/usr/share/pyshared/brian/monitor.py is in python-brian 1.3.1-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 | # ----------------------------------------------------------------------------------
# Copyright ENS, INRIA, CNRS
# Contributors: Romain Brette (brette@di.ens.fr) and Dan Goodman (goodman@di.ens.fr)
#
# Brian is a computer program whose purpose is to simulate models
# of biological neural networks.
#
# This software is governed by the CeCILL license under French law and
# abiding by the rules of distribution of free software. You can use,
# modify and/ or redistribute the software under the terms of the CeCILL
# license as circulated by CEA, CNRS and INRIA at the following URL
# "http://www.cecill.info".
#
# As a counterpart to the access to the source code and rights to copy,
# modify and redistribute granted by the license, users are provided only
# with a limited warranty and the software's author, the holder of the
# economic rights, and the successive licensors have only limited
# liability.
#
# In this respect, the user's attention is drawn to the risks associated
# with loading, using, modifying and/or developing or reproducing the
# software by the user in light of its specific status of free software,
# that may mean that it is complicated to manipulate, and that also
# therefore means that it is reserved for developers and experienced
# professionals having in-depth computer knowledge. Users are therefore
# encouraged to load and test the software's suitability as regards their
# requirements in conditions enabling the security of their systems and/or
# data to be ensured and, more generally, to use and operate it in the
# same conditions as regards security.
#
# The fact that you are presently reading this means that you have had
# knowledge of the CeCILL license and that you accept its terms.
# ----------------------------------------------------------------------------------
#
'''
Monitors (spikes and state variables).
* Tip: Spike monitors should have non significant impact on simulation time
if properly coded.
'''
__all__ = ['VanRossumMetric','SpikeMonitor', 'PopulationSpikeCounter', 'SpikeCounter', 'FileSpikeMonitor', 'StateMonitor', 'ISIHistogramMonitor', 'Monitor',
'PopulationRateMonitor', 'StateSpikeMonitor', 'MultiStateMonitor', 'RecentStateMonitor', 'CoincidenceCounter', 'CoincidenceMatrixCounter', 'StateHistogramMonitor']
from units import *
from connections import Connection, SparseConnectionVector
from numpy import array, zeros, mean, histogram, linspace, tile, digitize, \
copy, ones, rint, exp, arange, convolve, argsort, mod, floor, asarray, \
maximum, Inf, amin, amax, sort, nonzero, setdiff1d, diag, hstack, resize,\
inf, var,tril,empty,float64,array,sum
from scipy.spatial.distance import sqeuclidean
from itertools import repeat, izip
from clock import guess_clock, EventClock, Clock
from network import NetworkOperation, network_operation
from stdunits import ms, Hz
from collections import defaultdict
import types
from operator import isSequenceType
from tools.statistics import firing_rate
from neurongroup import NeuronGroup
import bisect
from base import *
from time import time
try:
import pylab, matplotlib
except:
pass
from globalprefs import *
from scipy import weave
class Monitor(object):
pass
class SpikeMonitor(Connection, Monitor):
'''
Counts or records spikes from a :class:`NeuronGroup`
Initialised as one of::
SpikeMonitor(source(,record=True))
SpikeMonitor(source,function=function)
Where:
``source``
A :class:`NeuronGroup` to record from
``record``
``True`` or ``False`` to record all the spikes or just summary
statistics.
``function``
A function ``f(spikes)`` which is passed the array of neuron
numbers that have fired called each step, to define
custom spike monitoring.
Has three attributes:
``nspikes``
The number of recorded spikes
``spikes``
A time ordered list of pairs ``(i,t)`` where neuron ``i`` fired
at time ``t``.
``spiketimes``
A dictionary with keys the indices of the neurons, and values an
array of the spike times of that neuron. For example,
``t=M.spiketimes[3]`` gives the spike times for neuron 3.
For ``M`` a :class:`SpikeMonitor`, you can also write:
``M[i]``
An array of the spike times of neuron ``i``.
Notes:
:class:`SpikeMonitor` is subclassed from :class:`Connection`.
To define a custom monitor, either define a subclass and
rewrite the ``propagate`` method, or pass the monitoring function
as an argument (``function=myfunction``, with ``def myfunction(spikes):...``)
'''
# isn't there a units problem here for delay?
def __init__(self, source, record=True, delay=0, function=None):
# recordspikes > record?
self.source = source # pointer to source group
self.target = None
self.nspikes = 0
self.spikes = []
self.record = record
self.W = None # should we just remove this variable?
source.set_max_delay(delay)
self.delay = int(delay / source.clock.dt) # Synaptic delay in time bins
self._newspikes = True
if function != None:
self.propagate = function
def reinit(self):
"""
Clears all monitored spikes
"""
self.nspikes = 0
self.spikes = []
self._newspikes = True #recreate self._spiketimes on next access
def propagate(self, spikes):
'''
Deals with the spikes.
Overload this function to store or process spikes.
Default: counts the spikes (variable nspikes)
'''
if len(spikes):
self._newspikes = True
self.nspikes += len(spikes)
if self.record:
self.spikes += zip(spikes, repeat(self.source.clock.t))
def origin(self, P, Q):
'''
Returns the starting coordinate of the given groups in
the connection matrix W.
'''
return (P.origin - self.source.origin, 0)
def compress(self):
pass
def __getitem__(self, i):
return self.getspiketimes()[i]
def getspiketimes(self):
if self._newspikes:
self._newspikes = False
self._spiketimes = {}
for i in xrange(len(self.source)):
self._spiketimes[i] = []
for i, t in self.spikes:
self._spiketimes[i].append(float(t))
for i in xrange(len(self.source)):
self._spiketimes[i] = array(self._spiketimes[i])
return self._spiketimes
spiketimes = property(fget=getspiketimes)
# def getvspikes(self):
# if isinstance(self.source, VectorizedNeuronGroup):
# N = self.source.neuron_number
# overlap = self.source.overlap
# duration = self.source.duration
# vspikes = [(mod(i,N),(t-overlap)+i/N*(duration-overlap)*second) for (i,t) in self.spikes if t >= overlap]
# vspikes.sort(cmp=lambda x,y:2*int(x[1]>y[1])-1)
# return vspikes
# concatenated_spikes = property(fget=getvspikes)
class AutoCorrelogram(SpikeMonitor):
'''
Calculates autocorrelograms for the selected neurons (online).
Initialised as::
AutoCorrelogram(source,record=[1,2,3], delay=10*ms)
where ``delay`` is the size of the autocorrelogram.
NOT FINISHED
'''
def __init__(self, source, record=True, delay=0):
SpikeMonitor.__init__(self, source, record=record, delay=delay)
self.reinit()
if record is not False:
if record is not True and not isinstance(record, int):
self.recordindex = dict((i, j) for i, j in zip(self.record, range(len(self.record))))
def reinit(self):
if self.record == True:
self._autocorrelogram = zeros((len(self.record), len(self.source)))
else:
self._autocorrelogram = zeros((len(self.record), self.delay))
def propagate(self, spikes):
spikes_set = set(spikes)
if self.record == True:
for i in xrange(self.delay): # Not a brilliant implementation
self._autocorrelogram[spikes_set.intersection(self.source.LS[i]), i] += 1
def __getitem__(self, i):
# TODO: returns the autocorrelogram of neuron i
pass
class PopulationSpikeCounter(SpikeMonitor):
'''
Counts spikes from a :class:`NeuronGroup`
Initialised as::
PopulationSpikeCounter(source)
With argument:
``source``
A :class:`NeuronGroup` to record from
Has one attribute:
``nspikes``
The number of recorded spikes
'''
def __init__(self, source, delay=0):
SpikeMonitor.__init__(self, source, record=False, delay=delay)
class SpikeCounter(PopulationSpikeCounter):
'''
Counts spikes from a :class:`NeuronGroup`
Initialised as::
SpikeCounter(source)
With argument:
``source``
A :class:`NeuronGroup` to record from
Has two attributes:
``nspikes``
The number of recorded spikes
``count``
An array of spike counts for each neuron
For a :class:`SpikeCounter` ``M`` you can also write ``M[i]`` for the
number of spikes counted for neuron ``i``.
'''
def __init__(self, source):
PopulationSpikeCounter.__init__(self, source)
self.count = zeros(len(source), dtype=int)
def __getitem__(self, i):
return int(self.count[i])
def propagate(self, spikes):
if len(spikes):
PopulationSpikeCounter.propagate(self, spikes)
self.count[spikes] += 1
def reinit(self):
self.count[:] = 0
PopulationSpikeCounter.reinit(self)
class StateSpikeMonitor(SpikeMonitor):
'''
Counts or records spikes and state variables at spike times from a :class:`NeuronGroup`
Initialised as::
StateSpikeMonitor(source, var)
Where:
``source``
A :class:`NeuronGroup` to record from
``var``
The variable name or number to record from, or a tuple of variable names or numbers
if you want to record multiple variables for each spike.
Has two attributes:
.. attribute:: nspikes
The number of recorded spikes
.. attribute:: spikes
A time ordered list of tuples ``(i,t,v)`` where neuron ``i`` fired
at time ``t`` and the specified variable had value ``v``. If you
specify multiple variables, each tuple will be of the form
``(i,t,v0,v1,v2,...)`` where the ``vi`` are the values corresponding
in order to the variables you specified in the ``var`` keyword.
And two methods:
.. method:: times(i=None)
Returns an array of the spike times for the whole monitored
group, or just for neuron ``i`` if specified.
.. method:: values(var, i=None)
Returns an array of the values of variable ``var`` for the
whole monitored group, or just for neuron ``i`` if specified.
'''
def __init__(self, source, var):
SpikeMonitor.__init__(self, source)
if isinstance(var, (str, int)) or not isSequenceType(var):
var = (var,)
self._varnames = var
self._vars = [source.state_(v) for v in var]
self._varindex = dict((v, i + 2) for i, v in enumerate(var))
self._units = [source.unit(v) for v in var]
def propagate(self, spikes):
if len(spikes):
self.nspikes += len(spikes)
recordedstate = [ [x * u for x in v[spikes]] for v, u in izip(self._vars, self._units) ]
self.spikes += zip(spikes, repeat(self.source.clock.t), *recordedstate)
def __getitem__(self, i):
return NotImplemented # don't use the version from SpikeMonitor
def times(self, i=None):
'''Returns the spike times (of neuron ``i`` if specified)'''
if i is not None:
return array([x[1] for x in self.spikes if x[0] == i])
else:
return array([x[1] for x in self.spikes])
def values(self, var, i=None):
'''Returns the recorded values of ``var`` (for spikes from neuron ``i`` if specified)'''
v = self._varindex[var]
if i is not None:
return array([x[v] for x in self.spikes if x[0] == i])
else:
return array([x[v] for x in self.spikes])
class HistogramMonitorBase(SpikeMonitor):
pass
class ISIHistogramMonitor(HistogramMonitorBase):
'''
Records the interspike interval histograms of a group.
Initialised as::
ISIHistogramMonitor(source, bins)
``source``
The source group to record from.
``bins``
The lower bounds for each bin, so that e.g.
``bins = [0*ms, 10*ms, 20*ms]`` would correspond to
bins with intervals 0-10ms, 10-20ms and
20+ms.
Has properties:
``bins``
The ``bins`` array passed at initialisation.
``count``
An array of length ``len(bins)`` counting how many ISIs
were in each bin.
This object can be passed directly to the plotting function
:func:`hist_plot`.
'''
def __init__(self, source, bins, delay=0):
SpikeMonitor.__init__(self, source, delay)
self.bins = array(bins)
self.reinit()
def reinit(self):
super(ISIHistogramMonitor, self).reinit()
self.count = zeros(len(self.bins))
self.LS = 1000 * second * ones(len(self.source))
def propagate(self, spikes):
if len(spikes):
super(ISIHistogramMonitor, self).propagate(spikes)
isi = self.source.clock.t - self.LS[spikes]
self.LS[spikes] = self.source.clock.t
# all this nonsense is necessary to deal with the fact that
# numpy changed the semantics of histogram in 1.2.0 or thereabouts
try:
h, a = histogram(isi, self.bins, new=True)
except TypeError:
h, a = histogram(isi, self.bins)
if len(h) == len(self.count):
self.count += h
else:
self.count[:-1] += h
self.count[-1] += len(isi) - sum(h)
class FileSpikeMonitor(SpikeMonitor):
"""Records spikes to a file
Initialised as::
FileSpikeMonitor(source, filename[, record=False])
Does everything that a :class:`SpikeMonitor` does except also records
the spikes to the named file. note that spikes are recorded
as an ASCII file of lines each of the form:
``i, t``
Where ``i`` is the neuron that fired, and ``t`` is the time in seconds.
Has one additional method:
``close_file()``
Closes the file manually (will happen automatically when
the program ends).
"""
def __init__(self, source, filename, record=False, delay=0):
super(FileSpikeMonitor, self).__init__(source, record, delay)
self.filename = filename
self.f = open(filename, 'w')
def reinit(self):
self.close_file()
self.f = open(self.filename, 'w')
def propagate(self, spikes):
if len(spikes):
super(FileSpikeMonitor, self).propagate(spikes)
for i in spikes:
self.f.write(str(i) + ", " + str(float(self.source.clock.t)) + "\n")
def close_file(self):
self.f.close()
class PopulationRateMonitor(SpikeMonitor):
'''
Monitors and stores the (time-varying) population rate
Initialised as::
PopulationRateMonitor(source,bin)
Records the average activity of the group for every bin.
Properties:
``rate``, ``rate_``
An array of the rates in Hz.
``times``, ``times_``
The times of the bins.
``bin``
The duration of a bin (in second).
'''
times = property(fget=lambda self:array(self._times))
times_ = times
rate = property(fget=lambda self:array(self._rate))
rate_ = rate
def __init__(self, source, bin=None):
SpikeMonitor.__init__(self, source)
if bin:
self._bin = int(bin / source.clock.dt)
else:
self._bin = 1 # bin size in number
self._rate = []
self._times = []
self._curstep = 0
self._clock = source.clock
self._factor = 1. / float(self._bin * source.clock.dt * len(source))
def reinit(self):
SpikeMonitor.reinit(self)
self._rate = []
self._times = []
self._curstep = 0
def propagate(self, spikes):
if self._curstep == 0:
self._rate.append(0.)
self._times.append(self._clock._t) # +.5*bin?
self._curstep = self._bin
self._rate[-1] += len(spikes) * self._factor
self._curstep -= 1
def smooth_rate(self, width=None, filter='gaussian'):
"""
Returns a smoothed version of the vector of rates,
convolving the rates with a filter (gaussian or flat)
with the given width.
"""
if width is None: # automatic with Shinomoto's algorithms
if filter=='flat':
""" (Experimental)
If width is not given and the filter is flat, then the bin
size is automatically chosen using Shimazaki and Shinomoto's method:
Shimazaki and Shinomoto, A method for selecting the bin size of a time histogram
Neural Computation 19(6), 1503-1527, 2007
http://dx.doi.org/10.1162/neco.2007.19.6.1503
"""
# Shinomoto's method to find the optimal bin size. Adapted from:
# Shimazaki and Shinomoto, A method for selecting the bin size of a time histogram
# Neural Computation 19(6), 1503-1527, 2007
# http://dx.doi.org/10.1162/neco.2007.19.6.1503
counts=array(self._rate)/self._factor
best_value=inf
for nbins in range(2,500): # possible number of bins (maybe a less brutal optimization?)
binsize=len(counts)/nbins
x=resize(counts,(len(counts)/binsize,binsize))
#x.reshape((x.size,1))[len(counts):]=0 # unnecessary because smaller
x=x.sum(1) # x is the histogram with nbins bins
K=mean(x) # average number of spikes per recording bin
value=(2*K-var(x))/binsize**2
if value<best_value:
best_value=value
width_dt=binsize
nb=nbins
#print width_dt,nb
else:
raise AttributeError,"Automatic width selection is not implemented yet!"
else:
width_dt = int(width / (self._bin * self._clock.dt)) # width in number of bins
#print width_dt
window = {'gaussian': exp(-arange(-2 * width_dt, 2 * width_dt + 1) ** 2 * 1. / (2 * (width_dt) ** 2)),
'flat': ones(width_dt)}[filter]
return convolve(self.rate_, window * 1. / sum(window), mode='same')
class StateMonitor(NetworkOperation, Monitor):
'''
Records the values of a state variable from a :class:`NeuronGroup`.
Initialise as::
StateMonitor(P,varname(,record=False)
(,when='end)(,timestep=1)(,clock=clock))
Where:
``P``
The group to be recorded from
``varname``
The state variable name or number to be recorded
``record``
What to record. The default value is ``False`` and the monitor will
only record summary statistics for the variable. You can choose
``record=integer`` to record every value of the neuron with that
number, ``record=``list of integers to record every value of each of
those neurons, or ``record=True`` to record every value of every
neuron (although beware that this may use a lot of memory).
``when``
When the recording should be made in the network update, possible
values are any of the strings: ``'start'``, ``'before_groups'``, ``'after_groups'``,
``'before_connections'``, ``'after_connections'``, ``'before_resets'``,
``'after_resets'``, ``'end'`` (in order of when they are run).
``timestep``
A recording will be made each timestep clock updates (so ``timestep``
should be an integer).
``clock``
A clock for the update schedule, use this if you have specified a
clock other than the default one in your network, or to update at a
lower frequency than the update cycle. Note though that if the clock
here is different from the main clock, the when parameter will not
be taken into account, as network updates are done clock by clock.
Use the ``timestep`` parameter if you need recordings to be made at a
precise point in the network update step.
The :class:`StateMonitor` object has the following properties:
``times``
The times at which recordings were made
``mean``
The mean value of the state variable for every neuron in the
group (not just the ones specified in the ``record`` keyword)
``var``
The unbiased estimate of the variances, as in ``mean``
``std``
The square root of ``var``, as in ``mean``
``values``
A 2D array of the values of all the recorded neurons, each row is a
single neuron's values.
In addition, if :class:`M`` is a :class:`StateMonitor` object, you write::
M[i]
for the recorded values of neuron ``i`` (if it was specified with the
``record`` keyword). It returns a numpy array.
Methods:
.. method:: plot([indices=None[, cmap=None[, refresh=None[, showlast=None[, redraw=True]]]]])
Plots the recorded values using pylab. You can specify an index or
list of indices, otherwise all the recorded values will be plotted.
The graph plotted will have legends of the form ``name[i]`` for
``name`` the variable name, and ``i`` the neuron index. If cmap is
specified then the colours will be set according to the matplotlib
colormap cmap. ``refresh`` specifies how often (in simulation time)
you would like the plot to refresh. Note that this will only work if
pylab is in interactive mode, to ensure this call the pylab ``ion()``
command. If you are using the ``refresh`` option, ``showlast`` specifies
a fixed time window to display (e.g. the last 100ms).
If you are using more than one realtime monitor, only one of them needs
to issue a redraw command, therefore set ``redraw=False`` for all but
one of them.
Note that with some IDEs, interactive plotting will not work with the
default matplotlib backend, try doing something like this at the
beginning of your script (before importing brian)::
import matplotlib
matplotlib.use('WXAgg')
You may need to experiment, try WXAgg, GTKAgg, QTAgg, TkAgg.
.. method:: insert_spikes(spikemonitor[, value=0])
Inserts spikes into recorded traces (for plotting). State values
at spike times are replaced with the given value (peak value of spike).
'''
mean = property(fget=lambda self:self._mu / self.N)
_mean = mean
mean_ = _mean
var = property(fget=lambda self:(self._sqr - self.N * self.mean_ ** 2) / (self.N - 1))
var_ = var
std = property(fget=lambda self:self.var ** .5)
std_ = std
times = property(fget=lambda self:array(self._times))
times_ = times
values = property(fget=lambda self:self.getvalues())
values_ = values
def __init__(self, P, varname, clock=None, record=False, timestep=1, when='end'):
'''
-- P is the neuron group
-- varname is the variable name
-- record can be one of:
- an integer, in which case the value of the state of the corresponding
neuron will be recorded in the list self._values
- an array or list of integers, in which case the value of the states
of the corresponding neurons will be recorded and can be individually
accessed by calling self[i] where i is the neuron number
- True, in which case the state of all neurons is recorded, and can be
individually accessed by calling self[i]
- False, in which case only the mean and variance are recorded (.mean, .var, .std)
-- timestep defines how often a recording is made (e.g. if you have a very
small dt, you might not want to record every value of the variable), it
is an integer (multiple of the clock dt)
'''
NetworkOperation.__init__(self, None, clock=clock, when=when)
self.record = record
self.clock = guess_clock(clock)
if record is not False:
if record is not True and not isinstance(record, int):
self.recordindex = dict((i, j) for i, j in zip(self.record, range(len(self.record))))
self.timestep = timestep
self.curtimestep = timestep
self._values = None
self.P = P
self.varname = varname
self.N = 0 # number of steps
self._recordstep = 0
if record is False:
self._mu = zeros(len(P)) # sum
self._sqr = zeros(len(P)) # sum of squares
self.unit = 1.0 * P.unit(varname)
self.reinit()
def __call__(self):
'''
This function is called every time step.
'''
V = self.P.state_(self.varname)
if self.record is False:
self._mu += V
self._sqr += V * V
elif self.curtimestep == self.timestep:
i = self._recordstep
if not isinstance(self.record, bool):
self._values.append(V[self.record])
elif self.record is True:
self._values.append(V.copy())
self._times.append(self.clock._t)
self._recordstep += 1
self.curtimestep -= 1
if self.curtimestep == 0: self.curtimestep = self.timestep
self.N += 1
def __getitem__(self, i):
"""Returns the recorded values of the state of neuron i as an array
"""
if self.record is False:
raise IndexError('Neuron ' + str(i) + ' was not recorded.')
if self.record is not True:
if isinstance(self.record, int) and self.record != i or (not isinstance(self.record, int) and i not in self.record):
raise IndexError('Neuron ' + str(i) + ' was not recorded.')
try:
return self.values[self.recordindex[i]]
except:
if i == self.record:
return self.values[0]
else:
raise
elif self.record is True:
return self.values[i]
def getvalues(self):
if len(self._values):
newvalues = array(self._values)
if len(newvalues.shape)==1:
newvalues.shape = (1, newvalues.size)
else:
newvalues = newvalues.T
values = hstack((self._values_cache, newvalues))
self._values_cache = values
self._values = []
else:
values = self._values_cache
return values
getvalues_ = getvalues
def reinit(self):
self._values = []
self._times = []
ri = self.get_record_indices()
self._values_cache = zeros((len(ri), 0))
self.N = 0
self._recordstep = 0
self._mu = zeros(len(self.P))
self._sqr = zeros(len(self.P))
def get_record_indices(self):
"""Returns the list of neuron numbers which were recorded.
"""
if self.record is False:
return []
elif self.record is True:
return arange(len(self.P))
elif isinstance(self.record, int):
return [self.record]
else:
return self.record
def plot(self, indices=None, cmap=None, refresh=None, showlast=None, redraw=True):
lines = []
inds = []
if indices is None:
recind = self.get_record_indices()
for j, i in enumerate(recind):
if cmap is None:
line, = pylab.plot(self.times, self[i], label=str(self.varname) + '[' + str(i) + ']')
else:
line, = pylab.plot(self.times, self[i], label=str(self.varname) + '[' + str(i) + ']',
color=cmap(float(j) / (len(recind) - 1)))
inds.append(i)
lines.append(line)
elif isinstance(indices, int):
line, = pylab.plot(self.times, self[indices], label=str(self.varname) + '[' + str(indices) + ']')
lines.append(line)
inds.append(indices)
else:
for j, i in enumerate(indices):
if cmap is None:
line, = pylab.plot(self.times, self[i], label=str(self.varname) + '[' + str(i) + ']')
else:
line, = pylab.plot(self.times, self[i], label=str(self.varname) + '[' + str(i) + ']',
color=cmap(float(j) / (len(indices) - 1)))
inds.append(i)
lines.append(line)
ax = pylab.gca()
if refresh is not None:
ylim = [Inf, -Inf]
@network_operation(clock=EventClock(dt=refresh))
def refresh_state_monitor_plot(clk):
if self.times.size==0: # bugfix submitted by Oleg Sinyavskiy
return
ymin, ymax = ylim
if matplotlib.is_interactive():
if showlast is not None:
tmin = clk._t - float(showlast)
tmax = clk._t
for line, i in zip(lines, inds):
if showlast is None:
line.set_xdata(self.times)
y = self[i]
else:
imin = bisect.bisect_left(self.times, tmin)
imax = bisect.bisect_right(self.times, tmax)
line.set_xdata(self.times[imin:imax])
y = self[i][imin:imax]
line.set_ydata(y)
ymin = min(ymin, amin(y))
ymax = max(ymax, amax(y))
if showlast is None:
ax.set_xlim(0, clk._t)
else:
ax.set_xlim(clk._t - float(showlast), clk._t)
ax.set_ylim(ymin, ymax)
ylim[:] = [ymin, ymax]
if redraw:
pylab.draw()
pylab.get_current_fig_manager().canvas.flush_events()
self.contained_objects.append(refresh_state_monitor_plot)
def insert_spikes(self, spikemonitor, value=0):
"""
Inserts spikes into recorded traces (for plotting). State values
at spike times are replaced with the given value (peak value of spike).
"""
dt = self.clock.dt
values = self.values
for i, neuron in enumerate(self.get_record_indices()):
values[i,array(spikemonitor[neuron]/dt, dtype=int)] = value
#self._values = values # or converted back to a list?
class RecentStateMonitor(StateMonitor):
'''
StateMonitor that records only the most recent fixed amount of time.
Works in the same way as a :class:`StateMonitor` except that it has one
additional initialiser keyword ``duration`` which gives the length of
time to record values for, the ``record`` keyword defaults to ``True``
instead of ``False``, and there are some different or additional
attributes:
``values``, ``values_``, ``times``, ``times_``
These will now return at most the most recent values over an
interval of maximum time ``duration``. These arrays are copies,
so for faster access use ``unsorted_values``, etc.
``unsorted_values``, ``unsorted_values_``, ``unsorted_times``, ``unsorted_times_``
The raw versions of the data, the associated times may not be
in sorted order and if ``duration`` hasn't passed, not all the
values will be meaningful.
``current_time_index``
Says which time index the next values to be recorded will be stored
in, varies from 0 to M-1.
``has_looped``
Whether or not the ``current_time_index`` has looped from M back to
0 - can be used to tell whether or not every value in the
``unsorted_values`` array is meaningful or not (they will only all
be meaningful when ``has_looped==True``, i.e. after time ``duration``).
The ``__getitem__`` method also returns values in sorted order.
To plot, do something like::
plot(M.times, M.values[:, i])
'''
def __init__(self, P, varname, duration=5 * ms, clock=None, record=True, timestep=1, when='end'):
StateMonitor.__init__(self, P, varname, clock=clock, record=record, timestep=timestep, when=when)
self.duration = duration
self.num_duration = int(duration / (timestep * self.clock.dt)) + 1
if record is False:
self.record_size = 0
elif record is True:
self.record_size = len(P)
elif isinstance(record, int):
self.record_size = 1
else:
self.record_size = len(record)
self._values = zeros((self.num_duration, self.record_size))
self._times = zeros(self.num_duration)
self.current_time_index = 0
self.has_looped = False
self._invtargetdt = 1.0 / self.clock._dt
self._arange = arange(len(P))
def __call__(self):
V = self.P.state_(self.varname)
if self.record is False:
self._mu += V
self._sqr += V * V
if self.record is not False and self.curtimestep == self.timestep:
i = self._recordstep
if self.record is not True:
self._values[self.current_time_index, :] = V[self.record]
else:
self._values[self.current_time_index, :] = V
self._times[self.current_time_index] = self.clock.t
self._recordstep += 1
self.current_time_index = (self.current_time_index + 1) % self.num_duration
if self.current_time_index == 0: self.has_looped = True
self.curtimestep -= 1
if self.curtimestep == 0: self.curtimestep = self.timestep
self.N += 1
def __getitem__(self, i):
timeinds = self.sorted_times_indices()
if self.record is False:
raise IndexError('Neuron ' + str(i) + ' was not recorded.')
if self.record is not True:
if isinstance(self.record, int) and self.record != i or (not isinstance(self.record, int) and i not in self.record):
raise IndexError('Neuron ' + str(i) + ' was not recorded.')
try:
return self._values[timeinds, self.recordindex[i]]
except:
if i == self.record:
return self._values[timeinds, 0]
else:
raise
elif self.record is True:
return self._values[timeinds, i]
def get_past_values(self, times):
# probably mostly to be used internally by Brian itself
time_indices = (self.current_time_index - 1 - array(self._invtargetdt * asarray(times), dtype=int)) % self.num_duration
if isinstance(times, SparseConnectionVector):
return SparseConnectionVector(times.n, times.ind, self._values[time_indices, times.ind])
else:
return self._values[time_indices, self._arange]
def get_past_values_sequence(self, times_seq):
# probably mostly to be used internally by Brian itself
if len(times_seq) == 0:
return []
time_indices_seq = [(self.current_time_index - 1 - array(self._invtargetdt * asarray(times), dtype=int)) % self.num_duration for times in times_seq]
if isinstance(times_seq[0], SparseConnectionVector):
return [SparseConnectionVector(times.n, times.ind, self._values[time_indices, times.ind]) for times, time_indices in izip(times_seq, time_indices_seq)]
else:
return [self._values[time_indices, self._arange] for times, time_indices in izip(times_seq, time_indices_seq)]
def getvalues(self):
return self._values
getvalues_ = getvalues
def sorted_times_indices(self):
if not self.has_looped:
return arange(self.current_time_index)
return argsort(self._times)
def get_sorted_times(self):
return self._times[self.sorted_times_indices()]
get_sorted_times_ = get_sorted_times
def get_sorted_values(self):
return self._values[self.sorted_times_indices(), :]
get_sorted_values_ = get_sorted_values
times = property(fget=get_sorted_times)
times_ = property(fget=get_sorted_times_)
values = property(fget=get_sorted_values)
values_ = property(fget=get_sorted_values_)
unsorted_times = property(fget=lambda self:array(self._times))
unsorted_times_ = unsorted_times
unsorted_values = property(fget=getvalues)
unsorted_values_ = unsorted_values
def reinit(self):
# We check self._values is not None because the __init__ of this class
# calls the __init__ of StateMonitor which calls reinit, but this happens
# before self._values is set to be an array.
if self._values is not None:
self._values[:] = 0
self._times[:] = 0
self.current_time_index = 0
self.N = 0
self._recordstep = 0
self._mu = zeros(len(self.P))
self._sqr = zeros(len(self.P))
self.has_looped = False
def plot(self, indices=None, cmap=None, refresh=None, showlast=None, redraw=True):
if refresh is not None and showlast is None:
showlast = self.duration
StateMonitor.plot(self, indices=indices, cmap=cmap, refresh=refresh, showlast=showlast, redraw=redraw)
class MultiStateMonitor(NetworkOperation):
'''
Monitors multiple state variables of a group
This class is a container for multiple :class:`StateMonitor` objects,
one for each variable in the group. You can retrieve individual
:class:`StateMonitor` objects using ``M[name]`` or retrieve the
recorded values using ``M[name, i]`` for neuron ``i``.
Initialised with a group ``G`` and a list of variables ``vars``. If
``vars`` is omitted then all the variables of ``G`` will be recorded.
Any additional keyword argument used to initialise the object will
be passed to the individual :class:`StateMonitor` objects (e.g. the
``when`` keyword).
Methods:
``items()``, ``iteritems()``
Returns the pairs (var, mon)
``plot([indices[, cmap]])``
Plots all the monitors (note that real-time plotting is not supported
for this class).
Attributes:
``vars``
The list of variables recorded.
``times``
The times at which recordings were made.
``monitors``
The dictionary of monitors indexed by variable name.
Usage::
G = NeuronGroup(N, eqs, ...)
M = MultiStateMonitor(G, record=True)
...
run(...)
...
plot(M['V'].times, M['V'][0])
figure()
for name, m in M.iteritems():
plot(m.times, m[0], label=name)
legend()
show()
'''
def __init__(self, G, vars=None, clock=None, **kwds):
NetworkOperation.__init__(self, lambda : None, clock=clock)
self.monitors = {}
if vars is None:
vars = [name for name in G.var_index.keys() if isinstance(name, str)]
self.vars = vars
for varname in vars:
self.monitors[varname] = StateMonitor(G, varname, clock=clock, **kwds)
self.contained_objects = self.monitors.values()
def __getitem__(self, varname):
if isinstance(varname, tuple):
varname, i = varname
return self.monitors[varname][i]
else:
return self.monitors[varname]
def vars(self):
return self.monitors.keys()
def iteritems(self):
return self.monitors.iteritems()
def items(self):
return self.monitors.items()
def plot(self, indices=None, cmap=None):
for k, m in self.monitors.iteritems():
m.plot(indices, cmap=cmap)
def get_times(self):
return self.monitors.values()[0].times
times = property(fget=lambda self:self.get_times())
def __call__(self):
pass
class CoincidenceCounter(SpikeMonitor):
"""
Coincidence counter class.
Counts the number of coincidences between the spikes of the neurons in the network (model spikes),
and some user-specified data spike trains (target spikes). This number is defined as the number of
target spikes such that there is at least one model spike within +- ``delta``, where ``delta``
is the half-width of the time window.
Initialised as::
cc = CoincidenceCounter(source, data, delta = 4*ms)
with the following arguments:
``source``
A :class:`NeuronGroup` object which neurons are being monitored.
``data``
The list of spike times. Several spike trains can be passed in the following way.
Define a single 1D array ``data`` which contains all the target spike times one after the
other. Now define an array ``spiketimes_offset`` of integers so that neuron ``i`` should
be linked to target train: ``data[spiketimes_offset[i]], data[spiketimes_offset[i]+1]``, etc.
It is essential that each spike train with the spiketimes array should begin with a spike at a
large negative time (e.g. -1*second) and end with a spike that is a long time
after the duration of the run (e.g. duration+1*second).
``delta=4*ms``
The half-width of the time window for the coincidence counting algorithm.
``spiketimes_offset``
A 1D array, ``spiketimes_offset[i]`` is the index of the first spike of
the target train associated to neuron i.
``spikedelays``
A 1D array with spike delays for each neuron. All spikes from the target
train associated to neuron i are shifted by ``spikedelays[i]``.
``coincidence_count_algorithm``
If set to ``exclusive``, the algorithm cannot count more than one
coincidence for each model spike.
If set to ``inclusive``, the algorithm can count several coincidences
for a single model spike.
``onset``
A scalar value in seconds giving the start of the counting: no
coincidences are counted before ``onset``.
Has three attributes:
``coincidences``
The number of coincidences for each neuron of the :class:`NeuronGroup`.
``coincidences[i]`` is the number of coincidences for neuron i.
``model_length``
The number of spikes for each neuron. ``model_length[i]`` is the spike
count for neuron i.
``target_length``
The number of spikes in the target spike train associated to each neuron.
"""
def __init__(self, source, data=None, spiketimes_offset=None, spikedelays=None,
coincidence_count_algorithm='exclusive', onset=None, delta=4 * ms):
source.set_max_delay(0)
self.source = source
self.delay = 0
if onset is None:
onset = 0 * ms
self.onset = onset
self.N = len(source)
self.coincidence_count_algorithm = coincidence_count_algorithm
self.data = array(data)
if spiketimes_offset is None:
spiketimes_offset = zeros(self.N, dtype='int')
self.spiketimes_offset = array(spiketimes_offset)
if spikedelays is None:
spikedelays = zeros(self.N)
self.spikedelays = array(spikedelays)
dt = self.source.clock.dt
self.delta = int(rint(delta / dt))
self.reinit()
def reinit(self):
dt = self.source.clock.dt
# Number of spikes for each neuron
self.model_length = zeros(self.N, dtype='int')
self.target_length = zeros(self.N, dtype='int')
self.coincidences = zeros(self.N, dtype='int')
self.spiketime_index = self.spiketimes_offset
self.last_spike_time = array(rint(self.data[self.spiketime_index] / dt), dtype=int)
self.next_spike_time = array(rint(self.data[self.spiketime_index + 1] / dt), dtype=int)
# First target spikes (needed for the computation of
# the target train firing rates)
self.first_target_spike = zeros(self.N)
self.last_spike_allowed = ones(self.N, dtype='bool')
self.next_spike_allowed = ones(self.N, dtype='bool')
def propagate(self, spiking_neurons):
dt = self.source.clock.dt
#T = array(rint((self.source.clock.t + self.spikedelays)/dt), dtype = int)
spiking_neurons = array(spiking_neurons)
if len(spiking_neurons):
if self.source.clock.t >= self.onset:
self.model_length[spiking_neurons] += 1
T_spiking = array(rint((self.source.clock.t + self.spikedelays[spiking_neurons]) / dt), dtype=int)
remaining_neurons = spiking_neurons
remaining_T_spiking = T_spiking
while True:
remaining_indices, = (remaining_T_spiking > self.next_spike_time[remaining_neurons]).nonzero()
if len(remaining_indices):
indices = remaining_neurons[remaining_indices]
self.target_length[indices] += 1
self.spiketime_index[indices] += 1
self.last_spike_time[indices] = self.next_spike_time[indices]
self.next_spike_time[indices] = array(rint(self.data[self.spiketime_index[indices] + 1] / dt), dtype=int)
if self.coincidence_count_algorithm == 'exclusive':
self.last_spike_allowed[indices] = self.next_spike_allowed[indices]
self.next_spike_allowed[indices] = True
remaining_neurons = remaining_neurons[remaining_indices]
remaining_T_spiking = remaining_T_spiking[remaining_indices]
else:
break
# Updates coincidences count
near_last_spike = self.last_spike_time[spiking_neurons] + self.delta >= T_spiking
near_next_spike = self.next_spike_time[spiking_neurons] - self.delta <= T_spiking
last_spike_allowed = self.last_spike_allowed[spiking_neurons]
next_spike_allowed = self.next_spike_allowed[spiking_neurons]
I = (near_last_spike & last_spike_allowed) | (near_next_spike & next_spike_allowed)
if self.source.clock.t >= self.onset:
self.coincidences[spiking_neurons[I]] += 1
if self.coincidence_count_algorithm == 'exclusive':
near_both_allowed = (near_last_spike & last_spike_allowed) & (near_next_spike & next_spike_allowed)
self.last_spike_allowed[spiking_neurons] = last_spike_allowed & -near_last_spike
self.next_spike_allowed[spiking_neurons] = (next_spike_allowed & -near_next_spike) | near_both_allowed
class VanRossumMetric(StateMonitor):
"""
van Rossum spike train metric.
From M. van Rossum (2001): A novel spike distance (Neural Computation).
Compute the van Rossum distance between every spike train from the source
population.
Arguments:
``source``
The group to compute the distances for.
``tau``
Time constant of the kernel (low pass filter).
Has one attribute:
``distance``
A square symmetric matrix containing the distances.
"""
def __init__(self, source, tau=2*ms):
self.dt = source.clock.dt
self.source = source
self.nbr_neurons = len(source)
self.tau=tau
eqs="""
dv/dt=(-v)/tau: volt
"""
kernel=NeuronGroup(self.nbr_neurons,model=eqs)
C = Connection(source, kernel, 'v')
C.connect_one_to_one(source,kernel)
StateMonitor.__init__(self,kernel, 'v', record=True)
self.contained_objects=[kernel,C]
#self.distance_matrix=zeros((self.nbr_neurons,self.nbr_neurons))
def reinit(self):
StateMonitor.reinit(self)
# def define(self):
# @network_operation(clock=EventClock(dt=self.dt))
# def get_distance_online():
# tt=time()
# for neuron_idx1 in range(self.nbr_neurons):
# for neuron_idx2 in range((neuron_idx1+1)):
# self.distance_matrix[neuron_idx1,neuron_idx2]=self.distance_matrix[neuron_idx1,neuron_idx2]+self.dt/self.tau*abs(self[neuron_idx1][-1]-self[neuron_idx2][-1])**2
# print time()-tt
# self.contained_objects.append(get_distance_online)
def get_distance(self):
if get_global_preference('useweave'):
_cpp_compiler=get_global_preference('weavecompiler')
_extra_compile_args=['-O3']
if _cpp_compiler=='gcc':
_extra_compile_args+=get_global_preference('gcc_options') # ['-march=native', '-ffast-math']
nbr_neurons=int(self.nbr_neurons)
distance_matrix=zeros((nbr_neurons,nbr_neurons),dtype=float64)
nbr_time_step=int(len(self[0]))
dt=float(self.dt)
traces=self.values
tau=float(self.tau)
code='''
for(int k1=0;k1<nbr_neurons;k1++)
{
for(int k2=0;k2<k1;k2++)
{
double &dm = distance_matrix[k1*nbr_neurons+k2];
double *tr1 = traces+k1*nbr_time_step;
double *tr2 = traces+k2*nbr_time_step;
for(int istep=0;istep<nbr_time_step;istep++, tr1++, tr2++)
{
double diff = *tr1-*tr2;
dm += diff*diff;
}
dm *= dt/tau;
}
}
'''
tt=time()
weave.inline(code, ['nbr_time_step','nbr_neurons','dt','tau','distance_matrix','traces'],
compiler=_cpp_compiler,
extra_compile_args=_extra_compile_args)
print time()-tt
return tril(distance_matrix,k=0)+tril(distance_matrix,k=0).T
else:
nbr_time_step=int(len(self[0]))
self.distance_matrix=zeros((self.nbr_neurons,self.nbr_neurons))
values = self.values
memsize_mb = float(self.nbr_neurons*nbr_time_step*8)/1024**2
# tt=time()
if memsize_mb>200:
for neuron_idx1 in xrange(self.nbr_neurons):
vidx1 = values[neuron_idx1]
for neuron_idx2 in xrange((neuron_idx1+1)):
self.distance_matrix[neuron_idx1,neuron_idx2]=self.dt/self.tau*sum((vidx1-values[neuron_idx2])**2)
else:
for neuron_idx1 in xrange(self.nbr_neurons):
Vi = values[neuron_idx1].reshape((1, nbr_time_step))
Vj = values.reshape((self.nbr_neurons, nbr_time_step))
self.distance_matrix[neuron_idx1, :] = (self.dt/self.tau)*sum((Vi-Vj)**2, axis=1)
#print time()-tt
return tril(self.distance_matrix,k=0)+tril(self.distance_matrix,k=0).T
distance = property(fget=get_distance)
class CoincidenceMatrixCounter(SpikeMonitor):
"""
Coincidence counter matrix class.
Counts the number of coincidences between the spikes of the neurons in the network (model spikes). This yields a matrix
with the coincidence counts between every pair of neurons in the network
Initialised as::
cc = CoincidenceCounter(source, delta = 4*ms)
with the following arguments:
``source``
A :class:`NeuronGroup` object which neurons are being monitored.
``delta=4*ms``
The half-width of the time window for the coincidence counting algorithm.
``onset``
A scalar value in seconds giving the start of the counting: no
coincidences are counted before ``onset``.
Has three attributes:
``coincidences``
The matrix containg the number of coincidences between each neuron of the :class:`NeuronGroup`.
``coincidences[i,j]`` is the number of coincidences between neuron i and j.
``model_length``
The number of spikes for each neuron. ``model_length[i]`` is the spike
count for neuron i.
"""
def __init__(self, source, onset=None, delta=4 * ms):
source.set_max_delay(0)
self.source = source
self.delay = 0
if onset is None:
onset = 0 * ms
self.onset = onset
self.N = len(source)
dt = self.source.clock.dt
self.delta = array(rint(delta / dt), dtype=int)
self.reinit()
def reinit(self):
dt = self.source.clock.dt # does not seem to be used
# Number of spikes for each neuron
self.model_length = zeros(self.N, dtype='int')
self.target_length = zeros(self.N, dtype='int')
self._coincidences = zeros((self.N, self.N), dtype='int')
self.last_spike_time = -100 * ones(self.N, dtype='int')
def get_coincidences(self):
M = array(self._coincidences, dtype=float)
M -= diag(M.diagonal() / 2)
return M
coincidences = property(fget=get_coincidences)
def propagate(self, spiking_neurons):
dt = self.source.clock.dt
spiking_neurons = array(spiking_neurons)
if len(spiking_neurons):
if self.source.clock.t >= self.onset:
self.model_length[spiking_neurons] += 1
tint = array(rint(self.source.clock.t / dt), dtype=int)
self.last_spike_time[spiking_neurons] = tint
I, = (abs(self.last_spike_time - tint) <= self.delta).nonzero()
if self.source.clock.t >= self.onset:
for ispike in spiking_neurons:
#self.coincidences[ispike,setdiff1d(I,ispike)]+=1
self._coincidences[ispike, I[ispike <= I]] += 1
self._coincidences[I[ispike <= I], ispike] += 1
# if self.source.clock.t == self.onset:
# self.coincidences=(self.coincidences+self.coincidences.T)/2
class StateHistogramMonitor(NetworkOperation, Monitor):
'''
Records the histogram of a state variable from a :class:`NeuronGroup`.
Initialise as::
StateHistogramMonitor(P,varname,range(,period=1*ms)(,nbins=20))
Where:
``P``
The group to be recorded from
``varname``
The state variable name or number to be recorded
``range``
The minimum and maximum values for the state variable. A 2-tuple of floats.
``period``
When to record.
``nbins``
Number of bins for the histogram.
The :class:`StateHistogramMonitor` object has the following properties:
``mean``
The mean value of the state variable for every neuron in the
group
``var``
The unbiased estimate of the variances, as in ``mean``
``std``
The square root of ``var``, as in ``mean``
``hist``
A 2D array of the histogram values of all the neurons, each row is a
single neuron's histogram.
``bins``
A 1D array of the bin centers used to compute the histogram
``bin_edges``
A 1D array of the bin edges used to compute the histogram
In addition, if :class:`M`` is a :class:`StateHistogramMonitor` object, you write::
M[i]
for the histogram of neuron ``i``.
'''
def __init__(self, group, varname, range, period=1 * ms, nbins=20):
self.clock = Clock(period)
NetworkOperation.__init__(self, None, clock=self.clock)
self.group = group
self.len = len(group)
self.varname = varname
self.nbins = nbins
self.n = 0
self.bin_edges = linspace(range[0], range[1], self.nbins + 1)
self._hist = zeros((self.len, self.nbins + 2))
self.sum = zeros(self.len)
self.sum2 = zeros(self.len)
def __call__(self):
x = self.group.state_(self.varname)
self.sum += x
self.sum2 += x ** 2
inds = digitize(x, self.bin_edges)
for i in xrange(self.len):
self._hist[i, inds[i]] += 1
self.n += 1
def __getitem__(self, i):
return self.hist[i, :]
hist = property(fget=lambda self:self._hist[:, 1:-1] / self.n)
bins = property(fget=lambda self:(self.bin_edges[:-1] + self.bin_edges[1:]) / 2)
mean = property(fget=lambda self:self.sum / self.n)
var = property(fget=lambda self:(self.sum2 / self.n - self.mean ** 2))
std = property(fget=lambda self:self.var ** .5)
|