/usr/share/perl5/Quantum/Superpositions.pm is in libquantum-superpositions-perl 2.02-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 | package Quantum::Superpositions;
########################################################################
# housekeeping
########################################################################
use strict;
use Carp;
use Class::Multimethods;
our $VERSION = '2.02';
sub import
{
{
my $caller = caller;
no strict 'refs';
*{ $caller . '::' . $_ } = __PACKAGE__->can( $_ )
for qw( all any eigenstates );
}
my ($class, %quantized) = @_;
quantize_unary($_,'quop') for @{$quantized{UNARY}};
quantize_unary($_,'qulop') for @{$quantized{UNARY_LOGICAL}};
quantize_binary($_,'qbop') for @{$quantized{BINARY}};
quantize_binary($_,'qblop') for @{$quantized{BINARY_LOGICAL}};
1
}
########################################################################
# utility subroutines and package variables
#
# these are small enough to get lost in the shuffle. easier to put them
# up here than loose 'em...
########################################################################
# used to print intermediate results if $debug is true.
my $debug = 0;
sub debug
{
print +(caller(1))[3], "(";
print +overload::StrVal($_), "," for @_;
print ")\n";
}
# cleans up overloaded calls.
sub swap { $_[2] ? @_[1,0] : @_[0,1] }
# eigencache tracks objects results. destructor has to clean
# out the cache. due to overloading this cannot simply use
# the $hash{$referent} trick.
my %eigencache;
sub DESTROY { delete $eigencache{overload::StrVal($_[0])}; }
# replaces the cartesian product with an iterator. normal use is
# something like:
#
# my ( $n, $sub ) = iterator \@list1, \@list2
#
# my @result = map { somefunc @$sub->() } (1..$n );
#
# note the limit check on $j: this returns an empty list
# after the process has iterated once. this allows for
# while( @pair = $iter->() ){ ... } and gracefully handles
# (0..$count) also.
sub iterator
{
my ( $a, $b ) = ( shift, shift );
my ( $i, $j ) = ( -1, -1 );
# caller gets back ( iterator count, closure ).
# the $j test also allows for while or for(;;)
# loops testing the return.
(
@$a * @$b,
sub
{
$i = ++$i % @$a;
++$j unless $i;
$j < @$b ? [ $a->[$i], $b->[$j] ] : ()
}
)
}
########################################################################
# what users call. the rest of this stuff is generally called
# indirectly via multimethods on the contents of the objects.
sub any { bless [@_], 'Quantum::Superpositions::Disj' }
sub all { bless [@_], 'Quantum::Superpositions::Conj' }
sub all_true { bless [@_], 'Quantum::Superpositions::Conj::True' }
########################################################################
# what the hell do these really do?
sub quantize_unary
{
my ($fullsubname, $type) = @_;
my ($package,$subname) = m/(.+)::(.+)$/;
my $caller = caller;
my $original = "CORE::$subname";
if( $package ne 'CORE' )
{
$original = "Quantum::Superpositions::Quantized::$fullsubname";
no strict;
*{$original} = \&$fullsubname;
}
else
{
$package = 'CORE::GLOBAL';
}
eval
qq{
package $package;
use subs '$subname';
use Class::Multimethods '$type';
local \$SIG{__WARN__} = sub{};
no strict 'refs';
*{"${package}::$subname"} =
sub
{
local \$^W;
return \$_[0]->$type(sub{$original(\$_[0])})
if UNIVERSAL::isa(\$_[0],'Quantum::Superpositions')
|| UNIVERSAL::isa(\$_[1],'Quantum::Superpositions');
no strict 'refs';
return $original(\$_[0]);
};
}
|| croak "Internal error: $@";
}
sub quantize_binary
{
my ($fullsubname, $type) = @_;
my ($package,$subname) = m/(.*)::(.*)/;
my $caller = caller;
my $original = "CORE::$subname";
if ($package ne 'CORE')
{
$original = "Quantum::Superpositions::Quantized::$fullsubname";
no strict;
*{$original} = \&$fullsubname;
}
else
{
$package = 'CORE::GLOBAL';
}
eval
qq{
package $package;
use subs '$subname';
use Class::Multimethods '$type';
local \$SIG{__WARN__} = sub{};
no strict 'refs';
*{"${package}::$subname"} =
sub
{
local \$^W;
return $type(\@_[0,1],sub{$original(\$_[0],\$_[1])})
if UNIVERSAL::isa(\$_[0],'Quantum::Superpositions')
|| UNIVERSAL::isa(\$_[1],'Quantum::Superpositions');
no strict 'refs';
return $original(\$_[0],\$_[1]);
};
} || croak "Internal error: $@";
}
########################################################################
# assign the multimethods operations for various types
multimethod qbop =>
( qw(
Quantum::Superpositions::Conj
Quantum::Superpositions::Conj
CODE
) ) =>
sub
{
my ( $count, $iter ) = iterator @_[0,1];
all map { qbop(@{$iter->()}, $_[2]) } (1..$count);
};
multimethod qbop =>
( qw(
Quantum::Superpositions::Disj
Quantum::Superpositions::Disj
CODE
) ) =>
sub
{
my ( $count, $iter ) = iterator( @_[0,1] );
any map { qbop(@{$iter->()}, $_[2]) } (1..$count);
};
multimethod qbop =>
( qw(
Quantum::Superpositions::Conj
Quantum::Superpositions::Disj
CODE
) ) =>
sub
{
all map { qbop($_, $_[1], $_[2]) } @{$_[0]};
};
multimethod qbop =>
( qw(
Quantum::Superpositions::Disj
Quantum::Superpositions::Conj
CODE
) ) =>
sub
{
any map { qbop($_, $_[1], $_[2]) } @{$_[0]}
};
multimethod qbop =>
( qw(
Quantum::Superpositions::Conj
*
CODE
) ) =>
sub
{
all map { qbop($_, $_[1], $_[2]) } @{$_[0]}
};
multimethod qbop =>
( qw(
Quantum::Superpositions::Disj
*
CODE
) ) =>
sub
{
any map { qbop($_, $_[1], $_[2]) } @{$_[0]}
};
multimethod qbop =>
( qw(
*
Quantum::Superpositions::Disj
CODE
) ) =>
sub
{
any map { qbop($_[0], $_, $_[2]) } @{$_[1]}
};
multimethod qbop =>
( qw(
*
Quantum::Superpositions::Conj
CODE
) ) =>
sub
{
all map { qbop($_[0], $_, $_[2]) } @{$_[1]}
};
multimethod qbop =>
( qw(
*
*
CODE
) ) =>
sub
{
$_[2]->(@_[0..1])
};
multimethod qblop =>
( qw(
Quantum::Superpositions::Conj
Quantum::Superpositions::Conj
CODE
) ) =>
sub
{
&debug if $debug;
return all() unless @{$_[0]} && @{$_[1]};
my ( $count, $iter ) = iterator @_[0,1];
istrue( qblop(@{$iter->()}, $_[2]) ) || return all() for (1..$count);
all_true @{$_[0]};
};
multimethod qblop =>
( qw(
Quantum::Superpositions::Conj
Quantum::Superpositions::Disj
CODE
) ) =>
sub
{
&debug if $debug;
return all() unless @{$_[0]} && @{$_[1]};
my @cstates = @{$_[0]};
my @matchstates;
my $okay = 0;
for my $cstate ( @cstates )
{
for my $dstate ( @{$_[1]} )
{
++$okay && last
if istrue(qblop($cstate, $dstate, $_[2]));
}
}
return all() unless $okay == @cstates;
return all_true @{$_[0]};
};
multimethod qblop =>
( qw(
Quantum::Superpositions::Disj
Quantum::Superpositions::Conj
CODE
) ) =>
sub
{
&debug if $debug;
return any() unless @{$_[0]} && @{$_[1]};
my @dstates = @{$_[0]};
my @cstates = @{$_[1]};
my @dokay = (0) x @dstates;
for my $cstate ( @cstates )
{
my $matched;
for my $d ( 0..$#dstates )
{
$matched = ++$dokay[$d]
if istrue(qblop($dstates[$d], $cstate, $_[2]));
}
return any() unless $matched;
}
return any @dstates[grep { $dokay[$_] == @cstates } (0..$#dstates)];
};
multimethod qblop =>
( qw(
Quantum::Superpositions::Conj
*
CODE
) ) =>
sub
{
&debug if $debug;
return all() unless @{$_[0]};
istrue(qblop($_, $_[1], $_[2])) || return all() for @{$_[0]};
return all_true @{$_[0]};
};
multimethod qblop =>
( qw(
*
Quantum::Superpositions::Conj
CODE
) ) =>
sub
{
&debug if $debug;
return all() unless @{$_[1]};
istrue(qblop($_[0], $_, $_[2])) || return all() for @{$_[1]};
return all_true $_[0];
};
multimethod qblop =>
( qw(
Quantum::Superpositions::Disj
*
CODE
) ) =>
sub
{
&debug if $debug;
return any() unless @{$_[0]};
return any grep { istrue(qblop($_, $_[1], $_[2])) } @{$_[0]};
};
multimethod qblop =>
( qw(
*
Quantum::Superpositions::Disj
CODE
) ) =>
sub
{
&debug if $debug;
return any() unless @{$_[1]};
return any grep { istrue(qblop($_[0], $_, $_[2])) } @{$_[1]};
};
multimethod qblop =>
( qw(
Quantum::Superpositions::Disj
Quantum::Superpositions::Disj
CODE
) ) =>
sub
{
&debug if $debug;
return any() unless @{$_[0]} && @{$_[1]};
return any grep { istrue(qblop($_[0], $_, $_[2])) } @{$_[1]};
};
multimethod qblop =>
( qw(
*
*
CODE
) ) =>
sub
{
&debug if $debug;
return qbop(@_) ? $_[0] : ();
};
########################################################################
# overload everything possible into appropraite multimethods.
# this is where the limitation for regexen hits.
use overload
q{+} => sub { qbop(swap(@_), sub { $_[0] + $_[1] })},
q{-} => sub { qbop(swap(@_), sub { $_[0] - $_[1] })},
q{*} => sub { qbop(swap(@_), sub { $_[0] * $_[1] })},
q{/} => sub { qbop(swap(@_), sub { $_[0] / $_[1] })},
q{%} => sub { qbop(swap(@_), sub { $_[0] % $_[1] })},
q{**} => sub { qbop(swap(@_), sub { $_[0] ** $_[1] })},
q{<<} => sub { qbop(swap(@_), sub { $_[0] << $_[1] })},
q{>>} => sub { qbop(swap(@_), sub { $_[0] >> $_[1] })},
q{x} => sub { qbop(swap(@_), sub { $_[0] x $_[1] })},
q{.} => sub { qbop(swap(@_), sub { $_[0] . $_[1] })},
q{&} => sub { qbop(swap(@_), sub { $_[0] & $_[1] })},
q{^} => sub { qbop(swap(@_), sub { $_[0] ^ $_[1] })},
q{|} => sub { qbop(swap(@_), sub { $_[0] | $_[1] })},
q{atan2}=> sub { qbop(swap(@_), sub { atan2($_[0],$_[1]) })},
q{<} => sub { qblop(swap(@_), sub { $_[0] < $_[1] })},
q{<=} => sub { qblop(swap(@_), sub { $_[0] <= $_[1] })},
q{>} => sub { qblop(swap(@_), sub { $_[0] > $_[1] })},
q{>=} => sub { qblop(swap(@_), sub { $_[0] >= $_[1] })},
q{==} => sub { qblop(swap(@_), sub { $_[0] == $_[1] })},
q{!=} => sub { qblop(swap(@_), sub { $_[0] != $_[1] })},
q{<=>} => sub { qblop(swap(@_), sub { $_[0] <=> $_[1] })},
q{lt} => sub { qblop(swap(@_), sub { $_[0] lt $_[1] })},
q{le} => sub { qblop(swap(@_), sub { $_[0] le $_[1] })},
q{gt} => sub { qblop(swap(@_), sub { $_[0] gt $_[1] })},
q{ge} => sub { qblop(swap(@_), sub { $_[0] ge $_[1] })},
q{eq} => sub { qblop(swap(@_), sub { $_[0] eq $_[1] })},
q{ne} => sub { qblop(swap(@_), sub { $_[0] ne $_[1] })},
q{cmp} => sub { qblop(swap(@_), sub { $_[0] cmp $_[1] })},
q{cos} => sub { $_[0]->quop(sub { cos $_[0] })},
q{sin} => sub { $_[0]->quop(sub { sin $_[0] })},
q{exp} => sub { $_[0]->quop(sub { exp $_[0] })},
q{abs} => sub { $_[0]->quop(sub { abs $_[0] })},
q{sqrt} => sub { $_[0]->quop(sub { sqrt $_[0] })},
q{log} => sub { $_[0]->quop(sub { log $_[0] })},
q{neg} => sub { $_[0]->quop(sub { -$_[0] })},
q{~} => sub { $_[0]->quop(sub { ~$_[0] })},
q{&{}} =>
sub
{
my $s = shift;
return sub { bless [map {$_->(@_)} @$s], ref $s }
},
q{!} => sub { $_[0]->qulop(sub { !$_[0] })},
q{bool} => 'qbool',
q{""} => 'qstr',
q{0+} => 'qnum',
;
########################################################################
# extract results from the Q::S objects.
multimethod collapse =>
( 'Quantum::Superpositions' ) =>
sub { return map { collapse($_) } @{$_[0]} };
multimethod collapse => ( '*' ) => sub { return $_[0] };
sub eigenstates($)
{
my ($self) = @_;
my $eigencache_id = overload::StrVal($self);
return @{$eigencache{$eigencache_id}}
if defined $eigencache{$eigencache_id};
my %uniq;
@uniq{collapse($self)} = ();
local $^W=1;
return @{$eigencache{$eigencache_id}} =
grep
{
my $okay=1;
local $SIG{__WARN__} = sub {$okay=0};
istrue($self eq $_) || istrue($self == $_) && $okay
}
keys %uniq;
}
multimethod istrue => ( 'Quantum::Superpositions::Disj' ) =>
sub
{
my @states = @{$_[0]} || return 0;
istrue($_) && return 1 for @states; return 0;
};
multimethod istrue => ( 'Quantum::Superpositions::Conj::True' ) =>
sub { return 1; };
multimethod istrue => ( 'Quantum::Superpositions::Conj' ) =>
sub
{
my @states = @{$_[0]} || return 0;
istrue($_) || return 0 for @states; return 1;
};
multimethod istrue => ( '*' ) => sub { return defined $_[0]; };
multimethod istrue => () => sub { return 0; };
sub qbool { $_[0]->eigenstates ? 1 : 0; }
sub qnum { my @states = $_[0]->eigenstates; return $states[rand @states] }
########################################################################
########################################################################
# embedded classes.
#
# these are what the constructors bless things into.
########################################################################
package Quantum::Superpositions::Disj;
use base 'Quantum::Superpositions';
use Carp;
sub qstr
{
my @eigenstates = $_[0]->eigenstates;
return "@eigenstates" if @eigenstates == 1;
return "any(".join(",",@eigenstates).")"
}
sub quop { Quantum::Superpositions::any(map { $_[1]->($_) } @{$_[0]}) }
sub qulop { Quantum::Superpositions::any(grep { $_[1]->($_) } @{$_[0]}) }
package Quantum::Superpositions::Conj;
use base 'Quantum::Superpositions';
use Carp;
sub qstr
{
my @eigenstate = $_[0]->eigenstates;
@eigenstate ? "@eigenstate" : "all(".join(",",@{$_[0]}).")"
}
sub quop { return Quantum::Superpositions::all(map { $_[1]->($_) } @{$_[0]}) }
sub qulop
{
$_[1]->($_) || return Quantum::Superpositions::all() for @{$_[0]};
Quantum::Superpositions::all(@{$_[0]})
}
package Quantum::Superpositions::Conj::True;
use base 'Quantum::Superpositions::Conj';
sub qbool { 1 }
1;
__END__
=head1 NAME
Quantum::Superpositions - QM-like superpositions in Perl
=head1 VERSION
This document describes version 1.03 of Quantum::Superpositions,
released August 11, 2000.
=head1 SYNOPSIS
use Quantum::Superpositions;
if ($x == any($a, $b, $c)) { ... }
while ($nextval < all(@thresholds)) { ... }
$max = any(@value) < all(@values);
use Quantum::Superpositions BINARY => [ CORE::index ];
print index( any("opts","tops","spot"), "o" );
print index( "stop", any("p","s") );
=head1 BACKGROUND
Under the standard interpretation of quantum mechanics, until they are observed, particles exist only as a discontinuous probability
function. Under the Cophenhagen Interpretation, this situation is often visualized by imagining the state of an unobserved particle to be
a ghostly overlay of all its possible observable
states simultaneously. For example, a particle
that might be observed in state A, B, or C may
be considered to be in a pseudo-state where
it is simultaneously in states A, B, and C.
Such a particle is said to be in a superposition of states.
Research into applying particle superposition
in construction of computer hardware is already well advanced. The aim of such
research is to develop reliable quantum
memories, in which an individual bit is stored
as some measurable property of a quantised
particle (a qubit). Because the particle can be
physically coerced into a superposition of
states, it can store bits that are simultaneously
1 and 0.
Specific processes based on the interactions of
one or more qubits (such as interference, entanglement, or additional superposition) are
then be used to construct quantum logic
gates. Such gates can in turn be employed to
perform logical operations on qubits, allowing logical and mathematical operations to be
executed in parallel.
Unfortunately, the math required to design and use
quantum algorithms on quantum computers is painfully
hard. The Quantum::Superpositions module offers
another approach, based on the superposition of
entire scalar values (rather than individual qubits).
=head1 DESCRIPTION
The Quantum::Superpositions module adds two
new operators to Perl: C<any> and C<all>.
Each of these operators takes a list of values (states)
and superimposes them into a single scalar
value (a superposition), which can then be
stored in a standard scalar variable.
The C<any> and C<all> operators produce two distinct kinds of superposition. The C<any>
operator produces a disjunctive superposition,
which may (notionally) be in any one of its
states at any time, according to the needs of
the algorithm that uses it.
In contrast, the C<all>
operator creates a conjunctive superposition,
which is always in every one of its states
simultaneously.
Superpositions are scalar values and hence
can participate in arithmetic and logical operations just like any other type of scalar.
However, when an operation is applied to a
superposition, it is applied (notionally) in parallel to each
of the states in that superposition.
For example, if a superposition of states 1, 2, and 3 is
multiplied by 2:
$result = any(1,2,3) * 2;
the result is a superposition of states 2, 4, and
6. If that result is then compared with the
value 4:
if ($result == 4) { print "fore!" }
then the comparison also returns a superposition: one that is both true and false (since the
equality is true for one of the states of
C<$result> and false for the other two).
Of course, a value that is both true and false is
of no use in an C<if> statement, so some mechanism is needed to decide which superimposed boolean state should take precedence.
This mechanism is provided by the two types
of superposition available. A disjunctive superposition is true if any of its states is true,
whereas a conjunctive superposition is true
only if all of its states are true.
Thus the previous example does print
"fore!", since the C<if> condition is equivalent
to:
if (any(2,4,6) == 4)...
It suffices that any one of 2, 4, or 6 is equal to 4, so the condition
is true and the C<if> block executes.
On the other hand, had the control statement
been:
if (all(2,4,6) == 4)...
the condition would fail, since it is not true
that all of 2, 4, and 6 are equal to 4.
Operations are also possible between two superpositions:
if (all(1,2,3)*any(5,6) < 21)
{ print "no alcohol"; }
if (all(1,2,3)*any(5,6) < 18)
{ print "no entry"; }
if (any(1,2,3)*all(5,6) < 18)
{ print "under-age" }
In this example, the string "no alcohol" is printed because the
superposition produced by the multiplication is the Cartesian product of
the respective states of the two operands: C<all(5,6,10,12,15,18)>.
Since all of these resultant states are less that 21, the condition is
true. In contrast, the string "no entry" is not printed, because not all
the product's states are less than 18.
Note that the type of the first operand determines the type of the result of an operation.
Hence the third string -- "underage" -- is
printed, because multiplying a disjunctive
superposition by a conjunctive superposition
produces a result that is disjunctive:
C<any(5,6,10,12,15,18)>. The condition of
the C<if> statement asks whether any of these
values is less than 18, which is true.
=head2 Composite Superpositions
The states of a superposition may be any kind
of scalar value -- a number, a string, or a reference:
$wanted = any("Mr","Ms").any(@names);
if ($name eq $wanted) { print "Reward!"; }
$okay = all(\&check1,\&check2);
die unless $okay->();
my $large =
all( BigNum->new($centillion),
BigNum->new($googol),
BigNum->new($SkewesNum)
);
@huge = grep {$_ > $large} @nums;
More interestingly, since the individual states
of a superposition are scalar values and a superposition is itself a scalar value, a superposition may have states that are themselves
superpositions:
$ideal = any( all("tall", "rich", "handsome"),
all("rich", "old"),
all("smart","Australian","rich")
);
Operations involving such a composite superposition operate recursively and in parallel on each its states individually and then
recompose the result. For example:
while (@features = get_description)
{
if (any(@features) eq $ideal)
{
print "True love";
}
}
The C<any(@features) eq $ideal> equality
is true if the input characteristics collectively
match any of the three superimposed conjunctive superpositions. That is, if the characteristics collectively equate to each of "tall"
and "rich" and "handsome", or to both
"rich" and "old", or to all three of
"smart" and "Australian" and "rich".
=head2 Eigenstates
It is useful to be able to determine the list of
states that a given superposition represents.
In fact, it is not the I<states> per se, but the
values to which the states may collapse -- the
I<eigenstates> that are useful.
In programming terms this is the
set of values C<@ev> for a given superposition C<$s>
such that C<any(@ev) == $s> or
C<any(@ev) eq $s>.
This list is provided by the C<eigenstates>
operator, which may be called on any superposition:
print "The factor was: ",
eigenstates($factor);
print "Don't use any of:",
eigenstates($badpasswds);
=head2 Boolean evaluation of superpositions
The examples shown above assume the same meta-semantics for both
arithmetic and boolean operations, namely
that a binary operator is applied to the Cartesian product of the states of its two operands,
regardless of whether the operation is arithmetic or logical. Thus the comparison of two
superpositions produces a superposition of
1's and 0's, representing any (or all) possible
comparisons between the individual states of
the two operands.
The drawback of applying arithmetic metasemantics to logical operations is that it
causes useful information to be lost. Specifically, which states were responsible for the
success of the comparison. For example, it is
possible to determine if any number in the
array C<@newnums> is less than all those in the
array C<@oldnums> with:
if (any(@newnums) < @all(oldnums))
{
print "New minimum detected";
}
But this is almost certainly unsatisfactory, because it does not reveal which element(s) of
C<@newnum> caused the condition to be true.
It is, however, possible to define a different
meta-semantics for logical operations between superpositions; one that preserves the
intuitive logic of comparisons but also gives
limited access to the states that cause those
comparsions to succeed.
The key is to deviate from the arithmetic view
of superpositional comparison (namely, that a
compared superposition yields a superposition of compared state combinations).
Instead, the various comparison operators are
redefined so that they form a superposition of
those eigenstates of the left operand that cause
the operation to be true. In other words, the
old meta-semantics superimposed the result
of each parallel comparison, whilst the new
meta-semantics superimposes the left operands of each parallel comparison that succeeds.
For example, under the original semantics,
the comparisons:
all(7,8,9) <= any(5,6,7) #A
all(5,6,7) <= any(7,8,9) #B
any(6,7,8) <= all(7,8,9) #C
would yield:
all(0,0,1,0,0,0,0,0,0) #A (false)
all(1,1,1,1,1,1,1,1,1) #B (true)
any(1,1,1,1,1,1,0,1,1) #C (true)
Under the new semantics they would yield:
all(7) #A (false)
all(5,6,7) #B (true)
any(6,7) #C (true)
The success of the comparison (the truth of
the result) is no longer determined by the I<values>
of the resulting states, but by the I<number> of
states in the resulting superposition.
The Quantum::Superpositions module treats logical
operations and boolean conversions in exactly this way.
Under these meta-semantics, it is possible to
check a comparison and also determine
which eigenstates of the left operand were
responsible for its success:
$newmins = any(@newnums) < all(@oldnums);
if ($newmins)
{
print "New minima found:", eigenstates($newmins);
}
Thus, these semantics provide a mechanism
to conduct parallel searches for minima and maxima :
sub min { eigenstates( any(@_) <= all(@_) ) }
sub max { eigenstates( any(@_) >= all(@_) ) }
These definitions are also quite intuitive, almost declarative: the minimum is any value
that is less-than-or-equal-to all of the other
values; the maximum is any value that is
greater-than-or-equal to all of them.
=head2 String evaluation of superpositions
Converting a superposition to a string produces
a string that encode the simplest set of eigenstates
equivalent to the original superposition.
If there is only one eigenstate, the stringification
of that state is the string representation.
This eliminates the need to explicitly apply the C<eigenstates>
operator when only a single
resultant state is possible. For example:
print "lexicographically first: ",
any(@words) le all(@words);
In all other cases, superpositions are stringified
in the format: C<"all(I<eigenstates>)"> or
C<"any(I<eigenstates>)">.
=head2 Numerical evaluation of superpositions
Providing an implicit conversion to numeric (for situations where
superpositions are used as operands to an arithmetic operation, or as
array indices) is more challenging than stringification, since there is
no mechanism to capture the entire state of a superposition in a single
non-superimposed number.
Again, if the superposition has a single eigenstate, the conversion is just the standard conversion for that value. For instance, to output
the value in an array element with the smallest index in the set of indices @i:
print "The smallest element is: ",
$array[any(@i)<=all(@i)];
If the superposition has no eigenstates, there
is no numerical value to which it could collapse, so the result is C<undef>.
If a disjunctive superposition has more than
one eigenstate, that superposition could collapse to any of those values. And it is convenient to allow it to do exactly that -- collapse
(pseudo-)randomly to one of its eigenstates.
Indeed, doing so provides a useful notation
for random selection from a list:
print "And the winner is...",
$entrant[any(0..$#entrant)];
=head2 Superpositions as subroutine arguments
When a superposition is used as a subroutine
argument, that subroutine is applied in parallel to each state of the superposition and the
results re-superimposed to form the same
type of superposition. For example, given:
$n1 = any(1,4,9);
$r1 = sqrt($n1);
$n2 = all(1,4,9);
$r2 = pow($n2,3);
$r3 = pow($n1,$r1);
then $r1 contains the disjunctive superposition C<any(1,2,3)>, C<$r2> contains the conjunctive superposition C<all(1,64,729)>, and <$r3 >
contains the conjunctive superposition
C<any(1,4,9,16,64,81,729)>.
Because the built-in C<sqrt> and C<pow> functions
don't know about superpositions, the module
provides a mechanism for informing them that their
arguments may be superimposed.
If the call to C<use Quantum::Superpositions>
is given an argument list, that list specifies
which functions should be rewritten to handle
superpositions. Unary functions and subroutine
can be "quantized" like so:
sub incr { $_[0]+1 }
sub numeric { $_[0]+0 eq $_[0] }
use Quantum::Superpositions
UNARY => ["CORE::int", "main::incr"],
UNARY_LOGICAL => ["main::numeric"];
For binary functions and subroutines use:
sub max { $_[0] < $_[1] ? $_[1] : $_[0] }
sub same { my $failed; $IG{__WARN__}=sub{$failed=1};
return $_[0] eq $_[1] || $_[0]==$_[1] && !$failed;
}
use Quantum::Superpositions
BINARY => ['main::max', 'CORE::index'],
BINARY_LOGICAL => ['main::same'];
=head1 EXAMPLES
=head2 Primality testing
The power of programming with scalar superpositions is perhaps best seen
by returning the quantum computing's favourite adversary: prime numbers.
Here, for example is an O(1) prime-number tester, based on naive
trial division:
sub is_prime
{
my ($n) = @_;
return $n % all(2..sqrt($n)+1) != 0
}
The subroutine takes a single argument (C<$n>)
and computes (in parallel) its modulus with
respect to every integer between 2 and C<sqrt($n)>.
This produces a conjunctive superposition of
moduli, which is then compared with zero.
That comparison will only be true if all the
moduli are not zero, which is precisely the
requirement for an integer to be prime.
Because C<is_prime> takes a single scalar argument, it can also be passed a superposition.
For example, here is a constant-time filter for
detecting whether a number is part of a pair
of twin primes:
sub has_twin
{
my ($n) = @_;
return is_prime($n) && is_prime($n+any(+2,-2);
}
=head2 Set membership and intersection
Set operations are particularly easy to perform using superimposable scalars.
For example, given an array of values
C<@elems>, representing the elements of a set,
the value C<$v> is an element of that set if:
$v == any(@elems)
Note that this is equivalent to the definition of
an eigenstate. That equivalence can be used to
compute set intersections. Given two disjunctive superpositions, C<$s1=any(@elems1)>
and C<$s2=any(@elems2)>, representing two
sets, the values that constitute the intersection
of those sets must be eigenstates of both <$s1>
and C<$s2>. Hence:
@intersection = eigenstates(all($s1, $s2));
This result can be extended to extract the
common elements from an arbitrary number
of arrays in parallel:
@common = eigenstates( all( any(@list1),
any(@list2),
any(@list3),
any(@list4),
)
);
=head2 Factoring
Factoring numbers is also trivial using superpositions.
The factors of an integer N are all
the quotients q of N/n (for all positive integers n < N) that are also integral. A positive
number q is integral if floor(q)==q. Hence the factors of a given number are computed by:
sub factors
{
my ($n) = @_;
my $q = $n / any(2..$n-1);
return eigenstates(floor($q)==$q);
}
=head2 Query processing
Superpositions can also be used to perform
text searches.
For example, to determine whether a given string
($target) appears in a collection of strings
(@db):
use Quantum::Superpositions BINARY => ["CORE::index"];
$found = index(any(@db), $target) >= 0;
To determine which of the database strings
contain the target:
sub contains_str
{
return $dbstr if (index($dbstr, $target) >= 0;
}
$found = contains_str(any(@db), $target);
@matches = eigenstates $found;
It is also possible to superimpose the target
string, rather than the database, so as to
search a single string for any of a set of targets:
sub contains_targ
{
if (index($dbstr, $target) >= 0)
{
return $target;
}
}
$found = contains_targ($string, any(@targets));
@matches = eigenstates $found;
or in every target simultaneously:
$found = contains_targ($string, all(@targets));
@matches = eigenstates $found;
=head1 AUTHOR
Damian Conway (damian@conway.org)
Now maintainted by Steven Lembark (lembark@wrkhors.com)
=head1 BUGS
There are undoubtedly serious bugs lurking somewhere in code this funky :-)
Bug reports and other feedback are most welcome.
=head1 COPYRIGHT
Copyright (c) 1998-2002, Damian Conway.
Copyright (c) 2002, Steven Lembark
All Rights Reserved.
This module is free software. It may be used, redistributed
and/or modified under the stame terms as Perl-5.6.1 (or later)
(see http://www.perl.com/perl/misc/Artistic.html).
|