This file is indexed.

/usr/share/perl5/Regexp/Assemble.pm is in libregexp-assemble-perl 0.35-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
# Regexp::Assemple.pm
#
# Copyright (c) 2004-2011 David Landgren
# All rights reserved

package Regexp::Assemble;

use vars qw/$VERSION $have_Storable $Current_Lexer $Default_Lexer $Single_Char $Always_Fail/;
$VERSION = '0.35';

=head1 NAME

Regexp::Assemble - Assemble multiple Regular Expressions into a single RE

=head1 VERSION

This document describes version 0.35 of Regexp::Assemble, released
2011-04-07.

=head1 SYNOPSIS

  use Regexp::Assemble;
  
  my $ra = Regexp::Assemble->new;
  $ra->add( 'ab+c' );
  $ra->add( 'ab+-' );
  $ra->add( 'a\w\d+' );
  $ra->add( 'a\d+' );
  print $ra->re; # prints a(?:\w?\d+|b+[-c])

=head1 DESCRIPTION

Regexp::Assemble takes an arbitrary number of regular expressions
and assembles them into a single regular expression (or RE) that
matches all that the individual REs match.

As a result, instead of having a large list of expressions to loop
over, a target string only needs to be tested against one expression.
This is interesting when you have several thousand patterns to deal
with. Serious effort is made to produce the smallest pattern possible.

It is also possible to track the original patterns, so that you can
determine which, among the source patterns that form the assembled
pattern, was the one that caused the match to occur.

You should realise that large numbers of alternations are processed
in perl's regular expression engine in O(n) time, not O(1). If you
are still having performance problems, you should look at using a
trie. Note that Perl's own regular expression engine will implement
trie optimisations in perl 5.10 (they are already available in
perl 5.9.3 if you want to try them out). C<Regexp::Assemble> will
do the right thing when it knows it's running on a trie'd perl.
(At least in some version after this one).

Some more examples of usage appear in the accompanying README. If
that file isn't easy to access locally, you can find it on a web
repository such as
L<http://search.cpan.org/dist/Regexp-Assemble/README> or
L<http://cpan.uwinnipeg.ca/htdocs/Regexp-Assemble/README.html>.

=cut

use strict;

use constant DEBUG_ADD  => 1;
use constant DEBUG_TAIL => 2;
use constant DEBUG_LEX  => 4;
use constant DEBUG_TIME => 8;

# The following patterns were generated with eg/naive
$Default_Lexer = qr/(?![[(\\]).(?:[*+?]\??|\{\d+(?:,\d*)?\}\??)?|\\(?:[bABCEGLQUXZ]|[lu].|(?:[^\w]|[aefnrtdDwWsS]|c.|0\d{2}|x(?:[\da-fA-F]{2}|{[\da-fA-F]{4}})|N\{\w+\}|[Pp](?:\{\w+\}|.))(?:[*+?]\??|\{\d+(?:,\d*)?\}\??)?)|\[.*?(?<!\\)\](?:[*+?]\??|\{\d+(?:,\d*)?\}\??)?|\(.*?(?<!\\)\)(?:[*+?]\??|\{\d+(?:,\d*)?\}\??)?/; # ]) restore equilibrium

$Single_Char   = qr/^(?:\\(?:[aefnrtdDwWsS]|c.|[^\w\/{|}-]|0\d{2}|x(?:[\da-fA-F]{2}|{[\da-fA-F]{4}}))|[^\$^])$/;

# the pattern to return when nothing has been added (and thus not match anything)
$Always_Fail = "^\\b\0";

=head1 METHODS

=over 8

=item new

Creates a new C<Regexp::Assemble> object. The following optional
key/value parameters may be employed. All keys have a corresponding
method that can be used to change the behaviour later on. As a
general rule, especially if you're just starting out, you don't
have to bother with any of these.

B<anchor_*>, a family of optional attributes that allow anchors
(C<^>, C<\b>, C<\Z>...) to be added to the resulting pattern.

B<flags>, sets the C<imsx> flags to add to the assembled regular
expression.  Warning: no error checking is done, you should ensure
that the flags you pass are understood by the version of Perl you
are using. B<modifiers> exists as an alias, for users familiar
with L<Regexp::List>.

B<chomp>, controls whether the pattern should be chomped before being
lexed. Handy if you are reading patterns from a file. By default, 
C<chomp>ing is performed (this behaviour changed as of version 0.24,
prior versions did not chomp automatically).
See also the C<file> attribute and the C<add_file> method.

B<file>, slurp the contents of the specified file and add them
to the assembly. Multiple files may be processed by using a list.

  my $r = Regexp::Assemble->new(file => 're.list');

  my $r = Regexp::Assemble->new(file => ['re.1', 're.2']);

If you really don't want chomping to occur, you will have to set
the C<chomp> attribute to 0 (zero). You may also want to look at
the C<input_record_separator> attribute, as well.

B<input_record_separator>, controls what constitutes a record
separator when using the C<file> attribute or the C<add_file>
method. May be abbreviated to B<rs>. See the C<$/> variable in
L<perlvar>.

B<lookahead>, controls whether the pattern should contain zero-width
lookahead assertions (For instance: (?=[abc])(?:bob|alice|charles).
This is not activated by default, because in many circumstances the
cost of processing the assertion itself outweighs the benefit of
its faculty for short-circuiting a match that will fail. This is
sensitive to the probability of a match succeeding, so if you're
worried about performance you'll have to benchmark a sample population
of targets to see which way the benefits lie.

B<track>, controls whether you want know which of the initial
patterns was the one that matched. See the C<matched> method for
more details. Note for version 5.8 of Perl and below, in this mode
of operation YOU SHOULD BE AWARE OF THE SECURITY IMPLICATIONS that
this entails. Perl 5.10 does not suffer from any such restriction.

B<indent>, the number of spaces used to indent nested grouping of
a pattern. Use this to produce a pretty-printed pattern. See the
C<as_string> method for a more detailed explanation.

B<pre_filter>, allows you to add a callback to enable sanity checks
on the pattern being loaded. This callback is triggered before the
pattern is split apart by the lexer. In other words, it operates
on the entire pattern. If you are loading patterns from a file,
this would be an appropriate place to remove comments.

B<filter>, allows you to add a callback to enable sanity checks on
the pattern being loaded. This callback is triggered after the
pattern has been split apart by the lexer.

B<unroll_plus>, controls whether to unroll, for example, C<x+> into
C<x>, C<x*>, which may allow additional reductions in the
resulting assembled pattern.

B<reduce>, controls whether tail reduction occurs or not. If set,
patterns like C<a(?:bc+d|ec+d)> will be reduced to C<a[be]c+d>.
That is, the end of the pattern in each part of the b... and d...
alternations is identical, and hence is hoisted out of the alternation
and placed after it. On by default. Turn it off if you're really
pressed for short assembly times.

B<lex>, specifies the pattern used to lex the input lines into
tokens. You could replace the default pattern by a more sophisticated
version that matches arbitrarily nested parentheses, for example.

B<debug>, controls whether copious amounts of output is produced
during the loading stage or the reducing stage of assembly.

  my $ra = Regexp::Assemble->new;
  my $rb = Regexp::Assemble->new( chomp => 1, debug => 3 );

B<mutable>, controls whether new patterns can be added to the object
after the assembled pattern is generated. DEPRECATED.

This method/attribute will be removed in a future release. It doesn't
really serve any purpose, and may be more effectively replaced by
cloning an existing C<Regexp::Assemble> object and spinning out a
pattern from that instead.

A more detailed explanation of these attributes follows.

=cut

sub new {
    my $class = shift;
    my %args  = @_;

    my $anc;
    for $anc (qw(word line string)) {
        if (exists $args{"anchor_$anc"}) {
            my $val = delete $args{"anchor_$anc"};
            for my $anchor ("anchor_${anc}_begin", "anchor_${anc}_end") {
                $args{$anchor} = $val unless exists $args{$anchor};
            }
        }
    }

    # anchor_string_absolute sets anchor_string_begin and anchor_string_end_absolute
    if (exists $args{anchor_string_absolute}) {
        my $val = delete $args{anchor_string_absolute};
        for my $anchor (qw(anchor_string_begin anchor_string_end_absolute)) {
            $args{$anchor} = $val unless exists $args{$anchor};
        }
    }

    exists $args{$_} or $args{$_} = 0 for qw(
        anchor_word_begin
        anchor_word_end
        anchor_line_begin
        anchor_line_end
        anchor_string_begin
        anchor_string_end
        anchor_string_end_absolute
        debug
        dup_warn
        indent
        lookahead
        mutable
        track
        unroll_plus
    );

    exists $args{$_} or $args{$_} = 1 for qw(
        fold_meta_pairs
        reduce
        chomp
    );

    @args{qw(re str path)} = (undef, undef, []);

    $args{flags} ||= delete $args{modifiers} || '';
    $args{lex}     = $Current_Lexer if defined $Current_Lexer;

    my $self = bless \%args, $class;

    if ($self->_debug(DEBUG_TIME)) {
        $self->_init_time_func();
        $self->{_begin_time} = $self->{_time_func}->();
    }
    $self->{input_record_separator} = delete $self->{rs}
        if exists $self->{rs};
    exists $self->{file} and $self->add_file($self->{file});

    return $self;
}

sub _init_time_func {
    my $self = shift;
    return if exists $self->{_time_func};

    # attempt to improve accuracy
    if (!defined($self->{_use_time_hires})) {
        eval {require Time::HiRes};
        $self->{_use_time_hires} = $@;
    }
    $self->{_time_func} = length($self->{_use_time_hires}) > 0
        ? sub { time }
        : \&Time::HiRes::time
    ;
}

=item clone

Clones the contents of a Regexp::Assemble object and creates a new
object (in other words it performs a deep copy).

If the Storable module is installed, its dclone method will be used,
otherwise the cloning will be performed using a pure perl approach.

You can use this method to take a snapshot of the patterns that have
been added so far to an object, and generate an assembly from the
clone. Additional patterns may to be added to the original object
afterwards.

  my $re = $main->clone->re();
  $main->add( 'another-pattern-\\d+' );

=cut

sub clone {
    my $self = shift;
    my $clone;
    my @attr = grep {$_ ne 'path'} keys %$self;
    @{$clone}{@attr} = @{$self}{@attr};
    $clone->{path}   = _path_clone($self->_path);
    bless $clone, ref($self);
}

=item add(LIST)

Takes a string, breaks it apart into a set of tokens (respecting
meta characters) and inserts the resulting list into the C<R::A>
object. It uses a naive regular expression to lex the string
that may be fooled complex expressions (specifically, it will
fail to lex nested parenthetical expressions such as
C<ab(cd(ef)?gh)ij> correctly). If this is the case, the end of
the string will not be tokenised correctly and returned as one
long string.

On the one hand, this may indicate that the patterns you are
trying to feed the C<R::A> object are too complex. Simpler
patterns might allow the algorithm to work more effectively and
perform more reductions in the resulting pattern.

On the other hand, you can supply your own pattern to perform the
lexing if you need. The test suite contains an example of a lexer
pattern that will match one level of nested parentheses.

Note that there is an internal optimisation that will bypass a
much of the lexing process. If a string contains no C<\>
(backslash), C<[> (open square bracket), C<(> (open paren),
C<?> (question mark), C<+> (plus), C<*> (star) or C<{> (open
curly), a character split will be performed directly.

A list of strings may be supplied, thus you can pass it a file
handle of a file opened for reading:

    $re->add( '\d+-\d+-\d+-\d+\.example\.com' );
    $re->add( <IN> );

If the file is very large, it may be more efficient to use a
C<while> loop, to read the file line-by-line:

    $re->add($_) while <IN>;

The C<add> method will chomp the lines automatically. If you
do not want this to occur (you want to keep the record
separator), then disable C<chomp>ing.

    $re->chomp(0);
    $re->add($_) while <IN>;

This method is chainable.

=cut

sub _fastlex {
    my $self   = shift;
    my $record = shift;
    my $len    = 0;
    my @path   = ();
    my $case   = '';
    my $qm     = '';

    my $debug       = $self->{debug} & DEBUG_LEX;
    my $unroll_plus = $self->{unroll_plus};

    my $token;
    my $qualifier;
    $debug and print "# _lex <$record>\n";
    my $modifier        = q{(?:[*+?]\\??|\\{(?:\\d+(?:,\d*)?|,\d+)\\}\\??)?};
    my $class_matcher   = qr/\[(?:\[:[a-z]+:\]|\\?.)*?\]/;
    my $paren_matcher   = qr/\(.*?(?<!\\)\)$modifier/;
    my $misc_matcher    = qr/(?:(c)(.)|(0)(\d{2}))($modifier)/;
    my $regular_matcher = qr/([^\\[(])($modifier)/;
    my $qm_matcher      = qr/(\\?.)/;

    my $matcher = $regular_matcher;
    {
        if ($record =~ /\G$matcher/gc) {
            # neither a \\ nor [ nor ( followed by a modifer
            if ($1 eq '\\E') {
                $debug and print "#   E\n";
                $case = $qm = '';
                $matcher = $regular_matcher;
                redo;
            }
            elsif ($qm and ($1 eq '\\L' or $1 eq '\\U')) {
                $debug and print "#  ignore \\L, \\U\n";
                redo;
            }
            $token = $1;
            $qualifier = defined $2 ? $2 : '';
            $debug and print "#  token <$token> <$qualifier>\n";
            if ($qm) {
                $token = quotemeta($token);
                $token =~ s/^\\([^\w$()*+.?@\[\\\]^|{}\/])$/$1/;
            }
            else {
                $token =~ s{\A([][{}*+?@\\/])\Z}{\\$1};
            }
            if ($unroll_plus and $qualifier =~ s/\A\+(\?)?\Z/*/) {
                $1 and $qualifier .= $1;
                $debug and print " unroll <$token><$token><$qualifier>\n";
                $case and $token = $case eq 'L' ? lc($token) : uc($token);
                push @path, $token, "$token$qualifier";
            }
            else {
                $debug and print " clean <$token>\n";
                push @path,
                      $case eq 'L' ? lc($token).$qualifier
                    : $case eq 'U' ? uc($token).$qualifier
                    :                   $token.$qualifier
                    ;
            }
            redo;
        }

        elsif ($record =~ /\G\\/gc) {
            $debug and print "#  backslash\n";
            # backslash
            if ($record =~ /\G([sdwSDW])($modifier)/gc) {
                ($token, $qualifier) = ($1, $2);
                $debug and print "#   meta <$token> <$qualifier>\n";
                push @path, ($unroll_plus and $qualifier =~ s/\A\+(\?)?\Z/*/)
                    ? ("\\$token", "\\$token$qualifier" . (defined $1 ? $1 : ''))
                    : "\\$token$qualifier";
            }
            elsif ($record =~ /\Gx([\da-fA-F]{2})($modifier)/gc) {
                $debug and print "#   x $1\n";
                $token = quotemeta(chr(hex($1)));
                $qualifier = $2;
                $debug and print "#  cooked <$token>\n";
                $token =~ s/^\\([^\w$()*+.?\[\\\]^|{\/])$/$1/; # } balance
                $debug and print "#   giving <$token>\n";
                push @path, ($unroll_plus and $qualifier =~ s/\A\+(\?)?\Z/*/)
                    ? ($token, "$token$qualifier" . (defined $1 ? $1 : ''))
                    : "$token$qualifier";
            }
            elsif ($record =~ /\GQ/gc) {
                $debug and print "#   Q\n";
                $qm = 1;
                $matcher = $qm_matcher;
            }
            elsif ($record =~ /\G([LU])/gc) {
                $debug and print "#   case $1\n";
                $case = $1;
            }
            elsif ($record =~ /\GE/gc) {
                $debug and print "#   E\n";
                $case = $qm = '';
                $matcher = $regular_matcher;
            }
            elsif ($record =~ /\G([lu])(.)/gc) {
                $debug and print "#   case $1 to <$2>\n";
                push @path, $1 eq 'l' ? lc($2) : uc($2);
            }
            elsif (my @arg = grep {defined} $record =~ /\G$misc_matcher/gc) {
                if ($] < 5.007) {
                    my $len = 0;
                    $len += length($_) for @arg;
                    $debug and print "#  pos ", pos($record), " fixup add $len\n";
                    pos($record) = pos($record) + $len;
                }
                my $directive = shift @arg;
                if ($directive eq 'c') {
                    $debug and print "#  ctrl <@arg>\n";
                    push @path, "\\c" . uc(shift @arg);
                }
                else { # elsif ($directive eq '0') {
                    $debug and print "#  octal <@arg>\n";
                    my $ascii = oct(shift @arg);
                    push @path, ($ascii < 32)
                        ? "\\c" . chr($ascii+64)
                        : chr($ascii)
                    ;
                }
                $path[-1] .= join( '', @arg ); # if @arg;
                redo;
            }
            elsif ($record =~ /\G(.)/gc) {
                $token = $1;
                $token =~ s{[AZabefnrtz\[\]{}()\\\$*+.?@|/^]}{\\$token};
                $debug and print "#   meta <$token>\n";
                push @path, $token;
            }
            else {
                $debug and print "#   ignore char at ", pos($record), " of <$record>\n";
            }
            redo;
        }

        elsif ($record =~ /\G($class_matcher)($modifier)/gc) {
            # [class] followed by a modifer
            my $class     = $1;
            my $qualifier = defined $2 ? $2 : '';
            $debug and print "#  class begin <$class> <$qualifier>\n";
            if ($class =~ /\A\[\\?(.)]\Z/) {
                $class = quotemeta $1;
                $class =~ s{\A\\([!@%])\Z}{$1};
                $debug and print "#  class unwrap $class\n";
            }
            $debug and print "#  class end <$class> <$qualifier>\n";
            push @path, ($unroll_plus and $qualifier =~ s/\A\+(\?)?\Z/*/)
                ? ($class, "$class$qualifier" . (defined $1 ? $1 : ''))
                : "$class$qualifier";
            redo;
        }

        elsif ($record =~ /\G($paren_matcher)/gc) {
            $debug and print "#  paren <$1>\n";
            # (paren) followed by a modifer
            push @path, $1;
            redo;
        }

    }
    return \@path;
}

sub _lex {
    my $self   = shift;
    my $record = shift;
    my $len    = 0;
    my @path   = ();
    my $case   = '';
    my $qm     = '';
    my $re     = defined $self->{lex} ? $self->{lex}
        : defined $Current_Lexer ? $Current_Lexer
        : $Default_Lexer;
    my $debug  = $self->{debug} & DEBUG_LEX;
    $debug and print "# _lex <$record>\n";
    my ($token, $next_token, $diff, $token_len);
    while( $record =~ /($re)/g ) {
        $token = $1;
        $token_len = length($token);
        $debug and print "# lexed <$token> len=$token_len\n";
        if( pos($record) - $len > $token_len ) {
            $next_token = $token;
            $token = substr( $record, $len, $diff = pos($record) - $len - $token_len );
            $debug and print "#  recover <", substr( $record, $len, $diff ), "> as <$token>, save <$next_token>\n";
            $len += $diff;
        }
        $len += $token_len;
        TOKEN: {
            if( substr( $token, 0, 1 ) eq '\\' ) {
                if( $token =~ /^\\([ELQU])$/ ) {
                    if( $1 eq 'E' ) {
                        $qm and $re = defined $self->{lex} ? $self->{lex}
                            : defined $Current_Lexer ? $Current_Lexer
                            : $Default_Lexer;
                        $case = $qm = '';
                    }
                    elsif( $1 eq 'Q' ) {
                        $qm = $1;
                        # switch to a more precise lexer to quotemeta individual characters
                        $re = qr/\\?./;
                    }
                    else {
                        $case = $1;
                    }
                    $debug and print "#  state change qm=<$qm> case=<$case>\n";
                    goto NEXT_TOKEN;
                }
                elsif( $token =~ /^\\([lu])(.)$/ ) {
                    $debug and print "#  apply case=<$1> to <$2>\n";
                    push @path, $1 eq 'l' ? lc($2) : uc($2);
                    goto NEXT_TOKEN;
                }
                elsif( $token =~ /^\\x([\da-fA-F]{2})$/ ) {
                    $token = quotemeta(chr(hex($1)));
                    $debug and print "#  cooked <$token>\n";
                    $token =~ s/^\\([^\w$()*+.?@\[\\\]^|{\/])$/$1/; # } balance
                    $debug and print "#   giving <$token>\n";
                }
                else {
                    $token =~ s/^\\([^\w$()*+.?@\[\\\]^|{\/])$/$1/; # } balance
                    $debug and print "#  backslashed <$token>\n";
                }
            }
            else {
                $case and $token = $case eq 'U' ? uc($token) : lc($token);
                $qm   and $token = quotemeta($token);
                $token = '\\/' if $token eq '/';
            }
            # undo quotemeta's brute-force escapades
            $qm and $token =~ s/^\\([^\w$()*+.?@\[\\\]^|{}\/])$/$1/;
            $debug and print "#   <$token> case=<$case> qm=<$qm>\n";
            push @path, $token;

            NEXT_TOKEN:
            if( defined $next_token ) {
                $debug and print "#   redo <$next_token>\n";
                $token = $next_token;
                $next_token = undef;
                redo TOKEN;
            }
        }
    }
    if( $len < length($record) ) {
        # NB: the remainder only arises in the case of degenerate lexer,
        # and if \Q is operative, the lexer will have been switched to
        # /\\?./, which means there can never be a remainder, so we
        # don't have to bother about quotemeta. In other words:
        # $qm will never be true in this block.
        my $remain = substr($record,$len); 
        $case and $remain = $case eq 'U' ? uc($remain) : lc($remain);
        $debug and print "#   add remaining <$remain> case=<$case> qm=<$qm>\n";
        push @path, $remain;
    }
    $debug and print "# _lex out <@path>\n";
    return \@path;
}

sub add {
    my $self = shift;
    my $record;
    my $debug  = $self->{debug} & DEBUG_LEX;
    while( defined( $record = shift @_ )) {
        CORE::chomp($record) if $self->{chomp};
        next if $self->{pre_filter} and not $self->{pre_filter}->($record);
        $debug and print "# add <$record>\n";
        $self->{stats_raw} += length $record;
        my $list = $record =~ /[+*?(\\\[{]/ # }]) restore equilibrium
            ? $self->{lex} ? $self->_lex($record) : $self->_fastlex($record)
            : [split //, $record]
        ;
        next if $self->{filter} and not $self->{filter}->(@$list);
        $self->_insertr( $list );
    }
    return $self;
}

=item add_file(FILENAME [...])

Takes a list of file names. Each file is opened and read
line by line. Each line is added to the assembly.

  $r->add_file( 'file.1', 'file.2' );

If a file cannot be opened, the method will croak. If you cannot
afford to let this happen then you should wrap the call in a C<eval>
block.

Chomping happens automatically unless you the C<chomp(0)> method
to disable it. By default, input lines are read according to the
value of the C<input_record_separator> attribute (if defined), and
will otherwise fall back to the current setting of the system C<$/>
variable. The record separator may also be specified on each
call to C<add_file>. Internally, the routine C<local>ises the
value of C<$/> to whatever is required, for the duration of the
call.

An alternate calling mechanism using a hash reference is
available.  The recognised keys are:

=over 4

=item file

Reference to a list of file names, or the name of a single
file.

  $r->add_file({file => ['file.1', 'file.2', 'file.3']});
  $r->add_file({file => 'file.n'});

=item input_record_separator

If present, indicates what constitutes a line

  $r->add_file({file => 'data.txt', input_record_separator => ':' });

=item rs

An alias for input_record_separator (mnemonic: same as the
English variable names).

=back

  $r->add_file( {
    file => [ 'pattern.txt', 'more.txt' ],
    input_record_separator  => "\r\n",
  });

=cut

sub add_file {
    my $self = shift;
    my $rs;
    my @file;
    if (ref($_[0]) eq 'HASH') {
        my $arg = shift;
        $rs = $arg->{rs}
            || $arg->{input_record_separator}
            || $self->{input_record_separator}
            || $/;
        @file = ref($arg->{file}) eq 'ARRAY'
            ? @{$arg->{file}}
            : $arg->{file};
    }
    else {
        $rs   = $self->{input_record_separator} || $/;
        @file = @_;
    }
    local $/ = $rs;
    my $file;
    for $file (@file) {
        open my $fh, '<', $file or do {
            require Carp;
            Carp::croak("cannot open $file for input: $!");
        };
        while (defined (my $rec = <$fh>)) {
            $self->add($rec);
        }
        close $fh;
    }
    return $self;
}

=item insert(LIST)

Takes a list of tokens representing a regular expression and
stores them in the object. Note: you should not pass it a bare
regular expression, such as C<ab+c?d*e>. You must pass it as
a list of tokens, I<e.g.> C<('a', 'b+', 'c?', 'd*', 'e')>.

This method is chainable, I<e.g.>:

  my $ra = Regexp::Assemble->new
    ->insert( qw[ a b+ c? d* e ] )
    ->insert( qw[ a c+ d+ e* f ] );

Lexing complex patterns with metacharacters and so on can consume
a significant proportion of the overall time to build an assembly.
If you have the information available in a tokenised form, calling
C<insert> directly can be a big win.

=cut

sub insert {
    my $self = shift;
    return if $self->{filter} and not $self->{filter}->(@_);
    $self->_insertr( [@_] );
    return $self;
}

sub _insertr {
    my $self   = shift;
    my $dup    = $self->{stats_dup} || 0;
    $self->{path} = $self->_insert_path( $self->_path, $self->_debug(DEBUG_ADD), $_[0] );
    if( not defined $self->{stats_dup} or $dup == $self->{stats_dup} ) {
        ++$self->{stats_add};
        $self->{stats_cooked} += defined($_) ? length($_) : 0 for @{$_[0]};
    }
    elsif( $self->{dup_warn} ) {
        if( ref $self->{dup_warn} eq 'CODE' ) {
            $self->{dup_warn}->($self, $_[0]); 
        }
        else {
            my $pattern = join( '', @{$_[0]} );
            require Carp;
            Carp::carp("duplicate pattern added: /$pattern/");
        }
    }
    $self->{str} = $self->{re} = undef;
}

=item lexstr

Use the C<lexstr> method if you are curious to see how a pattern
gets tokenised. It takes a scalar on input, representing a pattern,
and returns a reference to an array, containing the tokenised
pattern. You can recover the original pattern by performing a
C<join>:

  my @token = $re->lexstr($pattern);
  my $new_pattern = join( '', @token );

If the original pattern contains unnecessary backslashes, or C<\x4b>
escapes, or quotemeta escapes (C<\Q>...C<\E>) the resulting pattern
may not be identical.

Call C<lexstr> does not add the pattern to the object, it is merely
for exploratory purposes. It will, however, update various statistical
counters.

=cut

sub lexstr {
    return shift->_lex(shift);
}

=item pre_filter(CODE)

Allows you to install a callback to check that the pattern being
loaded contains valid input. It receives the pattern as a whole to
be added, before it been tokenised by the lexer. It may to return
0 or C<undef> to indicate that the pattern should not be added, any
true value indicates that the contents are fine.

A filter to strip out trailing comments (marked by #):

  $re->pre_filter( sub { $_[0] =~ s/\s*#.*$//; 1 } );

A filter to ignore blank lines:

  $re->pre_filter( sub { length(shift) } );

If you want to remove the filter, pass C<undef> as a parameter.

  $ra->pre_filter(undef);

This method is chainable.

=cut

sub pre_filter {
    my $self   = shift;
    my $pre_filter = shift;
    if( defined $pre_filter and ref($pre_filter) ne 'CODE' ) {
        require Carp;
        Carp::croak("pre_filter method not passed a coderef");
    }
    $self->{pre_filter} = $pre_filter;
    return $self;
}


=item filter(CODE)

Allows you to install a callback to check that the pattern being
loaded contains valid input. It receives a list on input, after it
has been tokenised by the lexer. It may to return 0 or undef to
indicate that the pattern should not be added, any true value
indicates that the contents are fine.

If you know that all patterns you expect to assemble contain
a restricted set of of tokens (e.g. no spaces), you could do
the following:

  $ra->filter(sub { not grep { / / } @_ });

or

  sub only_spaces_and_digits {
    not grep { ![\d ] } @_
  }
  $ra->filter( \&only_spaces_and_digits );

These two examples will silently ignore faulty patterns, If you
want the user to be made aware of the problem you should raise an
error (via C<warn> or C<die>), log an error message, whatever is
best. If you want to remove a filter, pass C<undef> as a parameter.

  $ra->filter(undef);

This method is chainable.

=cut

sub filter {
    my $self   = shift;
    my $filter = shift;
    if( defined $filter and ref($filter) ne 'CODE' ) {
        require Carp;
        Carp::croak("filter method not passed a coderef");
    }
    $self->{filter} = $filter;
    return $self;
}

=item as_string

Assemble the expression and return it as a string. You may want to do
this if you are writing the pattern to a file. The following arguments
can be passed to control the aspect of the resulting pattern:

B<indent>, the number of spaces used to indent nested grouping of
a pattern. Use this to produce a pretty-printed pattern (for some
definition of "pretty"). The resulting output is rather verbose. The
reason is to ensure that the metacharacters C<(?:> and C<)> always
occur on otherwise empty lines. This allows you grep the result for an
even more synthetic view of the pattern:

  egrep -v '^ *[()]' <regexp.file>

The result of the above is quite readable. Remember to backslash the
spaces appearing in your own patterns if you wish to use an indented
pattern in an C<m/.../x> construct. Indenting is ignored if tracking
is enabled.

The B<indent> argument takes precedence over the C<indent>
method/attribute of the object.

Calling this
method will drain the internal data structure. Large numbers of patterns
can eat a significant amount of memory, and this lets perl recover the
memory used for other purposes.

If you want to reduce the pattern I<and> continue to add new patterns,
clone the object and reduce the clone, leaving the original object intact.

=cut

sub as_string {
    my $self = shift;
    if( not defined $self->{str} ) {
        if( $self->{track} ) {
            $self->{m}      = undef;
            $self->{mcount} = 0;
            $self->{mlist}  = [];
            $self->{str}    = _re_path_track($self, $self->_path, '', '');
        }
        else {
            $self->_reduce unless ($self->{mutable} or not $self->{reduce});
            my $arg  = {@_};
            $arg->{indent} = $self->{indent}
                if not exists $arg->{indent} and $self->{indent} > 0;
            if( exists $arg->{indent} and $arg->{indent} > 0 ) {
                $arg->{depth} = 0;
                $self->{str}  = _re_path_pretty($self, $self->_path, $arg);
            }
            elsif( $self->{lookahead} ) {
                $self->{str}  = _re_path_lookahead($self, $self->_path);
            }
            else {
                $self->{str}  = _re_path($self, $self->_path);
            }
        }
        if (not length $self->{str}) {
            # explicitly fail to match anything if no pattern was generated
            $self->{str} = $Always_Fail;
        }
        else {
            my $begin = 
                  $self->{anchor_word_begin}   ? '\\b'
                : $self->{anchor_line_begin}   ? '^'
                : $self->{anchor_string_begin} ? '\A'
                : ''
            ;
            my $end = 
                  $self->{anchor_word_end}            ? '\\b'
                : $self->{anchor_line_end}            ? '$'
                : $self->{anchor_string_end}          ? '\Z'
                : $self->{anchor_string_end_absolute} ? '\z'
                : ''
            ;
            $self->{str} = "$begin$self->{str}$end";
        }
        $self->{path} = [] unless $self->{mutable};
    }
    return $self->{str};
}

=item re

Assembles the pattern and return it as a compiled RE, using the
C<qr//> operator.

As with C<as_string>, calling this method will reset the internal data
structures to free the memory used in assembling the RE.

The B<indent> attribute, documented in the C<as_string> method, can be
used here (it will be ignored if tracking is enabled).

With method chaining, it is possible to produce a RE without having
a temporary C<Regexp::Assemble> object lying around, I<e.g.>:

  my $re = Regexp::Assemble->new
    ->add( q[ab+cd+e] )
    ->add( q[ac\\d+e] )
    ->add( q[c\\d+e] )
    ->re;

The C<$re> variable now contains a Regexp object that can be used
directly:

  while( <> ) {
    /$re/ and print "Something in [$_] matched\n";
  )

The C<re> method is called when the object is used in string context
(hence, within an C<m//> operator), so by and large you do not even
need to save the RE in a separate variable. The following will work
as expected:

  my $re = Regexp::Assemble->new->add( qw[ fee fie foe fum ] );
  while( <IN> ) {
    if( /($re)/ ) {
      print "Here be giants: $1\n";
    }
  }

This approach does not work with tracked patterns. The
C<match> and C<matched> methods must be used instead, see below.

=cut

sub re {
    my $self = shift;
    $self->_build_re($self->as_string(@_)) unless defined $self->{re};
    return $self->{re};
}

use overload '""' => sub {
    my $self = shift;
    return $self->{re} if $self->{re};
    $self->_build_re($self->as_string());
    return $self->{re};
};

sub _build_re {
    my $self  = shift;
    my $str   = shift;
    if( $self->{track} ) {
        use re 'eval';
        $self->{re} = length $self->{flags}
            ? qr/(?$self->{flags}:$str)/
            : qr/$str/
        ;
    }
    else {
        # how could I not repeat myself?
        $self->{re} = length $self->{flags}
            ? qr/(?$self->{flags}:$str)/
            : qr/$str/
        ;
    }
}

=item match(SCALAR)

The following information applies to Perl 5.8 and below. See
the section that follows for information on Perl 5.10.

If pattern tracking is in use, you must C<use re 'eval'> in order
to make things work correctly. At a minimum, this will make your
code look like this:

    my $did_match = do { use re 'eval'; $target =~ /$ra/ }
    if( $did_match ) {
        print "matched ", $ra->matched, "\n";
    }

(The main reason is that the C<$^R> variable is currently broken
and an ugly workaround that runs some Perl code during the match
is required, in order to simulate what C<$^R> should be doing. See
Perl bug #32840 for more information if you are curious. The README
also contains more information). This bug has been fixed in 5.10.

The important thing to note is that with C<use re 'eval'>, THERE
ARE SECURITY IMPLICATIONS WHICH YOU IGNORE AT YOUR PERIL. The problem
is this: if you do not have strict control over the patterns being
fed to C<Regexp::Assemble> when tracking is enabled, and someone
slips you a pattern such as C</^(?{system 'rm -rf /'})/> and you
attempt to match a string against the resulting pattern, you will
know Fear and Loathing.

What is more, the C<$^R> workaround means that that tracking does
not work if you perform a bare C</$re/> pattern match as shown
above. You have to instead call the C<match> method, in order to
supply the necessary context to take care of the tracking housekeeping
details.

   if( defined( my $match = $ra->match($_)) ) {
       print "  $_ matched by $match\n";
   }

In the case of a successful match, the original matched pattern
is returned directly. The matched pattern will also be available
through the C<matched> method.

(Except that the above is not true for 5.6.0: the C<match> method
returns true or undef, and the C<matched> method always returns
undef).

If you are capturing parts of the pattern I<e.g.> C<foo(bar)rat>
you will want to get at the captures. See the C<mbegin>, C<mend>,
C<mvar> and C<capture> methods. If you are not using captures
then you may safely ignore this section.

In 5.10, since the bug concerning C<$^R> has been resolved, there
is no need to use C<re 'eval'> and the assembled pattern does
not require any Perl code to be executed during the match.

=cut

sub match {
    my $self = shift;
    my $target = shift;
    $self->_build_re($self->as_string(@_)) unless defined $self->{re};
    $self->{m}    = undef;
    $self->{mvar} = [];
    if( not $target =~ /$self->{re}/ ) {
        $self->{mbegin} = [];
        $self->{mend}   = [];
        return undef;
    }
    $self->{m}      = $^R if $] >= 5.009005;
    $self->{mbegin} = _path_copy([@-]);
    $self->{mend}   = _path_copy([@+]);
    my $n = 0;
    for( my $n = 0; $n < @-; ++$n ) {
        push @{$self->{mvar}}, substr($target, $-[$n], $+[$n] - $-[$n])
            if defined $-[$n] and defined $+[$n];
    }
    if( $self->{track} ) {
        return defined $self->{m} ? $self->{mlist}[$self->{m}] : 1;
    }
    else {
        return 1;
    }
}

=item source

When using tracked mode, after a successful match is made, returns
the original source pattern that caused the match. In Perl 5.10,
the C<$^R> variable can be used to as an index to fetch the correct
pattern from the object.

If no successful match has been performed, or the object is not in
tracked mode, this method returns C<undef>.

  my $r = Regexp::Assemble->new->track(1)->add(qw(foo? bar{2} [Rr]at));

  for my $w (qw(this food is rather barren)) {
    if ($w =~ /$r/) {
      print "$w matched by ", $r->source($^R), $/;
    }
    else {
      print "$w no match\n";
    }
  }

=cut

sub source {
    my $self = shift;
    return unless $self->{track};
    defined($_[0]) and return $self->{mlist}[$_[0]];
    return unless defined $self->{m};
    return $self->{mlist}[$self->{m}];
}

=item mbegin

This method returns a copy of C<@-> at the moment of the
last match. You should ordinarily not need to bother with
this, C<mvar> should be able to supply all your needs.

=cut

sub mbegin {
    my $self = shift;
    return exists $self->{mbegin} ? $self->{mbegin} : [];
}

=item mend

This method returns a copy of C<@+> at the moment of the
last match.

=cut

sub mend {
    my $self = shift;
    return exists $self->{mend} ? $self->{mend} : [];
}

=item mvar(NUMBER)

The C<mvar> method returns the captures of the last match.
C<mvar(1)> corresponds to $1, C<mvar(2)> to $2, and so on.
C<mvar(0)> happens to return the target string matched,
as a byproduct of walking down the C<@-> and C<@+> arrays
after the match.

If called without a parameter, C<mvar> will return a
reference to an array containing all captures.

=cut

sub mvar {
    my $self = shift;
    return undef unless exists $self->{mvar};
    return defined($_[0]) ? $self->{mvar}[$_[0]] : $self->{mvar};
}

=item capture

The C<capture> method returns the the captures of the last
match as an array. Unlink C<mvar>, this method does not
include the matched string. It is equivalent to getting an
array back that contains C<$1, $2, $3, ...>.

If no captures were found in the match, an empty array is
returned, rather than C<undef>. You are therefore guaranteed
to be able to use C<< for my $c ($re->capture) { ... >>
without have to check whether anything was captured.

=cut

sub capture {
    my $self = shift;
    if( $self->{mvar} ) {
        my @capture = @{$self->{mvar}};
        shift @capture;
        return @capture;
    }
    return ();
}

=item matched

If pattern tracking has been set, via the C<track> attribute,
or through the C<track> method, this method will return the
original pattern of the last successful match. Returns undef
match has yet been performed, or tracking has not been enabled.

See below in the NOTES section for additional subtleties of
which you should be aware of when tracking patterns.

Note that this method is not available in 5.6.0, due to
limitations in the implementation of C<(?{...})> at the time.

=cut

sub matched {
    my $self = shift;
    return defined $self->{m} ? $self->{mlist}[$self->{m}] : undef;
}

=back

=head2 Statistics/Reporting routines

=over 8

=item stats_add

Returns the number of patterns added to the assembly (whether
by C<add> or C<insert>). Duplicate patterns are not included
in this total.

=cut

sub stats_add {
    my $self = shift;
    return $self->{stats_add} || 0;
}

=item stats_dup

Returns the number of duplicate patterns added to the assembly.
If non-zero, this may be a sign that something is wrong with
your data (or at the least, some needless redundancy). This may
occur when you have two patterns (for instance, C<a\-b> and
C<a-b>) which map to the same result.

=cut

sub stats_dup {
    my $self = shift;
    return $self->{stats_dup} || 0;
}

=item stats_raw

Returns the raw number of bytes in the patterns added to the
assembly. This includes both original and duplicate patterns.
For instance, adding the two patterns C<ab> and C<ab> will
count as 4 bytes.

=cut

sub stats_raw {
    my $self = shift;
    return $self->{stats_raw} || 0;
}

=item stats_cooked

Return the true number of bytes added to the assembly. This
will not include duplicate patterns. Furthermore, it may differ
from the raw bytes due to quotemeta treatment. For instance,
C<abc\,def> will count as 7 (not 8) bytes, because C<\,> will
be stored as C<,>. Also, C<\Qa.b\E> is 7 bytes long, however,
after the quotemeta directives are processed, C<a\.b> will be
stored, for a total of 4 bytes.

=cut

sub stats_cooked {
    my $self = shift;
    return $self->{stats_cooked} || 0;
}

=item stats_length

Returns the length of the resulting assembled expression.
Until C<as_string> or C<re> have been called, the length
will be 0 (since the assembly will have not yet been
performed). The length includes only the pattern, not the
additional (C<(?-xism...>) fluff added by the compilation.

=cut

sub stats_length {
    my $self = shift;
    return (defined $self->{str} and $self->{str} ne $Always_Fail) ? length $self->{str} : 0;
}

=item dup_warn(NUMBER|CODEREF)

Turns warnings about duplicate patterns on or off. By
default, no warnings are emitted. If the method is
called with no parameters, or a true parameter,
the object will carp about patterns it has
already seen. To turn off the warnings, use 0 as a
parameter.

  $r->dup_warn();

The method may also be passed a code block. In this case
the code will be executed and it will receive a reference
to the object in question, and the lexed pattern.

  $r->dup_warn(
    sub {
      my $self = shift;
      print $self->stats_add, " patterns added at line $.\n",
          join( '', @_ ), " added previously\n";
    }
  )

=cut

sub dup_warn {
    my $self = shift;
    $self->{dup_warn} = defined($_[0]) ? $_[0] : 1;
    return $self;
}

=back

=head2 Anchor routines

Suppose you wish to assemble a series of patterns that all begin
with C<^>  and end with C<$> (anchor pattern to the beginning and
end of line). Rather than add the anchors to each and every pattern
(and possibly forget to do so when a new entry is added), you may
specify the anchors in the object, and they will appear in the
resulting pattern, and you no longer need to (or should) put them
in your source patterns. For example, the two following snippets
will produce identical patterns:

  $r->add(qw(^this ^that ^them))->as_string;

  $r->add(qw(this that them))->anchor_line_begin->as_string;

  # both techniques will produce ^th(?:at|em|is)

All anchors are possible word (C<\b>) boundaries, line
boundaries (C<^> and C<$>) and string boundaries (C<\A>
and C<\Z> (or C<\z> if you absolutely need it)).

The shortcut C<anchor_I<mumble>> implies both
C<anchor_I<mumble>_begin> C<anchor_I<mumble>_end> 
is also available. If different anchors are specified
the most specific anchor wins. For instance, if both
C<anchor_word_begin> and C<anchor_line_begin> are
specified, C<anchor_word_begin> takes precedence.

All the anchor methods are chainable.

=over 8

=item anchor_word_begin

The resulting pattern will be prefixed with a C<\b>
word boundary assertion when the value is true. Set
to 0 to disable.

  $r->add('pre')->anchor_word_begin->as_string;
  # produces '\bpre'

=cut

sub anchor_word_begin {
    my $self = shift;
    $self->{anchor_word_begin} = defined($_[0]) ? $_[0] : 1;
    return $self;
}

=item anchor_word_end

The resulting pattern will be suffixed with a C<\b>
word boundary assertion when the value is true. Set
to 0 to disable.

  $r->add(qw(ing tion))
    ->anchor_word_end
    ->as_string; # produces '(?:tion|ing)\b'

=cut

sub anchor_word_end {
    my $self = shift;
    $self->{anchor_word_end} = defined($_[0]) ? $_[0] : 1;
    return $self;
}

=item anchor_word

The resulting pattern will be have C<\b>
word boundary assertions at the beginning and end
of the pattern when the value is true. Set
to 0 to disable.

  $r->add(qw(cat carrot)
    ->anchor_word(1)
    ->as_string; # produces '\bca(?:rro)t\b'

=cut

sub anchor_word {
    my $self  = shift;
    my $state = shift;
    $self->anchor_word_begin($state)->anchor_word_end($state);
    return $self;
}

=item anchor_line_begin

The resulting pattern will be prefixed with a C<^>
line boundary assertion when the value is true. Set
to 0 to disable.

  $r->anchor_line_begin;
  # or
  $r->anchor_line_begin(1);

=cut

sub anchor_line_begin {
    my $self = shift;
    $self->{anchor_line_begin} = defined($_[0]) ? $_[0] : 1;
    return $self;
}

=item anchor_line_end

The resulting pattern will be suffixed with a C<$>
line boundary assertion when the value is true. Set
to 0 to disable.

  # turn it off
  $r->anchor_line_end(0);

=cut

sub anchor_line_end {
    my $self = shift;
    $self->{anchor_line_end} = defined($_[0]) ? $_[0] : 1;
    return $self;
}

=item anchor_line

The resulting pattern will be have the C<^> and C<$>
line boundary assertions at the beginning and end
of the pattern, respectively, when the value is true. Set
to 0 to disable.

  $r->add(qw(cat carrot)
    ->anchor_line
    ->as_string; # produces '^ca(?:rro)t$'

=cut

sub anchor_line {
    my $self  = shift;
    my $state = shift;
    $self->anchor_line_begin($state)->anchor_line_end($state);
    return $self;
}

=item anchor_string_begin

The resulting pattern will be prefixed with a C<\A>
string boundary assertion when the value is true. Set
to 0 to disable.

  $r->anchor_string_begin(1);

=cut

sub anchor_string_begin {
    my $self = shift;
    $self->{anchor_string_begin} = defined($_[0]) ? $_[0] : 1;
    return $self;
}

=item anchor_string_end

The resulting pattern will be suffixed with a C<\Z>
string boundary assertion when the value is true. Set
to 0 to disable.

  # disable the string boundary end anchor
  $r->anchor_string_end(0);

=cut

sub anchor_string_end {
    my $self = shift;
    $self->{anchor_string_end} = defined($_[0]) ? $_[0] : 1;
    return $self;
}

=item anchor_string_end_absolute

The resulting pattern will be suffixed with a C<\z>
string boundary assertion when the value is true. Set
to 0 to disable.

  # disable the string boundary absolute end anchor
  $r->anchor_string_end_absolute(0);

If you don't understand the difference between
C<\Z> and C<\z>, the former will probably do what
you want.

=cut

sub anchor_string_end_absolute {
    my $self = shift;
    $self->{anchor_string_end_absolute} = defined($_[0]) ? $_[0] : 1;
    return $self;
}

=item anchor_string

The resulting pattern will be have the C<\A> and C<\Z>
string boundary assertions at the beginning and end
of the pattern, respectively, when the value is true. Set
to 0 to disable.

  $r->add(qw(cat carrot)
    ->anchor_string
    ->as_string; # produces '\Aca(?:rro)t\Z'

=cut

sub anchor_string {
    my $self  = shift;
    my $state = defined($_[0]) ? $_[0] : 1;
    $self->anchor_string_begin($state)->anchor_string_end($state);
    return $self;
}

=item anchor_string_absolute

The resulting pattern will be have the C<\A> and C<\z>
string boundary assertions at the beginning and end
of the pattern, respectively, when the value is true. Set
to 0 to disable.

  $r->add(qw(cat carrot)
    ->anchor_string_absolute
    ->as_string; # produces '\Aca(?:rro)t\z'

=cut

sub anchor_string_absolute {
    my $self  = shift;
    my $state = defined($_[0]) ? $_[0] : 1;
    $self->anchor_string_begin($state)->anchor_string_end_absolute($state);
    return $self;
}

=back

=over 8

=item debug(NUMBER)

Turns debugging on or off. Statements are printed
to the currently selected file handle (STDOUT by default).
If you are already using this handle, you will have to
arrange to select an output handle to a file of your own
choosing, before call the C<add>, C<as_string> or C<re>)
functions, otherwise it will scribble all over your
carefully formatted output.

=over 8

=item 0

Off. Turns off all debugging output.

=item 1

Add. Trace the addition of patterns.

=item 2

Reduce. Trace the process of reduction and assembly.

=item 4

Lex. Trace the lexing of the input patterns into its constituent
tokens.

=item 8

Time. Print to STDOUT the time taken to load all the patterns. This is
nothing more than the difference between the time the object was
instantiated and the time reduction was initiated.

  # load=<num>

Any lengthy computation performed in the client code will be reflected
in this value. Another line will be printed after reduction is
complete.

  # reduce=<num>

The above output lines will be changed to C<load-epoch> and
C<reduce-epoch> if the internal state of the object is corrupted
and the initial timestamp is lost.

The code attempts to load L<Time::HiRes> in order to report fractional
seconds. If this is not successful, the elapsed time is displayed
in whole seconds.

=back

Values can be added (or or'ed together) to trace everything

  $r->debug(7)->add( '\\d+abc' );

Calling C<debug> with no arguments turns debugging off.

=cut

sub debug {
    my $self = shift;
    $self->{debug} = defined($_[0]) ? $_[0] : 0;
    if ($self->_debug(DEBUG_TIME)) {
        # hmm, debugging time was switched on after instantiation
        $self->_init_time_func;
        $self->{_begin_time} = $self->{_time_func}->();
    }
    return $self;
}

=item dump

Produces a synthetic view of the internal data structure. How
to interpret the results is left as an exercise to the reader.

  print $r->dump;

=cut

sub dump {
    return _dump($_[0]->_path);
}

=item chomp(0|1)

Turns chomping on or off. 

IMPORTANT: As of version 0.24, chomping is now on by default as it
makes C<add_file> Just Work. The only time you may run into trouble
is with C<add("\\$/")>. So don't do that, or else explicitly turn
off chomping.

To avoid incorporating (spurious)
record separators (such as "\n" on Unix) when reading from a file, 
C<add()> C<chomp>s its input. If you don't want this to happen,
call C<chomp> with a false value.

  $re->chomp(0); # really want the record separators
  $re->add(<DATA>);

=cut

sub chomp {
    my $self = shift;
    $self->{chomp} = defined($_[0]) ? $_[0] : 1;
    return $self;
}

=item fold_meta_pairs(NUMBER)

Determines whether C<\s>, C<\S> and C<\w>, C<\W> and C<\d>, C<\D>
are folded into a C<.> (dot). Folding happens by default (for
reasons of backwards compatibility, even though it is wrong when
the C</s> expression modifier is active).

Call this method with a false value to prevent this behaviour (which
is only a problem when dealing with C<\n> if the C</s> expression
modifier is also set).

  $re->add( '\\w', '\\W' );
  my $clone = $re->clone;

  $clone->fold_meta_pairs(0);
  print $clone->as_string; # prints '.'
  print $re->as_string;    # print '[\W\w]'

=cut

sub fold_meta_pairs {
    my $self = shift;
    $self->{fold_meta_pairs} = defined($_[0]) ? $_[0] : 1;
    return $self;
}

=item indent(NUMBER)

Sets the level of indent for pretty-printing nested groups
within a pattern. See the C<as_string> method for more details.
When called without a parameter, no indenting is performed.

  $re->indent( 4 );
  print $re->as_string;

=cut

sub indent {
    my $self = shift;
    $self->{indent} = defined($_[0]) ? $_[0] : 0;
    return $self;
}

=item lookahead(0|1)

Turns on zero-width lookahead assertions. This is usually
beneficial when you expect that the pattern will usually fail.
If you expect that the pattern will usually match you will
probably be worse off.

=cut

sub lookahead {
    my $self = shift;
    $self->{lookahead} = defined($_[0]) ? $_[0] : 1;
    return $self;
}

=item flags(STRING)

Sets the flags that govern how the pattern behaves (for
versions of Perl up to 5.9 or so, these are C<imsx>). By
default no flags are enabled.


=item modifiers(STRING)

An alias of the C<flags> method, for users familiar with
C<Regexp::List>.

=cut

sub flags {
    my $self = shift;
    $self->{flags} = defined($_[0]) ? $_[0] : '';
    return $self;
}

sub modifiers {
    my $self = shift;
    return $self->flags(@_);
}

=item track(0|1)

Turns tracking on or off. When this attribute is enabled,
additional housekeeping information is inserted into the
assembled expression using C<({...}> embedded code
constructs. This provides the necessary information to
determine which, of the original patterns added, was the
one that caused the match.

  $re->track( 1 );
  if( $target =~ /$re/ ) {
    print "$target matched by ", $re->matched, "\n";
  }

Note that when this functionality is enabled, no
reduction is performed and no character classes are
generated. In other words, C<brag|tag> is not
reduced down to C<(?:br|t)ag> and C<dig|dim> is not
reduced to C<di[gm]>.

=cut

sub track {
    my $self = shift;
    $self->{track} = defined($_[0]) ? $_[0] : 1;
    return $self;
}

=item unroll_plus(0|1)

Turns the unrolling of plus metacharacters on or off. When
a pattern is broken up, C<a+> becomes C<a>, C<a*> (and
C<b+?> becomes C<b>, C<b*?>. This may allow the freed C<a>
to assemble with other patterns. Not enabled by default.

=cut

sub unroll_plus {
    my $self = shift;
    $self->{unroll_plus} = defined($_[0]) ? $_[0] : 1;
    return $self;
}

=item lex(SCALAR)

Change the pattern used to break a string apart into tokens.
You can examine the C<eg/naive> script as a starting point.

=cut

sub lex {
    my $self = shift;
    $self->{lex} = qr($_[0]);
    return $self;
}

=item reduce(0|1)

Turns pattern reduction on or off. A reduced pattern may
be considerably shorter than an unreduced pattern. Consider
C</sl(?:ip|op|ap)/> I<versus> C</sl[aio]p/>. An unreduced
pattern will be very similar to those produced by
C<Regexp::Optimizer>. Reduction is on by default. Turning
it off speeds assembly (but assembly is pretty fast -- it's
the breaking up of the initial patterns in the lexing stage
that can consume a non-negligible amount of time).

=cut

sub reduce {
    my $self = shift;
    $self->{reduce} = defined($_[0]) ? $_[0] : 1;
    return $self;
}

=item mutable(0|1)

This method has been marked as DEPRECATED. It will be removed
in a future release. See the C<clone> method for a technique
to replace its functionality.

=cut

sub mutable {
    my $self = shift;
    $self->{mutable} = defined($_[0]) ? $_[0] : 1;
    return $self;
}

=item reset

Empties out the patterns that have been C<add>ed or C<insert>-ed
into the object. Does not modify the state of controller attributes
such as C<debug>, C<lex>, C<reduce> and the like.

=cut

sub reset {
    # reinitialise the internal state of the object
    my $self = shift;
    $self->{path} = [];
    $self->{re}   = undef;
    $self->{str}  = undef;
    return $self;
}

=item Default_Lexer

B<Warning:> the C<Default_Lexer> function is a class method, not
an object method. It is a fatal error to call it as an object
method.

The C<Default_Lexer> method lets you replace the default pattern
used for all subsequently created C<Regexp::Assemble> objects. It
will not have any effect on existing objects. (It is also possible
to override the lexer pattern used on a per-object basis).

The parameter should be an ordinary scalar, not a compiled
pattern. If the pattern fails to match all parts of the string,
the missing parts will be returned as single chunks. Therefore
the following pattern is legal (albeit rather cork-brained):

    Regexp::Assemble::Default_Lexer( '\\d' );

The above pattern will split up input strings digit by digit, and
all non-digit characters as single chunks.

=cut

sub Default_Lexer {
    if( $_[0] ) {
        if( my $refname = ref($_[0]) ) {
            require Carp;
            Carp::croak("Cannot pass a $refname to Default_Lexer");
        }
        $Current_Lexer = $_[0];
    }
    return defined $Current_Lexer ? $Current_Lexer : $Default_Lexer;
}

# --- no user serviceable parts below ---

# -- debug helpers

sub _debug {
    my $self = shift;
    return $self->{debug} & shift() ? 1 : 0;
}

# -- helpers

sub _path {
    # access the path
    return $_[0]->{path};
}

# -- the heart of the matter

$have_Storable = do {
    eval {
        require Storable;
        import Storable 'dclone';
    };
    $@ ? 0 : 1;
};

sub _path_clone {
    $have_Storable ? dclone($_[0]) : _path_copy($_[0]);
}

sub _path_copy {
    my $path = shift;
    my $new  = [];
    for( my $p = 0; $p < @$path; ++$p ) {
        if( ref($path->[$p]) eq 'HASH' ) {
            push @$new, _node_copy($path->[$p]);
        }
        elsif( ref($path->[$p]) eq 'ARRAY' ) {
            push @$new, _path_copy($path->[$p]);
        }
        else {
            push @$new, $path->[$p];
        }
    }
    return $new;
}

sub _node_copy {
    my $node = shift;
    my $new  = {};
    while( my( $k, $v ) = each %$node ) {
        $new->{$k} = defined($v)
            ? _path_copy($v)
            : undef
        ;
    }
    return $new;
}

sub _insert_path {
    my $self  = shift;
    my $list  = shift;
    my $debug = shift;
    my @in    = @{shift()}; # create a new copy
    if( @$list == 0 ) { # special case the first time
        if( @in == 0 or (@in == 1 and (not defined $in[0] or $in[0] eq ''))) {
            return [{'' => undef}];
        }
        else {
            return \@in;
        }
    }
    $debug and print "# _insert_path @{[_dump(\@in)]} into @{[_dump($list)]}\n";
    my $path   = $list;
    my $offset = 0;
    my $token;
    if( not @in ) {
        if( ref($list->[0]) ne 'HASH' ) {
            return [ { '' => undef, $list->[0] => $list } ];
        }
        else {
            $list->[0]{''} = undef;
            return $list;
        }
    }
    while( defined( $token = shift @in )) {
        if( ref($token) eq 'HASH' ) {
            $debug and print "#  p0=", _dump($path), "\n";
            $path = $self->_insert_node( $path, $offset, $token, $debug, @in );
            $debug and print "#  p1=", _dump($path), "\n";
            last;
        }
        if( ref($path->[$offset]) eq 'HASH' ) {
            $debug and print "#   at (off=$offset len=@{[scalar @$path]}) ", _dump($path->[$offset]), "\n";
            my $node = $path->[$offset];
            if( exists( $node->{$token} )) {
                if ($offset < $#$path) {
                    my $new = {
                        $token => [$token, @in],
                        _re_path($self, [$node]) => [@{$path}[$offset..$#$path]],
                    };
                    splice @$path, $offset, @$path-$offset, $new;
                    last;
                }
                else {
                    $debug and print "#   descend key=$token @{[_dump($node->{$token})]}\n";
                    $path   = $node->{$token};
                    $offset = 0;
                    redo;
                }
            }
            else {
                $debug and print "#   add path ($token:@{[_dump(\@in)]}) into @{[_dump($path)]} at off=$offset to end=@{[scalar $#$path]}\n";
                if( $offset == $#$path ) {
                    $node->{$token} = [ $token, @in ];
                }
                else {
                    my $new = {
                        _node_key($token) => [ $token, @in ],
                        _node_key($node)  => [@{$path}[$offset..$#{$path}]],
                    };
                    splice( @$path, $offset, @$path - $offset, $new );
                    $debug and print "#   fused node=@{[_dump($new)]} path=@{[_dump($path)]}\n";
                }
                last;
            }
        }

        if( $debug ) {
            my $msg = '';
            my $n;
            for( $n = 0; $n < @$path; ++$n ) {
                $msg .= ' ' if $n;
                my $atom = ref($path->[$n]) eq 'HASH'
                    ? '{'.join( ' ', keys(%{$path->[$n]})).'}'
                    : $path->[$n]
                ;
                $msg .= $n == $offset ? "<$atom>" : $atom;
            }
            print "# at path ($msg)\n";
        }

        if( $offset >= @$path ) {
            push @$path, { $token => [ $token, @in ], '' => undef };
            $debug and print "#   added remaining @{[_dump($path)]}\n";
            last;
        }
        elsif( $token ne $path->[$offset] ) {
            $debug and print "#   token $token not present\n";
            splice @$path, $offset, @$path-$offset, {
                length $token
                    ? ( _node_key($token) => [$token, @in])
                    : ( '' => undef )
                ,
                $path->[$offset] => [@{$path}[$offset..$#{$path}]],
            };
            $debug and print "#   path=@{[_dump($path)]}\n";
            last;
        }
        elsif( not @in ) {
            $debug and print "#   last token to add\n";
            if( defined( $path->[$offset+1] )) {
                ++$offset;
                if( ref($path->[$offset]) eq 'HASH' ) {
                    $debug and print "#   add sentinel to node\n";
                    $path->[$offset]{''} = undef;
                }
                else {
                    $debug and print "#   convert <$path->[$offset]> to node for sentinel\n";
                    splice @$path, $offset, @$path-$offset, {
                        ''               => undef,
                        $path->[$offset] => [ @{$path}[$offset..$#{$path}] ],
                    };
                }
            }
            else {
                # already seen this pattern
                ++$self->{stats_dup};
            }
            last;
        }
        # if we get here then @_ still contains a token
        ++$offset;
    }
    $list;
}

sub _insert_node {
    my $self   = shift;
    my $path   = shift;
    my $offset = shift;
    my $token  = shift;
    my $debug  = shift;
    my $path_end = [@{$path}[$offset..$#{$path}]];
    # NB: $path->[$offset] and $[path_end->[0] are equivalent
    my $token_key = _re_path($self, [$token]);
    $debug and print "#  insert node(@{[_dump($token)]}:@{[_dump(\@_)]}) (key=$token_key)",
        " at path=@{[_dump($path_end)]}\n";
    if( ref($path_end->[0]) eq 'HASH' ) {
        if( exists($path_end->[0]{$token_key}) ) {
            if( @$path_end > 1 ) {
                my $path_key = _re_path($self, [$path_end->[0]]);
                my $new = {
                    $path_key  => [ @$path_end ],
                    $token_key => [ $token, @_ ],
                };
                $debug and print "#   +bifurcate new=@{[_dump($new)]}\n";
                splice( @$path, $offset, @$path_end, $new );
            }
            else {
                my $old_path = $path_end->[0]{$token_key};
                my $new_path = [];
                while( @$old_path and _node_eq( $old_path->[0], $token )) {
                    $debug and print "#  identical nodes in sub_path ",
                        ref($token) ? _dump($token) : $token, "\n";
                    push @$new_path, shift(@$old_path);
                    $token = shift @_;
                }
                if( @$new_path ) {
                    my $new;
                    my $token_key = $token;
                    if( @_ ) {
                        $new = {
                            _re_path($self, $old_path) => $old_path,
                            $token_key => [$token, @_],
                        };
                        $debug and print "#  insert_node(bifurc) n=@{[_dump([$new])]}\n";
                    }
                    else {
                        $debug and print "#  insert $token into old path @{[_dump($old_path)]}\n";
                        if( @$old_path ) {
                            $new = ($self->_insert_path( $old_path, $debug, [$token] ))->[0];
                        }
                        else {
                            $new = { '' => undef, $token => [$token] };
                        }
                    }
                    push @$new_path, $new;
                }
                $path_end->[0]{$token_key} = $new_path;
                $debug and print "#   +_insert_node result=@{[_dump($path_end)]}\n";
                splice( @$path, $offset, @$path_end, @$path_end );
            }
        }
        elsif( not _node_eq( $path_end->[0], $token )) {
            if( @$path_end > 1 ) {
                my $path_key = _re_path($self, [$path_end->[0]]);
                my $new = {
                    $path_key  => [ @$path_end ],
                    $token_key => [ $token, @_ ],
                };
                $debug and print "#   path->node1 at $path_key/$token_key @{[_dump($new)]}\n";
                splice( @$path, $offset, @$path_end, $new );
            }
            else {
                $debug and print "#   next in path is node, trivial insert at $token_key\n";
                $path_end->[0]{$token_key} = [$token, @_];
                splice( @$path, $offset, @$path_end, @$path_end );
            }
        }
        else {
            while( @$path_end and _node_eq( $path_end->[0], $token )) {
                $debug and print "#  identical nodes @{[_dump([$token])]}\n";
                shift @$path_end;
                $token = shift @_;
                ++$offset;
            }
            if( @$path_end ) {
                $debug and print "#   insert at $offset $token:@{[_dump(\@_)]} into @{[_dump($path_end)]}\n";
                $path_end = $self->_insert_path( $path_end, $debug, [$token, @_] );
                $debug and print "#   got off=$offset s=@{[scalar @_]} path_add=@{[_dump($path_end)]}\n";
                splice( @$path, $offset, @$path - $offset, @$path_end );
                $debug and print "#   got final=@{[_dump($path)]}\n";
            }
            else {
                $token_key = _node_key($token);
                my $new = {
                    ''         => undef,
                    $token_key => [ $token, @_ ],
                };
                $debug and print "#   convert opt @{[_dump($new)]}\n";
                push @$path, $new;
            }
        }
    }
    else {
        if( @$path_end ) {
            my $new = {
                $path_end->[0] => [ @$path_end ],
                $token_key     => [ $token, @_ ],
            };
            $debug and print "#   atom->node @{[_dump($new)]}\n";
            splice( @$path, $offset, @$path_end, $new );
            $debug and print "#   out=@{[_dump($path)]}\n";
        }
        else {
            $debug and print "#   add opt @{[_dump([$token,@_])]} via $token_key\n";
            push @$path, {
                ''         => undef,
                $token_key => [ $token, @_ ],
            };
        }
    }
    $path;
}

sub _reduce {
    my $self    = shift;
    my $context = { debug => $self->_debug(DEBUG_TAIL), depth => 0 };

    if ($self->_debug(DEBUG_TIME)) {
        $self->_init_time_func;
        my $now = $self->{_time_func}->();
        if (exists $self->{_begin_time}) {
            printf "# load=%0.6f\n", $now - $self->{_begin_time};
        }
        else {
            printf "# load-epoch=%0.6f\n", $now;
        }
        $self->{_begin_time} = $self->{_time_func}->();
    }

    my ($head, $tail) = _reduce_path( $self->_path, $context );
    $context->{debug} and print "# final head=", _dump($head), ' tail=', _dump($tail), "\n";
    if( !@$head ) {
        $self->{path} = $tail;
    }
    else {
        $self->{path} = [
            @{_unrev_path( $tail, $context )},
            @{_unrev_path( $head, $context )},
        ];
    }

    if ($self->_debug(DEBUG_TIME)) {
        my $now = $self->{_time_func}->();
        if (exists $self->{_begin_time}) {
            printf "# reduce=%0.6f\n", $now - $self->{_begin_time};
        }
        else {
            printf "# reduce-epoch=%0.6f\n", $now;
        }
        $self->{_begin_time} = $self->{_time_func}->();
    }

    $context->{debug} and print "# final path=", _dump($self->{path}), "\n";
    return $self;
}

sub _remove_optional {
    if( exists $_[0]->{''} ) {
        delete $_[0]->{''};
        return 1;
    }
    return 0;
}

sub _reduce_path {
    my ($path, $ctx) = @_;
    my $indent = ' ' x $ctx->{depth};
    my $debug  =       $ctx->{debug};
    $debug and print "#$indent _reduce_path $ctx->{depth} ", _dump($path), "\n";
    my $new;
    my $head = [];
    my $tail = [];
    while( defined( my $p = pop @$path )) {
        if( ref($p) eq 'HASH' ) {
            my ($node_head, $node_tail) = _reduce_node($p, _descend($ctx) );
            $debug and print "#$indent| head=", _dump($node_head), " tail=", _dump($node_tail), "\n";
            push @$head, @$node_head if scalar @$node_head;
            push @$tail, ref($node_tail) eq 'HASH' ? $node_tail : @$node_tail;
        }
        else {
            if( @$head ) {
                $debug and print "#$indent| push $p leaves @{[_dump($path)]}\n";
                push @$tail, $p;
            }
            else {
                $debug and print "#$indent| unshift $p\n";
                unshift @$tail, $p;
            }
        }
    }
    $debug and print "#$indent| tail nr=@{[scalar @$tail]} t0=", ref($tail->[0]),
        (ref($tail->[0]) eq 'HASH' ? " n=" . scalar(keys %{$tail->[0]}) : '' ),
        "\n";
    if( @$tail > 1
        and ref($tail->[0]) eq 'HASH'
        and keys %{$tail->[0]} == 2
    ) {
        my $opt;
        my $fixed;
        while( my ($key, $path) = each %{$tail->[0]} ) {
            $debug and print "#$indent| scan k=$key p=@{[_dump($path)]}\n";
            next unless $path;
            if (@$path == 1 and ref($path->[0]) eq 'HASH') {
                $opt = $path->[0];
            }
            else {
                $fixed = $path;
            }
        }
        if( exists $tail->[0]{''} ) {
            my $path = [@{$tail}[1..$#{$tail}]];
            $tail = $tail->[0];
            ($head, $tail, $path) = _slide_tail( $head, $tail, $path, _descend($ctx) );
            $tail = [$tail, @$path];
        }
    }
    $debug and print "#$indent _reduce_path $ctx->{depth} out head=", _dump($head), ' tail=', _dump($tail), "\n";
    return ($head, $tail);
}

sub _reduce_node {
    my ($node, $ctx) = @_;
    my $indent = ' ' x $ctx->{depth};
    my $debug  =       $ctx->{debug};
    my $optional = _remove_optional($node);
    $debug and print "#$indent _reduce_node $ctx->{depth} in @{[_dump($node)]} opt=$optional\n";
    if( $optional and scalar keys %$node == 1 ) {
        my $path = (values %$node)[0];
        if( not grep { ref($_) eq 'HASH' } @$path ) {
            # if we have removed an optional, and there is only one path
            # left then there is nothing left to compare. Because of the
            # optional it cannot participate in any further reductions.
            # (unless we test for equality among sub-trees).
            my $result = {
                ''         => undef,
                $path->[0] => $path
            };
            $debug and print "#$indent| fast fail @{[_dump($result)]}\n";
            return [], $result;
        }
    }

    my( $fail, $reduce ) = _scan_node( $node, _descend($ctx) );

    $debug and print "#$indent|_scan_node done opt=$optional reduce=@{[_dump($reduce)]} fail=@{[_dump($fail)]}\n";

    # We now perform tail reduction on each of the nodes in the reduce
    # hash. If we have only one key, we know we will have a successful
    # reduction (since everything that was inserted into the node based
    # on the value of the last token of each path all mapped to the same
    # value).

    if( @$fail == 0 and keys %$reduce == 1 and not $optional) {
        # every path shares a common path
        my $path = (values %$reduce)[0];
        my ($common, $tail) = _do_reduce( $path, _descend($ctx) );
        $debug and print "#$indent|_reduce_node  $ctx->{depth} common=@{[_dump($common)]} tail=", _dump($tail), "\n";
        return( $common, $tail );
    }

    # this node resulted in a list of paths, game over
    $ctx->{indent} = $indent;
    return _reduce_fail( $reduce, $fail, $optional, _descend($ctx) );
}

sub _reduce_fail {
    my( $reduce, $fail, $optional, $ctx ) = @_;
    my( $debug, $depth, $indent ) = @{$ctx}{qw(debug depth indent)};
    my %result;
    $result{''} = undef if $optional;
    my $p;
    for $p (keys %$reduce) {
        my $path = $reduce->{$p};
        if( scalar @$path == 1 ) {
            $path = $path->[0];
            $debug and print "#$indent| -simple opt=$optional unrev @{[_dump($path)]}\n";
            $path = _unrev_path($path, _descend($ctx) );
            $result{_node_key($path->[0])} = $path;
        }
        else {
            $debug and print "#$indent| _do_reduce(@{[_dump($path)]})\n";
            my ($common, $tail) = _do_reduce( $path, _descend($ctx) );
            $path = [
                (
                    ref($tail) eq 'HASH'
                        ? _unrev_node($tail, _descend($ctx) )
                        : _unrev_path($tail, _descend($ctx) )
                ),
                @{_unrev_path($common, _descend($ctx) )}
            ];
            $debug and print "#$indent| +reduced @{[_dump($path)]}\n";
            $result{_node_key($path->[0])} = $path;
        }
    }
    my $f;
    for $f( @$fail ) {
        $debug and print "#$indent| +fail @{[_dump($f)]}\n";
        $result{$f->[0]} = $f;
    }
    $debug and print "#$indent _reduce_fail $depth fail=@{[_dump(\%result)]}\n";
    return ( [], \%result );
}

sub _scan_node {
    my( $node, $ctx ) = @_;
    my $indent = ' ' x $ctx->{depth};
    my $debug  =       $ctx->{debug};

    # For all the paths in the node, reverse them. If the first token
    # of the path is a scalar, push it onto an array in a hash keyed by
    # the value of the scalar.
    #
    # If it is a node, call _reduce_node on this node beforehand. If we
    # get back a common head, all of the paths in the subnode shared a
    # common tail. We then store the common part and the remaining node
    # of paths (which is where the paths diverged from the end and install
    # this into the same hash. At this point both the common and the tail
    # are in reverse order, just as simple scalar paths are.
    #
    # On the other hand, if there were no common path returned then all
    # the paths of the sub-node diverge at the end character. In this
    # case the tail cannot participate in any further reductions and will
    # appear in forward order.
    #
    # certainly the hurgliest function in the whole file :(

    # $debug = 1 if $depth >= 8;
    my @fail;
    my %reduce;

    my $n;
    for $n(
        map { substr($_, index($_, '#')+1) }
        sort
        map {
            join( '|' =>
                scalar(grep {ref($_) eq 'HASH'} @{$node->{$_}}),
                _node_offset($node->{$_}),
                scalar @{$node->{$_}},
            )
            . "#$_"
        }
    keys %$node ) {
        my( $end, @path ) = reverse @{$node->{$n}};
        if( ref($end) ne 'HASH' ) {
            $debug and print "# $indent|_scan_node push reduce ($end:@{[_dump(\@path)]})\n";
            push @{$reduce{$end}}, [ $end, @path ];
        }
        else {
            $debug and print "# $indent|_scan_node head=", _dump(\@path), ' tail=', _dump($end), "\n";
            my $new_path;
            # deal with sing, singing => s(?:ing)?ing
            if( keys %$end == 2 and exists $end->{''} ) {
                my ($key, $opt_path) = each %$end;
                ($key, $opt_path) = each %$end if $key eq '';
                $opt_path = [reverse @{$opt_path}];
                $debug and print "# $indent| check=", _dump($opt_path), "\n";
                my $end = { '' => undef, $opt_path->[0] => [@$opt_path] };
                my $head = [];
                my $path = [@path];
                ($head, my $slide, $path) = _slide_tail( $head, $end, $path, $ctx );
                if( @$head ) {
                    $new_path = [ @$head, $slide, @$path ];
                }
            }
            if( $new_path ) {
                $debug and print "# $indent|_scan_node slid=", _dump($new_path), "\n";
                push @{$reduce{$new_path->[0]}}, $new_path;
            }
            else {
                my( $common, $tail ) = _reduce_node( $end, _descend($ctx) );
                    if( not @$common ) {
                    $debug and print "# $indent| +failed $n\n";
                    push @fail, [reverse(@path), $tail];
                }
                else {
                    my $path = [@path];
                    $debug and print "# $indent|_scan_node ++recovered common=@{[_dump($common)]} tail=",
                        _dump($tail), " path=@{[_dump($path)]}\n";
                    if( ref($tail) eq 'HASH'
                        and keys %$tail == 2
                    ) {
                        if( exists $tail->{''} ) {
                            ($common, $tail, $path) = _slide_tail( $common, $tail, $path, $ctx );
                        }
                    }
                    push @{$reduce{$common->[0]}}, [
                        @$common, 
                        (ref($tail) eq 'HASH' ? $tail : @$tail ),
                        @$path
                    ];
                }
            }
        }
    }
    $debug and print
        "# $indent|_scan_node counts: reduce=@{[scalar keys %reduce]} fail=@{[scalar @fail]}\n";
    return( \@fail, \%reduce );
}

sub _do_reduce {
    my ($path, $ctx) = @_;
    my $indent = ' ' x $ctx->{depth};
    my $debug  =       $ctx->{debug};
    my $ra = Regexp::Assemble->new(chomp=>0);
    $ra->debug($debug);
    $debug and print "# $indent| do @{[_dump($path)]}\n";
    $ra->_insertr( $_ ) for
        # When nodes come into the picture, we have to be careful
        # about how we insert the paths into the assembly.
        # Paths with nodes first, then closest node to front
        # then shortest path. Merely because if we can control
        # order in which paths containing nodes get inserted,
        # then we can make a couple of assumptions that simplify
        # the code in _insert_node.
        sort {
            scalar(grep {ref($_) eq 'HASH'} @$a)
            <=> scalar(grep {ref($_) eq 'HASH'} @$b)
                ||
            _node_offset($b) <=> _node_offset($a)
                ||
            scalar @$a <=> scalar @$b
        }
        @$path
    ;
    $path = $ra->_path;
    my $common = [];
    push @$common, shift @$path while( ref($path->[0]) ne 'HASH' );
    my $tail = scalar( @$path ) > 1 ? [@$path] : $path->[0];
    $debug and print "# $indent| _do_reduce common=@{[_dump($common)]} tail=@{[_dump($tail)]}\n";
    return ($common, $tail);
}

sub _node_offset {
    # return the offset that the first node is found, or -ve
    # optimised for speed
    my $nr = @{$_[0]};
    my $atom = -1;
    ref($_[0]->[$atom]) eq 'HASH' and return $atom while ++$atom < $nr;
    return -1;
}

sub _slide_tail {
    my $head   = shift;
    my $tail   = shift;
    my $path   = shift;
    my $ctx    = shift;
    my $indent = ' ' x $ctx->{depth};
    my $debug  =       $ctx->{debug};
    $debug and print "# $indent| slide in h=", _dump($head),
        ' t=', _dump($tail), ' p=', _dump($path), "\n";
    my $slide_path = (each %$tail)[-1];
    $slide_path = (each %$tail)[-1] unless defined $slide_path;
    $debug and print "# $indent| slide potential ", _dump($slide_path), " over ", _dump($path), "\n";
    while( defined $path->[0] and $path->[0] eq $slide_path->[0] ) {
        $debug and print "# $indent| slide=tail=$slide_path->[0]\n";
        my $slide = shift @$path;
        shift @$slide_path;
        push @$slide_path, $slide;
        push @$head, $slide;
    }
    $debug and print "# $indent| slide path ", _dump($slide_path), "\n";
    my $slide_node = {
        '' => undef,
        _node_key($slide_path->[0]) => $slide_path,
    };
    $debug and print "# $indent| slide out h=", _dump($head),
        ' s=', _dump($slide_node), ' p=', _dump($path), "\n";
    return ($head, $slide_node, $path);
}

sub _unrev_path {
    my ($path, $ctx) = @_;
    my $indent = ' ' x $ctx->{depth};
    my $debug  =       $ctx->{debug};
    my $new;
    if( not grep { ref($_) } @$path ) {
        $debug and print "# ${indent}_unrev path fast ", _dump($path);
        $new = [reverse @$path];
        $debug and print "#  -> ", _dump($new), "\n";
        return $new;
    }
    $debug and print "# ${indent}unrev path in ", _dump($path), "\n";
    while( defined( my $p = pop @$path )) {
        push @$new,
              ref($p) eq 'HASH'  ? _unrev_node($p, _descend($ctx) )
            : ref($p) eq 'ARRAY' ? _unrev_path($p, _descend($ctx) )
            : $p
        ;
    }
    $debug and print "# ${indent}unrev path out ", _dump($new), "\n";
    return $new;
}

sub _unrev_node {
    my ($node, $ctx ) = @_;
    my $indent = ' ' x $ctx->{depth};
    my $debug  =       $ctx->{debug};
    my $optional = _remove_optional($node);
    $debug and print "# ${indent}unrev node in ", _dump($node), " opt=$optional\n";
    my $new;
    $new->{''} = undef if $optional;
    my $n;
    for $n( keys %$node ) {
        my $path = _unrev_path($node->{$n}, _descend($ctx) );
        $new->{_node_key($path->[0])} = $path;
    }
    $debug and print "# ${indent}unrev node out ", _dump($new), "\n";
    return $new;
}

sub _node_key {
    my $node = shift;
    return _node_key($node->[0]) if ref($node) eq 'ARRAY';
    return $node unless ref($node) eq 'HASH';
    my $key = '';
    my $k;
    for $k( keys %$node ) {
        next if $k eq '';
        $key = $k if $key eq '' or $key gt $k;
    }
    return $key;
}

sub _descend {
    # Take a context object, and increase the depth by one.
    # By creating a fresh hash each time, we don't have to
    # bother adding make-work code to decrease the depth
    # when we return from what we called.
    my $ctx = shift;
    return {%$ctx, depth => $ctx->{depth}+1};
}

#####################################################################

sub _make_class {
    my $self = shift;
    my %set = map { ($_,1) } @_;
    delete $set{'\\d'} if exists $set{'\\w'};
    delete $set{'\\D'} if exists $set{'\\W'};
    return '.' if exists $set{'.'}
        or ($self->{fold_meta_pairs} and (
               (exists $set{'\\d'} and exists $set{'\\D'})
            or (exists $set{'\\s'} and exists $set{'\\S'})
            or (exists $set{'\\w'} and exists $set{'\\W'})
        ))
    ;
    for my $meta( q/\\d/, q/\\D/, q/\\s/, q/\\S/, q/\\w/, q/\\W/ ) {
        if( exists $set{$meta} ) {
            my $re = qr/$meta/;
            my @delete;
            $_ =~ /^$re$/ and push @delete, $_ for keys %set;
            delete @set{@delete} if @delete;
        }
    }
    return (keys %set)[0] if keys %set == 1;
    for my $meta( '.', '+', '*', '?', '(', ')', '^', '@', '$', '[', '/', ) {
        exists $set{"\\$meta"} and $set{$meta} = delete $set{"\\$meta"};
    }
    my $dash  = exists $set{'-'} ? do { delete($set{'-'}), '-' } : '';
    my $caret = exists $set{'^'} ? do { delete($set{'^'}), '^' } : '';
    my $class = join( '' => sort keys %set );
    $class =~ s/0123456789/\\d/ and $class eq '\\d' and return $class;
    return "[$dash$class$caret]";
}

sub _re_sort {
    return length $b <=> length $a || $a cmp $b
}

sub _combine {
    my $self = shift;
    my $type = shift;
    # print "c in = @{[_dump(\@_)]}\n";
    # my $combine = 
    return '('
    . $type
    . do {
        my( @short, @long );
        push @{ /^$Single_Char$/ ? \@short : \@long}, $_ for @_;
        if( @short == 1 ) {
            @long = sort _re_sort @long, @short;
        }
        elsif( @short > 1 ) {
            # yucky but true
            my @combine = (_make_class($self, @short), sort _re_sort @long);
            @long = @combine;
        }
        else {
            @long = sort _re_sort @long;
        }
        join( '|', @long );
    }
    . ')';
    # print "combine <$combine>\n";
    # $combine;
}

sub _combine_new {
    my $self = shift;
    my( @short, @long );
    push @{ /^$Single_Char$/ ? \@short : \@long}, $_ for @_;
    if( @short == 1 and @long == 0 ) {
        return $short[0];
    }
    elsif( @short > 1 and @short == @_ ) {
        return _make_class($self, @short);
    }
    else {
        return '(?:'
            . join( '|' =>
                @short > 1
                    ? ( _make_class($self, @short), sort _re_sort @long)
                    : ( (sort _re_sort( @long )), @short )
            )
        . ')';
    }
}

sub _re_path {
    my $self = shift;
    # in shorter assemblies, _re_path() is the second hottest
    # routine. after insert(), so make it fast.

    if ($self->{unroll_plus}) {
        # but we can't easily make this blockless
        my @arr = @{$_[0]};
        my $str = '';
        my $skip = 0;
        for my $i (0..$#arr) {
            if (ref($arr[$i]) eq 'ARRAY') {
                $str .= _re_path($self, $arr[$i]);
            }
            elsif (ref($arr[$i]) eq 'HASH') {
                $str .= exists $arr[$i]->{''}
                    ? _combine_new( $self,
                        map { _re_path( $self, $arr[$i]->{$_} ) } grep { $_ ne '' } keys %{$arr[$i]}
                    ) . '?'
                    : _combine_new($self, map { _re_path( $self, $arr[$i]->{$_} ) } keys %{$arr[$i]})
                ;
            }
            elsif ($i < $#arr and $arr[$i+1] =~ /\A$arr[$i]\*(\??)\Z/) {
                $str .= "$arr[$i]+" . (defined $1 ? $1 : '');
                ++$skip;
            }
            elsif ($skip) {
                $skip = 0;
            }
            else {
                $str .= $arr[$i];
            }
        }
        return $str;
    }

    return join( '', @_ ) unless grep { length ref $_ } @_;
    my $p;
    return join '', map {
        ref($_) eq '' ? $_
        : ref($_) eq 'HASH' ? do {
            # In the case of a node, see whether there's a '' which
            # indicates that the whole thing is optional and thus
            # requires a trailing ?
            # Unroll the two different paths to avoid the needless
            # grep when it isn't necessary.
            $p = $_;
            exists $_->{''}
            ?  _combine_new( $self,
                map { _re_path( $self, $p->{$_} ) } grep { $_ ne '' } keys %$_
            ) . '?'
            : _combine_new($self, map { _re_path( $self, $p->{$_} ) } keys %$_ )
        }
        : _re_path($self, $_) # ref($_) eq 'ARRAY'
    } @{$_[0]}
}

sub _lookahead {
    my $in = shift;
    my %head;
    my $path;
    for $path( keys %$in ) {
        next unless defined $in->{$path};
        # print "look $path: ", ref($in->{$path}[0]), ".\n";
        if( ref($in->{$path}[0]) eq 'HASH' ) {
            my $next = 0;
            while( ref($in->{$path}[$next]) eq 'HASH' and @{$in->{$path}} > $next + 1 ) {
                if( exists $in->{$path}[$next]{''} ) {
                    ++$head{$in->{$path}[$next+1]};
                }
                ++$next;
            }
            my $inner = _lookahead( $in->{$path}[0] );
            @head{ keys %$inner } = (values %$inner);
        }
        elsif( ref($in->{$path}[0]) eq 'ARRAY' ) {
            my $subpath = $in->{$path}[0]; 
            for( my $sp = 0; $sp < @$subpath; ++$sp ) {
                if( ref($subpath->[$sp]) eq 'HASH' ) {
                    my $follow = _lookahead( $subpath->[$sp] );
                    @head{ keys %$follow } = (values %$follow);
                    last unless exists $subpath->[$sp]{''};
                }
                else {
                    ++$head{$subpath->[$sp]};
                    last;
                }
            }
        }
        else {
            ++$head{ $in->{$path}[0] };
        }
    }
    # print "_lookahead ", _dump($in), '==>', _dump([keys %head]), "\n";
    return \%head;
}

sub _re_path_lookahead {
    my $self = shift;
    my $in  = shift;
    # print "_re_path_la in ", _dump($in), "\n";
    my $out = '';
    for( my $p = 0; $p < @$in; ++$p ) {
        if( ref($in->[$p]) eq '' ) {
            $out .= $in->[$p];
            next;
        }
        elsif( ref($in->[$p]) eq 'ARRAY' ) {
            $out .= _re_path_lookahead($self, $in->[$p]);
            next;
        }
        # print "$p ", _dump($in->[$p]), "\n";
        my $path = [
            map { _re_path_lookahead($self, $in->[$p]{$_} ) }
            grep { $_ ne '' }
            keys %{$in->[$p]}
        ];
        my $ahead = _lookahead($in->[$p]);
        my $more = 0;
        if( exists $in->[$p]{''} and $p + 1 < @$in ) {
            my $next = 1;
            while( $p + $next < @$in ) {
                if( ref( $in->[$p+$next] ) eq 'HASH' ) {
                    my $follow = _lookahead( $in->[$p+$next] );
                    @{$ahead}{ keys %$follow } = (values %$follow);
                }
                else {
                    ++$ahead->{$in->[$p+$next]};
                    last;
                }
                ++$next;
            }
            $more = 1;
        }
        my $nr_one = grep { /^$Single_Char$/ } @$path;
        my $nr     = @$path;
        if( $nr_one > 1 and $nr_one == $nr ) {
            $out .= _make_class($self, @$path);
            $out .= '?' if exists $in->[$p]{''};
        }
        else {
            my $zwla = keys(%$ahead) > 1
                ?  _combine($self, '?=', grep { s/\+$//; $_ } keys %$ahead )
                : '';
            my $patt = $nr > 1 ? _combine($self, '?:', @$path ) : $path->[0];
            # print "have nr=$nr n1=$nr_one n=", _dump($in->[$p]), ' a=', _dump([keys %$ahead]), " zwla=$zwla patt=$patt @{[_dump($path)]}\n";
            if( exists $in->[$p]{''} ) {
                $out .=  $more ? "$zwla(?:$patt)?" : "(?:$zwla$patt)?";
            }
            else {
                $out .= "$zwla$patt";
            }
        }
    }
    return $out;
}

sub _re_path_track {
    my $self      = shift;
    my $in        = shift;
    my $normal    = shift;
    my $augmented = shift;
    my $o;
    my $simple  = '';
    my $augment = '';
    for( my $n = 0; $n < @$in; ++$n ) {
        if( ref($in->[$n]) eq '' ) {
            $o = $in->[$n];
            $simple  .= $o;
            $augment .= $o;
            if( (
                    $n < @$in - 1
                    and ref($in->[$n+1]) eq 'HASH' and exists $in->[$n+1]{''}
                )
                or $n == @$in - 1
            ) {
                push @{$self->{mlist}}, $normal . $simple ;
                $augment .= $] < 5.009005
                    ? "(?{\$self->{m}=$self->{mcount}})"
                    : "(?{$self->{mcount}})"
                ;
                ++$self->{mcount};
            }
        }
        else {
            my $path = [
                map { $self->_re_path_track( $in->[$n]{$_}, $normal.$simple , $augmented.$augment ) }
                grep { $_ ne '' }
                keys %{$in->[$n]}
            ];
            $o = '(?:' . join( '|' => sort _re_sort @$path ) . ')';
            $o .= '?' if exists $in->[$n]{''};
            $simple  .= $o;
            $augment .= $o;
        }
    }
    return $augment;
}

sub _re_path_pretty {
    my $self = shift;
    my $in  = shift;
    my $arg = shift;
    my $pre    = ' ' x (($arg->{depth}+0) * $arg->{indent});
    my $indent = ' ' x (($arg->{depth}+1) * $arg->{indent});
    my $out = '';
    $arg->{depth}++;
    my $prev_was_paren = 0;
    for( my $p = 0; $p < @$in; ++$p ) {
        if( ref($in->[$p]) eq '' ) {
            $out .= "\n$pre" if $prev_was_paren;
            $out .= $in->[$p];
            $prev_was_paren = 0;
        }
        elsif( ref($in->[$p]) eq 'ARRAY' ) {
            $out .= _re_path($self, $in->[$p]);
        }
        else {
            my $path = [
                map { _re_path_pretty($self, $in->[$p]{$_}, $arg ) }
                grep { $_ ne '' }
                keys %{$in->[$p]}
            ];
            my $nr = @$path;
            my( @short, @long );
            push @{/^$Single_Char$/ ? \@short : \@long}, $_ for @$path;
            if( @short == $nr ) {
                $out .=  $nr == 1 ? $path->[0] : _make_class($self, @short);
                $out .= '?' if exists $in->[$p]{''};
            }
            else {
                $out .= "\n" if length $out;
                $out .= $pre if $p;
                $out .= "(?:\n$indent";
                if( @short < 2 ) {
                    my $r = 0;
                    $out .= join( "\n$indent|" => map {
                            $r++ and $_ =~ s/^\(\?:/\n$indent(?:/;
                            $_
                        }
                        sort _re_sort @$path
                    );
                }
                else {
                    $out .= join( "\n$indent|" => ( (sort _re_sort @long), _make_class($self, @short) ));
                }
                $out .= "\n$pre)";
                if( exists $in->[$p]{''} ) {
                    $out .= "\n$pre?";
                    $prev_was_paren = 0;
                }
                else {
                    $prev_was_paren = 1;
                }
            }
        }
    }
    $arg->{depth}--;
    return $out;
}

sub _node_eq {
    return 0 if not defined $_[0] or not defined $_[1];
    return 0 if ref $_[0] ne ref $_[1];
    # Now that we have determined that the reference of each
    # argument are the same, we only have to test the first
    # one, which gives us a nice micro-optimisation.
    if( ref($_[0]) eq 'HASH' ) {
        keys %{$_[0]} == keys %{$_[1]}
            and
        # does this short-circuit to avoid _re_path() cost more than it saves?
        join( '|' => sort keys %{$_[0]}) eq join( '|' => sort keys %{$_[1]})
            and
        _re_path(undef, [$_[0]] ) eq _re_path(undef, [$_[1]] );
    }
    elsif( ref($_[0]) eq 'ARRAY' ) {
        scalar @{$_[0]} == scalar @{$_[1]}
            and
        _re_path(undef, $_[0]) eq _re_path(undef, $_[1]);
    }
    else {
        $_[0] eq $_[1];
    }
}

sub _pretty_dump {
    return sprintf "\\x%02x", ord(shift);
}

sub _dump {
    my $path = shift;
    return _dump_node($path) if ref($path) eq 'HASH';
    my $dump = '[';
    my $d;
    my $nr = 0;
    for $d( @$path ) {
        $dump .= ' ' if $nr++;
        if( ref($d) eq 'HASH' ) {
            $dump .= _dump_node($d);
        }
        elsif( ref($d) eq 'ARRAY' ) {
            $dump .= _dump($d);
        }
        elsif( defined $d ) {
            # D::C indicates the second test is redundant
            # $dump .= ( $d =~ /\s/ or not length $d )
            $dump .= (
                $d =~ /\s/            ? qq{'$d'}         :
                $d =~ /^[\x00-\x1f]$/ ? _pretty_dump($d) :
                $d
            );
        }
        else {
            $dump .= '*';
        }
    }
    return $dump . ']';
}

sub _dump_node {
    my $node = shift;
    my $dump = '{';
    my $nr   = 0;
    my $n;
    for $n (sort keys %$node) {
        $dump .= ' ' if $nr++;
        # Devel::Cover shows this to test to be redundant
        # $dump .= ( $n eq '' and not defined $node->{$n} )
        $dump .= $n eq ''
            ? '*'
            : ($n =~ /^[\x00-\x1f]$/ ? _pretty_dump($n) : $n)
                . "=>" . _dump($node->{$n})
        ;
    }
    return $dump . '}';
}

=back

=head1 DIAGNOSTICS

  "Cannot pass a C<refname> to Default_Lexer"

You tried to replace the default lexer pattern with an object
instead of a scalar. Solution: You probably tried to call
C<< $obj->Default_Lexer >>. Call the qualified class method instead
C<Regexp::Assemble::Default_Lexer>.

  "filter method not passed a coderef"

  "pre_filter method not passed a coderef"

A reference to a subroutine (anonymous or otherwise) was expected.
Solution: read the documentation for the C<filter> method.

  "duplicate pattern added: /.../"

The C<dup_warn> attribute is active, and a duplicate pattern was
added (well duh!). Solution: clean your data.

  "cannot open [file] for input: [reason]"

The C<add_file> method was unable to open the specified file for
whatever reason. Solution: make sure the file exists and the script
has the required privileges to read it.

=head1 NOTES

This module has been tested successfully with a range of versions
of perl, from 5.005_03 to 5.9.3. Use of 5.6.0 is not recommended.

The expressions produced by this module can be used with the PCRE
library.

Remember to "double up" your backslashes if the patterns are
hard-coded as constants in your program. That is, you should
literally C<add('a\\d+b')> rather than C<add('a\d+b')>. It
usually will work either way, but it's good practice to do so.

Where possible, supply the simplest tokens possible. Don't add
C<X(?-\d+){2})Y> when C<X-\d+-\d+Y> will do. The reason is that
if you also add C<X\d+Z> the resulting assembly changes
dramatically: C<X(?:(?:-\d+){2}Y|-\d+Z)> I<versus>
C<X-\d+(?:-\d+Y|Z)>. Since R::A doesn't perform enough analysis,
it won't "unroll" the C<{2}> quantifier, and will fail to notice
the divergence after the first C<-d\d+>.

Furthermore, when the string 'X-123000P' is matched against the
first assembly, the regexp engine will have to backtrack over each
alternation (the one that ends in Y B<and> the one that ends in Z)
before determining that there is no match. No such backtracking
occurs in the second pattern: as soon as the engine encounters the
'P' in the target string, neither of the alternations at that point
(C<-\d+Y> or C<Z>) could succeed and so the match fails.

C<Regexp::Assemble> does, however, know how to build character
classes. Given C<a-b>, C<axb> and C<a\db>, it will assemble these
into C<a[-\dx]b>. When C<-> (dash) appears as a candidate for a
character class it will be the first character in the class. When
C<^> (circumflex) appears as a candidate for a character class it
will be the last character in the class.

It also knows about meta-characters than can "absorb" regular
characters. For instance, given C<X\d> and C<X5>, it knows that
C<5> can be represented by C<\d> and so the assembly is just C<X\d>.
The "absorbent" meta-characters it deals with are C<.>, C<\d>, C<\s>
and C<\W> and their complements. It will replace C<\d>/C<\D>,
C<\s>/C<\S> and C<\w>/C<\W> by C<.> (dot), and it will drop C<\d>
if C<\w> is also present (as will C<\D> in the presence of C<\W>).

C<Regexp::Assemble> deals correctly with C<quotemeta>'s propensity
to backslash many characters that have no need to be. Backslashes on
non-metacharacters will be removed. Similarly, in character classes,
a number of characters lose their magic and so no longer need to be
backslashed within a character class. Two common examples are C<.>
(dot) and C<$>. Such characters will lose their backslash.

At the same time, it will also process C<\Q...\E> sequences. When
such a sequence is encountered, the inner section is extracted and
C<quotemeta> is applied to the section. The resulting quoted text
is then used in place of the original unquoted text, and the C<\Q>
and C<\E> metacharacters are thrown away. Similar processing occurs
with the C<\U...\E> and C<\L...\E> sequences. This may have surprising
effects when using a dispatch table. In this case, you will need
to know exactly what the module makes of your input. Use the C<lexstr>
method to find out what's going on:

  $pattern = join( '', @{$re->lexstr($pattern)} );

If all the digits 0..9 appear in a character class, C<Regexp::Assemble>
will replace them by C<\d>. I'd do it for letters as well, but
thinking about accented characters and other glyphs hurts my head.

In an alternation, the longest paths are chosen first (for example,
C<horse|bird|dog>). When two paths have the same length, the path
with the most subpaths will appear first. This aims to put the
"busiest" paths to the front of the alternation. For example, the
list C<bad>, C<bit>, C<few>, C<fig> and C<fun> will produce the
pattern C<(?:f(?:ew|ig|un)|b(?:ad|it))>. See F<eg/tld> for a
real-world example of how alternations are sorted. Once you have
looked at that, everything should be crystal clear.

When tracking is in use, no reduction is performed. nor are 
character classes formed. The reason is that it is
too difficult to determine the original pattern afterwards. Consider the
two patterns C<pale> and C<palm>. These should be reduced to
C<pal[em]>. The final character matches one of two possibilities.
To resolve whether it matched an C<'e'> or C<'m'> would require
keeping track of the fact that the pattern finished up in a character
class, which would the require a whole lot more work to figure out
which character of the class matched. Without character classes
it becomes much easier. Instead, C<pal(?:e|m)> is produced, which
lets us find out more simply where we ended up.

Similarly, C<dogfood> and C<seafood> should form C<(?:dog|sea)food>.
When the pattern is being assembled, the tracking decision needs
to be made at the end of the grouping, but the tail of the pattern
has not yet been visited. Deferring things to make this work correctly
is a vast hassle. In this case, the pattern becomes merely
C<(?:dogfood|seafood>. Tracked patterns will therefore be bulkier than
simple patterns.

There is an open bug on this issue:

L<http://rt.perl.org/rt3/Ticket/Display.html?id=32840>

If this bug is ever resolved, tracking would become much easier to
deal with (none of the C<match> hassle would be required - you could
just match like a regular RE and it would Just Work).

=head1 SEE ALSO

=over 8

=item L<perlre>

General information about Perl's regular expressions.

=item L<re>

Specific information about C<use re 'eval'>.

=item Regex::PreSuf

C<Regex::PreSuf> takes a string and chops it itself into tokens of
length 1. Since it can't deal with tokens of more than one character,
it can't deal with meta-characters and thus no regular expressions.
Which is the main reason why I wrote this module.

=item Regexp::Optimizer

C<Regexp::Optimizer> produces regular expressions that are similar to
those produced by R::A with reductions switched off. It's biggest
drawback is that it is exponentially slower than Regexp::Assemble on
very large sets of patterns.

=item Regexp::Parser

Fine grained analysis of regular expressions.

=item Regexp::Trie

Funnily enough, this was my working name for C<Regexp::Assemble>
during its development. I changed the name because I thought it
was too obscure. Anyway, C<Regexp::Trie> does much the same as
C<Regexp::Optimizer> and C<Regexp::Assemble> except that it runs
much faster (according to the author). It does not recognise
meta characters (that is, 'a+b' is interpreted as 'a\+b').

=item Text::Trie

C<Text::Trie> is well worth investigating. Tries can outperform very
bushy (read: many alternations) patterns.

=item Tree::Trie

C<Tree::Trie> is another module that builds tries. The algorithm that
C<Regexp::Assemble> uses appears to be quite similar to the
algorithm described therein, except that C<R::A> solves its
end-marker problem without having to rewrite the leaves.

=back

=head1 LIMITATIONS

C<Regexp::Assemble> does not attempt to find common substrings. For
instance, it will not collapse C</cabababc/> down to C</c(?:ab){3}c/>.
If there's a module out there that performs this sort of string
analysis I'd like to know about it. But keep in mind that the
algorithms that do this are very expensive: quadratic or worse.

C<Regexp::Assemble> does not interpret meta-character modifiers.
For instance, if the following two patterns are
given: C<X\d> and C<X\d+>, it will not determine that C<\d> can be
matched by C<\d+>. Instead, it will produce C<X(?:\d|\d+)>. Along
a similar line of reasoning, it will not determine that C<Z> and
C<Z\d+> is equivalent to C<Z\d*> (It will produce C<Z(?:\d+)?>
instead).

You cannot remove a pattern that has been added to an object. You'll
just have to start over again. Adding a pattern is difficult enough,
I'd need a solid argument to convince me to add a C<remove> method.
If you need to do this you should read the documentation for the
C<clone> method.

C<Regexp::Assemble> does not (yet)? employ the C<(?E<gt>...)>
construct.

The module does not produce POSIX-style regular expressions. This
would be quite easy to add, if there was a demand for it.

=head1 BUGS

Patterns that generate look-ahead assertions sometimes produce
incorrect patterns in certain obscure corner cases. If you
suspect that this is occurring in your pattern, disable
lookaheads.

Tracking doesn't really work at all with 5.6.0. It works better
in subsequent 5.6 releases. For maximum reliability, the use of
a 5.8 release is strongly recommended. Tracking barely works with
5.005_04. Of note, using C<\d>-style meta-characters invariably
causes panics. Tracking really comes into its own in Perl 5.10.

If you feed C<Regexp::Assemble> patterns with nested parentheses,
there is a chance that the resulting pattern will be uncompilable
due to mismatched parentheses (not enough closing parentheses). This
is normal, so long as the default lexer pattern is used. If you want
to find out which pattern among a list of 3000 patterns are to blame
(speaking from experience here), the F<eg/debugging> script offers
a strategy for pinpointing the pattern at fault. While you may not
be able to use the script directly, the general approach is easy to
implement.

The algorithm used to assemble the regular expressions makes extensive
use of mutually-recursive functions (that is, A calls B, B calls
A, ...) For deeply similar expressions, it may be possible to provoke
"Deep recursion" warnings.

The module has been tested extensively, and has an extensive test
suite (that achieves close to 100% statement coverage), but you
never know...  A bug may manifest itself in two ways: creating a
pattern that cannot be compiled, such as C<a\(bc)>, or a pattern
that compiles correctly but that either matches things it shouldn't,
or doesn't match things it should. It is assumed that Such problems
will occur when the reduction algorithm encounters some sort of
edge case. A temporary work-around is to disable reductions:

  my $pattern = $assembler->reduce(0)->re;

A discussion about implementation details and where bugs might lurk
appears in the README file. If this file is not available locally,
you should be able to find a copy on the Web at your nearest CPAN
mirror.

Seriously, though, a number of people have been using this module to
create expressions anywhere from 140Kb to 600Kb in size, and it seems to
be working according to spec. Thus, I don't think there are any serious
bugs remaining.

If you are feeling brave, extensive debugging traces are available to
figure out where assembly goes wrong.

Please report all bugs at
L<http://rt.cpan.org/NoAuth/Bugs.html?Dist=Regexp-Assemble>

Make sure you include the output from the following two commands:

  perl -MRegexp::Assemble -le 'print $Regexp::Assemble::VERSION'
  perl -V

There is a mailing list for the discussion of C<Regexp::Assemble>.
Subscription details are available at
L<http://listes.mongueurs.net/mailman/listinfo/regexp-assemble>.

=head1 ACKNOWLEDGEMENTS

This module grew out of work I did building access maps for Postfix,
a modern SMTP mail transfer agent. See L<http://www.postfix.org/>
for more information. I used Perl to build large regular expressions
for blocking dynamic/residential IP addresses to cut down on spam
and viruses. Once I had the code running for this, it was easy to
start adding stuff to block really blatant spam subject lines, bogus
HELO strings, spammer mailer-ids and more...

I presented the work at the French Perl Workshop in 2004, and the
thing most people asked was whether the underlying mechanism for
assembling the REs was available as a module. At that time it was
nothing more that a twisty maze of scripts, all different. The
interest shown indicated that a module was called for. I'd like to
thank the people who showed interest. Hey, it's going to make I<my>
messy scripts smaller, in any case.

Thomas Drugeon was a valuable sounding board for trying out
early ideas. Jean Forget and Philippe Blayo looked over an early
version. H.Merijn Brandt stopped over in Paris one evening, and
discussed things over a few beers.

Nicholas Clark pointed out that while what this module does
(?:c|sh)ould be done in perl's core, as per the 2004 TODO, he
encouraged me to continue with the development of this module. In
any event, this module allows one to gauge the difficulty of
undertaking the endeavour in C. I'd rather gouge my eyes out with
a blunt pencil.

Paul Johnson settled the question as to whether this module should
live in the Regex:: namespace, or Regexp:: namespace. If you're
not convinced, try running the following one-liner:

  perl -le 'print ref qr//'

Philippe Bruhat found a couple of corner cases where this module
could produce incorrect results. Such feedback is invaluable,
and only improves the module's quality.

=head1 AUTHOR

David Landgren

Copyright (C) 2004-2011. All rights reserved.

  http://www.landgren.net/perl/

If you use this module, I'd love to hear about what you're using
it for. If you want to be informed of updates, send me a note.

You can look at the latest working copy in the following
Subversion repository:

  http://svnweb.mongueurs.net/Regexp-Assemble

=head1 LICENSE

This library is free software; you can redistribute it and/or modify
it under the same terms as Perl itself.

=cut

'The Lusty Decadent Delights of Imperial Pompeii';
__END__