linear or nonlinear.
Available methods:
* None: the method is automatically selected
* linear
* Euler
* RK (Runge-Kutta, second order)
* exponential_Euler
* nonlinear: automatic selection, but not linear
'''
global CStateUpdater, PythonStateUpdater
if method == 'exponential_Euler':
implicit = True
order = 1
elif method == 'Euler':
implicit = False
order = 1
elif method == 'RK':
implicit = False
order = 2
elif method == 'linear' or method is None:
pass
else:
raise AttributeError, "Unknown integration method!"
# All the first below should go in Equations
if not(isinstance(model, Equations)): # a set of equations?
raise TypeError, "An Equations object must be passed."
model.prepare(check_units=check_units) # check units and other things
dynamicvars = model._diffeq_names # Dynamic variables
# Identify stochastic equations
noiselist = []
for statevar in model._diffeq_names:
f = model._function[statevar]
x0 = [model._units[var] for var in f.func_code.co_varnames] # init variables
if depends_on(f, 'xi', x0):
noiselist.append((statevar, get_global_term(f, 'xi', x0))) # s.d. of noise
f.func_globals['xi'] = 0 * second ** -.5
# better: remove in string
use_codegen = get_global_preference('usecodegen') and get_global_preference('usecodegenstateupdate')
use_weave = get_global_preference('useweave') and get_global_preference('usecodegenweave')
if CStateUpdater is None:
from experimental.codegen.stateupdaters import CStateUpdater, PythonStateUpdater
# Linearity test
# insert this in equations
allow_linear = (method is None) or (method == 'linear')
if allow_linear and model.is_linear():
log_info('brian.stateupdater', "Linear model: using exact updates")
stateupdaterobj = LinearStateUpdater(model, clock=clock)
else:
# Nonlinear model - check order of the method
if implicit: # implicit integration schemes
if model.is_conditionally_linear():
log_info('brian.stateupdater', "Using exponential Euler")
if not use_codegen:
stateupdaterobj = ExponentialEulerStateUpdater(model, clock=clock, compile=compile, freeze=freeze)
elif use_weave:
stateupdaterobj = CStateUpdater(model, exp_euler_scheme, clock=clock, freeze=freeze)
log_warn('brian.stateupdater', 'Using codegen CStateUpdater')
else:
stateupdaterobj = PythonStateUpdater(model, exp_euler_scheme, clock=clock, freeze=freeze)
log_warn('brian.stateupdater', 'Using codegen PythonStateUpdater')
else:
raise TypeError, "General implicit methods are not implemented yet."
else: # explicit method
if order == 1:
if not use_codegen:
stateupdaterobj = NonlinearStateUpdater(model, clock=clock, compile=compile, freeze=freeze)
elif use_weave:
stateupdaterobj = CStateUpdater(model, euler_scheme, clock=clock, freeze=freeze)
log_warn('brian.stateupdater', 'Using codegen CStateUpdater')
else:
stateupdaterobj = PythonStateUpdater(model, euler_scheme, clock=clock, freeze=freeze)
log_warn('brian.stateupdater', 'Using codegen PythonStateUpdater')
elif order == 2:
if not use_codegen:
stateupdaterobj = RK2StateUpdater(model, clock=clock, compile=compile, freeze=freeze)
elif use_weave:
stateupdaterobj = CStateUpdater(model, rk2_scheme, clock=clock, freeze=freeze)
log_warn('brian.stateupdater', 'Using codegen CStateUpdater')
else:
stateupdaterobj = PythonStateUpdater(model, rk2_scheme, clock=clock, freeze=freeze)
log_warn('brian.stateupdater', 'Using codegen PythonStateUpdater')
else:
raise TypeError, "Methods with order greater than 2 are not implemented yet."
# Insert noise
for var, sigma in noiselist:
# TODO: noise with mu = 0
i = dynamicvars.index(var)
stateupdaterobj = SynapticNoise(stateupdaterobj, i, 0 * model._units[var] / second, sigma, clock)
return stateupdaterobj, dynamicvars
# TODO: StateUpdater should be lazy by default
class StateUpdater(object):
'''
A callable state update mechanism.
By default, a leaky integrate-and-fire model with zero resting potential
and unit time constant.
Warning: to update the state matrix, use the slice operation, e.g.
S[:]=0 (not S=0)
otherwise operations are not done in place (a new object is created),
so that all views are compromised (the reference to the data changes).
'''
def __init__(self, clock=None):
'''
Default model: dv/dt=-v
'''
if clock == None:
self.update_factor = exp(-clock.dt) # The update matrix
else:
raise TypeError, "A time reference must be passed."
def rest(self, P):
'''
Sets the variables at rest.
P is the neuron group.
'''
warnings.warn('Rest is not implemented for this model')
def __call__(self, P):
'''
Updates the state variables.
Careful here: always use the slice operation for affectations.
P is the neuron group.
'''
P._S[:] *= self.update_factor
def __repr__(self):
return 'Leaky integrate-and-fire StateUpdater'
def __len__(self):
'''
Number of state variables
'''
return 1
#def get_linear_equations(eqs):
# '''
# Returns the matrices M and B for the linear model dX/dt = M(X-B),
# where eqs is an Equations object.
# '''
# # Otherwise assumes it is given in functional form
# n=len(eqs._diffeq_names) # number of state variables
# dynamicvars=eqs._diffeq_names
# # Calculate B
# AB=zeros((n,1))
# d=dict.fromkeys(dynamicvars)
# for j in range(n):
# d[dynamicvars[j]]=0.*eqs._units[dynamicvars[j]]
# for var,i in zip(dynamicvars,count()):
# AB[i]=-eqs.apply(var,d)
# # Calculate A
# M=zeros((n,n))
# for i in range(n):
# for j in range(n):
# d[dynamicvars[j]]=0.*eqs._units[dynamicvars[j]]
# if isinstance(eqs._units[dynamicvars[i]],Quantity):
# d[dynamicvars[i]]=Quantity.with_dimensions(1.,eqs._units[dynamicvars[i]].get_dimensions())
# else:
# d[dynamicvars[i]]=1.
# for var,j in zip(dynamicvars,count()):
# M[j,i]=eqs.apply(var,d)+AB[j]
# M-=eye(n)*1e-10 # quick dirty fix for problem of constant derivatives; dimension = Hz
# B=linalg.lstsq(M,AB)[0] # We use this instead of solve in case M is degenerate
# return M,B
def get_linear_equations(eqs):
'''
Returns the matrices M and B for the linear model dX/dt = M(X-B),
where eqs is an Equations object.
'''
# Otherwise assumes it is given in functional form
n = len(eqs._diffeq_names) # number of state variables
dynamicvars = eqs._diffeq_names
# Calculate B
AB = zeros((n, 1))
d = dict.fromkeys(dynamicvars)
for j in range(n):
d[dynamicvars[j]] = 0. * eqs._units[dynamicvars[j]]
for var, i in zip(dynamicvars, count()):
AB[i] = -eqs.apply(var, d)
# Calculate A
M = zeros((n, n))
for i in range(n):
for j in range(n):
d[dynamicvars[j]] = 0. * eqs._units[dynamicvars[j]]
if isinstance(eqs._units[dynamicvars[i]], Quantity):
d[dynamicvars[i]] = Quantity.with_dimensions(1., eqs._units[dynamicvars[i]].get_dimensions())
else:
d[dynamicvars[i]] = 1.
for var, j in zip(dynamicvars, count()):
M[j, i] = eqs.apply(var, d) + AB[j]
#M-=eye(n)*1e-10 # quick dirty fix for problem of constant derivatives; dimension = Hz
#B=linalg.lstsq(M,AB)[0] # We use this instead of solve in case M is degenerate
B = linalg.solve(M, AB) # We use this instead of solve in case M is degenerate
return M, B
def get_linear_equations_solution_numerically(eqs, dt):
# Otherwise assumes it is given in functional form
n = len(eqs._diffeq_names) # number of state variables
dynamicvars = eqs._diffeq_names
# Calculate B
AB = zeros((n, 1))
d = dict.fromkeys(dynamicvars)
for j in range(n):
d[dynamicvars[j]] = 0. * eqs._units[dynamicvars[j]]
for var, i in zip(dynamicvars, count()):
AB[i] = -eqs.apply(var, d)
# Calculate A
M = zeros((n, n))
for i in range(n):
for j in range(n):
d[dynamicvars[j]] = 0. * eqs._units[dynamicvars[j]]
if isinstance(eqs._units[dynamicvars[i]], Quantity):
d[dynamicvars[i]] = Quantity.with_dimensions(1., eqs._units[dynamicvars[i]].get_dimensions())
else:
d[dynamicvars[i]] = 1.
for var, j in zip(dynamicvars, count()):
M[j, i] = eqs.apply(var, d) + AB[j]
#B=linalg.solve(M,AB)
numeulersteps = 100
deltat = dt / numeulersteps
E = eye(n) + deltat * M
C = eye(n)
D = zeros((n, 1))
for step in xrange(numeulersteps):
C, D = dot(E, C), dot(E, D) - AB * deltat
return C, D
#return M,B
set_global_preferences(useweave_linear_diffeq=False)
define_global_preference('useweave_linear_diffeq', 'False',
desc="""
Whether to use weave C++ acceleration for the solution
of linear differential equations. Note that on some
platforms, typically older ones, this is faster and on
some platforms, typically new ones, this is actually
slower.
""")
class LinearStateUpdater(StateUpdater):
'''
A linear model with dynamics dX/dt = M(X-B) or dX/dt = MX.
**Initialised as:** ::
LinearStateUpdater(M[,B[,clock]])
with arguments:
``M``
Matrix defining the differential equation.
``B``
Optional linear term in the differential equation.
``clock``
Optional clock.
Computes an update matrix A=exp(M dt) for the linear system,
and performs the update step.
TODO: more mathematical details?
'''
#TODO: sparse linear models (e.g. cable equations)
def __init__(self, M, B=None, clock=None):
'''
Initialize a linear model with dynamics dX/dt = M(X-B) or dX/dt = MX,
where B is a column vector.
TODO: more checks
TODO: rest
'''
self._useaccel = get_global_preference('useweave_linear_diffeq')
self._cpp_compiler = get_global_preference('weavecompiler')
self._extra_compile_args = ['-O3']
if self._cpp_compiler == 'gcc':
self._extra_compile_args += get_global_preference('gcc_options') # ['-march=native', '-ffast-math']
self._useB = False
if clock == None:
clock = guess_clock()
if isinstance(M, ndarray):
self.A = linalg.expm(M * clock.dt)
self.B = B
elif isinstance(M, Equations):
try:
M, self.B = get_linear_equations(M)
self.A = linalg.expm(M * clock.dt)
#self.A=array(self.A,single)
if self.B is not None:
self._C = -dot(self.A, self.B) + self.B
#self._C=array(self._C,single)
self._useB = True
else:
self._useB = False
except LinAlgError:
log_info('brian.stateupdater', 'Solving linear equations numerically')
self.A, self._C = get_linear_equations_solution_numerically(M, clock.dt)
self.B = NotImplemented # raises error on trying to use this
self._useB = True
# note the numpy dot command works faster if self.A has C ordering compared
# to fortran ordering (although maybe this depends on which implementation
# of BLAS you're using). The difference is only significant in small
# calculations because making a copy of self.A is usually not serious, its
# size is only the number of variables, not the number of neurons.
self.A = array(self.A, order='C')
if self._useB:
self._C = array(self._C, order='C')
def rest(self, P):
if self._useB:
if self.B is NotImplemented:
raise NotImplementedError, \
"The resting potential cannot be found because the equations are degenerate " + \
"(most likely because they include a parameter)"
P._S[:] = self.B
else:
P._S[:] = 0
def __call__(self, P):
'''
Updates the state variables.
Careful here: always use the slice operation for affectations.
P is the neuron group.
'''
if self._useB: # This could be removed
if not self._useaccel:
#P._S[:]=dot(self.A,P._S)+self._C
P._S[:] = dot(self.A, P._S)
#P._S = dot(self.A,P._S)
#P._S += self._C
add(P._S, self._C, P._S)
#P._S[:]=dot(self.A,P._S-self.B)+self.B
else:
m = len(self)
S = P._S
n = S.shape[1] #n = len(P)
A = self.A
c = self._C
code = '''
double x[m];
for(int i=0;i<n;i++)
{
for(int j=0;j<m;j++)
{
x[j] = c(j);
for(int k=0;k<m;k++)
x[j] += A(j,k) * S(k,i);
}
for(int j=0;j<m;j++)
S(j,i) = x[j];
}
'''
weave.inline(code, ['n', 'm', 'S', 'A', 'c'],
compiler=self._cpp_compiler,
type_converters=weave.converters.blitz,
extra_compile_args=self._extra_compile_args)
else:
if not self._useaccel:
P._S[:] = dot(self.A, P._S)
else:
n = len(P)
m = len(self)
S = P._S
A = self.A
code = '''
double x[m];
for(int i=0;i<n;i++)
{
for(int j=0;j<m;j++)
{
x[j] = 0.0;
for(int k=0;k<m;k++)
x[j] += A(j,k) * S(k,i);
}
for(int j=0;j<m;j++)
S(j,i) = x[j];
}
'''
weave.inline(code, ['n', 'm', 'S', 'A'],
compiler=self._cpp_compiler,
type_converters=weave.converters.blitz,
extra_compile_args=self._extra_compile_args)
def __repr__(self):
return 'Linear StateUpdater with ' + str(len(self)) + ' state variables'
def __len__(self):
'''
Number of state variables
'''
return self.A.shape[0]
class NonlinearStateUpdater(StateUpdater):
'''
A nonlinear model with dynamics dX/dt = f(X).
Uses an Equations object.
By default, uses Euler integration.
'''
def __init__(self, eqs, clock=None, compile=False, freeze=False):
'''
Initialize a nonlinear model with dynamics dX/dt = f(X).
f is given as an Equations object (see examples).
If compile is True, a Python code object is compiled.
'''
# TODO: global pref?
self.eqs = eqs
self.optimized = compile
self._first_time = True
if freeze:
self.eqs.compile_functions(freeze=freeze)
self._frozen=freeze
if compile:
self._code = self.eqs.forward_euler_code()
def rest(self, P):
'''
Sets the variables at rest.
'''
for name, value in self.eqs.fixed_point().iteritems():
P.state(name)[:] = value
def __call__(self, P):
'''
Updates the state variables.
Careful here: always use the slice operation for affectations.
P is the neuron group.
Euler integration.
'''
#if self.optimized==False:
# self.eqs.optimize(len(P))
# self.optimized=True
# TODO: do these operations once
#states=dict.fromkeys(self.eqs.dynamicvars)
# store that in the neurongroup?
if self.optimized:
if self._first_time:
self._first_time = False
P._dS = 0 * P._S
dt = P.clock._dt
t = P.clock.t
exec(self._code)
else:
states = dict.fromkeys(self.eqs._diffeq_names) # ={}?
#for var in self.eqs.dynamicvars:
for var in self.eqs._diffeq_names:
states[var] = P.state_(var)
if self._frozen:
states['t']=P.clock._t # without units
else:
states['t'] = P.clock.t #time
self.eqs.forward_euler(states, P.clock._dt)
def __repr__(self):
return 'Nonlinear StateUpdater with ' + str(len(self)) + ' state variables'
def __len__(self):
'''
Number of state variables
'''
return len(self.eqs)
class RK2StateUpdater(NonlinearStateUpdater):
'''
A nonlinear model with dynamics dX/dt = f(X).
Uses an Equations object.
Uses Runge-Kutta midpoint integration (second order).
'''
def __init__(self, eqs, clock=None, compile=False, freeze=False):
'''
Initialize a nonlinear model with dynamics dX/dt = f(X).
f is given as an Equations object (see examples).
If compile is True, a Python code object is compiled.
'''
# TODO: global pref?
self.eqs = eqs
self._first_time = True
if freeze:
self.eqs.compile_functions(freeze=freeze)
self._frozen=freeze
if compile:
warnings.warn('Compilation is not implemented yet for RK2 integration.')
def __call__(self, P):
'''
Updates the state variables.
Careful here: always use the slice operation for affectations.
P is the neuron group.
Euler integration.
'''
states = dict.fromkeys(self.eqs._diffeq_names) # ={}?
#for var in self.eqs.dynamicvars:
for var in self.eqs._diffeq_names:
states[var] = P.state_(var)
if self._frozen:
states['t']=P.clock._t # without units
else:
states['t'] = P.clock.t #time
self.eqs.Runge_Kutta2(states, P.clock._dt)
class ExponentialEulerStateUpdater(NonlinearStateUpdater):
def __init__(self, eqs, clock=None, compile=False, freeze=False):
'''
Initialize a nonlinear model with dynamics dX/dt = f(X).
'''
# TODO: global pref?
self.eqs = eqs
self.optimized = compile
self._first_time = True
if freeze:
self.eqs.compile_functions(freeze=freeze)
self._frozen=freeze
if compile:
self._code = self.eqs.exponential_euler_code()
def __call__(self, P):
'''
Updates the state variables.
Careful here: always use the slice operation for affectations.
P is the neuron group.
'''
if self.optimized:
if self._first_time:
self._first_time = False
P._dS = P._S.copy()
dt = P.clock._dt
t = P.clock.t
exec(self._code)
else:
# TODO: do these operations once
states = dict.fromkeys(self.eqs._diffeq_names) #={}?
for var in self.eqs._diffeq_names:
states[var] = P.state_(var)
if self._frozen:
states['t']=P.clock._t # without units
else:
states['t'] = P.clock.t #time
self.eqs.exponential_euler(states, P.clock._dt)
class SynapticNoise(StateUpdater):
'''
Synaptic noise mechanism, plugged into another StateUpdater.
'''
def __init__(self, baseupdater, nstate, mu, sigma, clock=None):
'''
baseupdater = source neuron StateUpdater
nstate = index of synaptic state variable
mu = mean synaptic input rate (per ms)
sigma = s.d. of synaptic input per ms^{1/2}
'''
self.baseupdater = baseupdater
self.nstate = nstate
if clock == None:
clock = guess_clock()
if clock:
# TODO: check units
self.mu = mu * clock.dt
self.sigma = sigma * clock.dt ** .5
else:
raise TypeError, "A time reference must be passed."
def rest(self, P):
self.baseupdater.rest(P)
def __call__(self, P):
'''
Updates the state variables.
Careful here: always use the slice operation for affectations.
P is the neuron group.
'''
self.baseupdater(P) # update the underlying model
P._S[self.nstate, :] += self.mu + random.randn(P._S.shape[1]) * self.sigma
def __repr__(self):
return self.baseupdater.__repr__() + ' with synaptic noise on variable ' + str(self.nstate)
def __len__(self):
'''
Number of state variables
'''
return len(self.baseupdater)
class LazyStateUpdater(StateUpdater):
'''
A StateUpdater that does nothing.
**Initialised as:** ::
LazyStateUpdater([numstatevariables=1[,clock]])
with arguments:
``numstatevariables``
The number of state variables to create.
``clock``
An optional clock to determine when it updates,
although the update function does nothing so...
'''
# Alternatively, we might replace the parent StateUpdater class by this and
# write a basic leaky integrator class.
def __init__(self, numstatevariables=1, clock=None):
self._N = numstatevariables
pass
def __call__(self, P):
'''
Updates the state variables.
'''
pass
def __repr__(self):
return 'Lazy StateUpdater (does nothing)'
def __len__(self):
'''
Number of state variables
'''
return self._N
# UNTESTED
class FunStateUpdater(StateUpdater):
"""
A StateUpdater that calls a function at each update step
A StateUpdater function takes one argument, the neuron group
that is being updated.
"""
def __init__(self, func, numstates, clock=None):
self.clock = guess_clock(clock)
self.func = func
self.numstates = numstates
def __call__(self, P):
self.func(P)
def __repr__(self):
return "Function StateUpdater, function " + self.func.__name__
def __len__(self):
return self.numstates
|