/usr/lib/puredata/doc/3.audio.examples/F05.ring.modulation.pd is in puredata-doc 0.43.0-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 | #N canvas 83 89 793 595 12;
#N canvas 0 0 450 300 graph1 0;
#X array F05-signal 882 float 0;
#X coords 0 1 882 -1 200 130 1;
#X restore 554 218 graph;
#N canvas 0 0 450 300 graph1 0;
#X array F05-spectrum 256 float 0;
#X coords 0 0.51 255 -0.008 256 130 1;
#X restore 499 22 graph;
#X text 552 349 ---- 0.02 seconds ----;
#X text 507 563 updated for Pd version 0.37;
#X text 495 155 0;
#X text 534 174 -- partial number --;
#X text 761 142 0;
#X text 758 19 0.5;
#X floatatom 51 61 0 0 100 0 - - -;
#N canvas 329 22 680 421 pulse-train 0;
#X obj 184 348 line~;
#X obj 39 317 cos~;
#X obj 184 324 pack 0 50;
#X obj 39 245 -~ 0.5;
#X obj 39 269 *~;
#X obj 184 252 / 10;
#X obj 184 276 moses 0;
#X msg 184 300 0;
#X obj 39 293 clip~ -0.5 0.5;
#X obj 184 372 +~ 1;
#X obj 39 341 +~ 1;
#X obj 184 228 inlet;
#X obj 39 389 outlet~;
#X obj 39 365 *~ 0.5;
#X text 53 5 This is a modified version of the pulse train generator
from two examples back.;
#X text 107 140 We have to add 1/2 and wrap so that the center of the
pulse comes at phase zero (previously it was 1/2 cycle out of phase).
This wasn't a problem before but now we have to be in phase with the
oscillator we're multpplying with.;
#X text 276 262 otherwise it's the same as before.;
#X obj 40 85 phasor~;
#X obj 40 58 r freq;
#X connect 0 0 9 0;
#X connect 1 0 10 0;
#X connect 2 0 0 0;
#X connect 3 0 4 0;
#X connect 4 0 8 0;
#X connect 5 0 6 0;
#X connect 6 0 7 0;
#X connect 6 1 2 0;
#X connect 7 0 2 0;
#X connect 8 0 1 0;
#X connect 9 0 4 1;
#X connect 10 0 13 0;
#X connect 11 0 5 0;
#X connect 13 0 12 0;
#X connect 17 0 3 0;
#X connect 18 0 17 0;
#X restore 51 86 pd pulse-train;
#X text 83 61 <-- bandwidth;
#X obj 51 219 *~;
#X text 113 123 <-- modulation frequency as;
#X text 152 137 multiple of fundamental;
#X obj 51 277 output~;
#X obj 50 246 hip~;
#N canvas 122 211 563 534 fft 0;
#X obj 19 61 inlet~;
#X obj 208 212 inlet;
#X obj 29 92 rfft~;
#X obj 29 125 *~;
#X obj 60 125 *~;
#X obj 29 155 sqrt~;
#X obj 332 109 block~ 4096 1;
#X obj 29 181 biquad~ 0 0 0 0 1;
#X text 93 93 Fourier series;
#X text 98 146 magnitude;
#X text 96 131 calculate;
#X text 21 3 This subpatch computes the spectrum of the incoming signal
with a (rectangular windowed) FFT. FFTs aren't properly introduced
until much later.;
#X text 83 61 signal to analyze;
#X text 193 164 delay two samples;
#X text 191 182 for better graphing;
#X obj 264 434 samplerate~;
#X obj 245 262 metro 500;
#X obj 245 233 inlet;
#X text 298 231 toggle to graph repeatedly;
#X text 262 212 bang to graph once;
#X obj 29 205 /~ 4096;
#X obj 264 409 bang~;
#X obj 264 483 s freq;
#X obj 264 457 / 256;
#X obj 19 295 tabwrite~ F05-signal;
#X obj 245 294 tabwrite~ F05-spectrum;
#X msg 224 321 \; pd dsp 1;
#X connect 0 0 2 0;
#X connect 0 0 24 0;
#X connect 1 0 24 0;
#X connect 1 0 25 0;
#X connect 1 0 26 0;
#X connect 2 0 3 0;
#X connect 2 0 3 1;
#X connect 2 1 4 0;
#X connect 2 1 4 1;
#X connect 3 0 5 0;
#X connect 4 0 5 0;
#X connect 5 0 7 0;
#X connect 7 0 20 0;
#X connect 15 0 23 0;
#X connect 16 0 24 0;
#X connect 16 0 25 0;
#X connect 17 0 16 0;
#X connect 17 0 26 0;
#X connect 20 0 25 0;
#X connect 21 0 15 0;
#X connect 23 0 22 0;
#X restore 98 245 pd fft;
#X obj 158 224 bng 18 250 50 0 empty empty empty 0 -6 0 8 -262144 -1
-1;
#X obj 158 245 tgl 18 0 empty empty empty 0 -6 0 8 -262144 -1 -1 1
1;
#X text 179 244 <-- repeatedly;
#X text 180 224 <-- graph once;
#X text 527 155 2;
#X text 559 155 4;
#X text 591 155 6;
#X text 623 155 8;
#X text 656 155 10;
#X text 688 155 12;
#X text 719 155 14;
#X text 759 213 1;
#X text 759 337 -1;
#X text 122 185 modulating oscillator;
#X text 153 6 RING MODULATED PULSE TRAINS;
#X text 23 357 Now we take a pulse train and ring modulate it \, which
effectively aliases the spectrum so that it is centered at any desired
partial number. The "bandwidth" control still affects the shape of
the peak \, independently of where it is centered. This generates a
formant centered at the given partial.;
#X floatatom 73 123 0 0 100 0 - - -;
#X obj 73 182 osc~;
#X obj 73 157 *;
#X obj 107 157 r freq;
#X text 23 457 This patch is limited to making formants centered on
harmonics. The center frequency thus can't be moved smoothly up and
down at will (try shift-clicking on modulation frequency to make fractions).
Next we'll look at two techniques for sliding a formant frequency without
losing harmonicity.;
#X text 184 85 <-- pulse train;
#X text 220 101 generator from before;
#X connect 8 0 9 0;
#X connect 9 0 11 0;
#X connect 11 0 15 0;
#X connect 11 0 16 0;
#X connect 15 0 14 0;
#X connect 15 0 14 1;
#X connect 17 0 16 1;
#X connect 18 0 16 2;
#X connect 33 0 35 0;
#X connect 34 0 11 1;
#X connect 35 0 34 0;
#X connect 36 0 35 1;
|