This file is indexed.

/usr/include/QGLViewer/quaternion.h is in libqglviewer-dev-common 2.3.4-4ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
/****************************************************************************

 Copyright (C) 2002-2008 Gilles Debunne. All rights reserved.

 This file is part of the QGLViewer library version 2.3.4.

 http://www.libqglviewer.com - contact@libqglviewer.com

 This file may be used under the terms of the GNU General Public License 
 versions 2.0 or 3.0 as published by the Free Software Foundation and
 appearing in the LICENSE file included in the packaging of this file.
 In addition, as a special exception, Gilles Debunne gives you certain 
 additional rights, described in the file GPL_EXCEPTION in this package.

 libQGLViewer uses dual licensing. Commercial/proprietary software must
 purchase a libQGLViewer Commercial License.

 This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
 WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

*****************************************************************************/

#ifndef QGLVIEWER_QUATERNION_H
#define QGLVIEWER_QUATERNION_H

#include "vec.h"
#include <math.h>
#include <iostream>

namespace qglviewer {
	/*! \brief The Quaternion class represents 3D rotations and orientations.
	\class Quaternion quaternion.h QGLViewer/quaternion.h

	The Quaternion is an appropriate (although not very intuitive) representation for 3D rotations and
	orientations. Many tools are provided to ease the definition of a Quaternion: see constructors,
	setAxisAngle(), setFromRotationMatrix(), setFromRotatedBasis().

	You can apply the rotation represented by the Quaternion to 3D points using rotate() and
	inverseRotate(). See also the Frame class that represents a coordinate system and provides other
	conversion functions like Frame::coordinatesOf() and Frame::transformOf().

	You can apply the Quaternion \c q rotation to the OpenGL matrices using:
	\code
	glMultMatrixd(q.matrix());
	// equvalent to glRotate(q.angle()*180.0/M_PI, q.axis().x, q.axis().y, q.axis().z);
	\endcode

	Quaternion is part of the \c qglviewer namespace, specify \c qglviewer::Quaternion or use the qglviewer
	namespace: \code using namespace qglviewer; \endcode

	<h3>Internal representation</h3>

	The internal representation of a Quaternion corresponding to a rotation around axis \c axis, with an angle
	\c alpha is made of four doubles q[i]:
	\code
	{q[0],q[1],q[2]} = sin(alpha/2) * {axis[0],axis[1],axis[2]}
	q[3] = cos(alpha/2)
	\endcode

	Note that certain implementations place the cosine term in first position (instead of last here).

	The Quaternion is always normalized, so that its inverse() is actually its conjugate.

	See also the Vec and Frame classes' documentations.
	\nosubgrouping */
	class QGLVIEWER_EXPORT Quaternion
	{
	public:
		/*! @name Defining a Quaternion */
		//@{
		/*! Default constructor, builds an identity rotation. */
		Quaternion()
		{ q[0]=q[1]=q[2]=0.0;  q[3]=1.0; }

		/*! Constructor from rotation axis (non null) and angle (in radians). See also setAxisAngle(). */
		Quaternion(const Vec& axis, double angle)
		{
			setAxisAngle(axis, angle);
		}

		Quaternion(const Vec& from, const Vec& to);

		/*! Constructor from the four values of a Quaternion. First three values are axis*sin(angle/2) and
		last one is cos(angle/2).

		\attention The identity Quaternion is Quaternion(0,0,0,1) and \e not Quaternion(0,0,0,0) (which is
		not unitary). The default Quaternion() creates such identity Quaternion. */
		Quaternion(double q0, double q1, double q2, double q3)
		{ q[0]=q0;    q[1]=q1;    q[2]=q2;    q[3]=q3; }

		/*! Copy constructor. */
		Quaternion(const Quaternion& Q)
		{ for (int i=0; i<4; ++i) q[i] = Q.q[i]; }

		/*! Equal operator. */
		Quaternion& operator=(const Quaternion& Q)
		{
			for (int i=0; i<4; ++i)
				q[i] = Q.q[i];
			return (*this);
		}

		/*! Sets the Quaternion as a rotation of axis \p axis and angle \p angle (in radians).

		\p axis does not need to be normalized. A null \p axis will result in an identity Quaternion. */
		void setAxisAngle(const Vec& axis, double angle)
		{
			const double norm = axis.norm();
			if (norm < 1E-8)
			{
				// Null rotation
				q[0] = 0.0;      q[1] = 0.0;      q[2] = 0.0;      q[3] = 1.0;
			}
			else
			{
				const double sin_half_angle = sin(angle / 2.0);
				q[0] = sin_half_angle*axis[0]/norm;
				q[1] = sin_half_angle*axis[1]/norm;
				q[2] = sin_half_angle*axis[2]/norm;
				q[3] = cos(angle / 2.0);
			}
		}

		/*! Sets the Quaternion value. See the Quaternion(double, double, double, double) constructor documentation. */
		void setValue(double q0, double q1, double q2, double q3)
		{ q[0]=q0;    q[1]=q1;    q[2]=q2;    q[3]=q3; }

#ifndef DOXYGEN
		void setFromRotationMatrix(const float m[3][3]);
		void setFromRotatedBase(const Vec& X, const Vec& Y, const Vec& Z);
#endif
		void setFromRotationMatrix(const double m[3][3]);
		void setFromRotatedBasis(const Vec& X, const Vec& Y, const Vec& Z);
		//@}


		/*! @name Accessing values */
		//@{
		Vec axis() const;
		float angle() const;
		void getAxisAngle(Vec& axis, float& angle) const;

		/*! Bracket operator, with a constant return value. \p i must range in [0..3]. See the Quaternion(double, double, double, double) documentation. */
		double operator[](int i) const { return q[i]; }

		/*! Bracket operator returning an l-value. \p i must range in [0..3]. See the Quaternion(double, double, double, double) documentation. */
		double& operator[](int i) { return q[i]; }
		//@}


		/*! @name Rotation computations */
		//@{
		/*! Returns the composition of the \p a and \p b rotations.

		The order is important. When applied to a Vec \c v (see operator*(const Quaternion&, const Vec&)
		and rotate()) the resulting Quaternion acts as if \p b was applied first and then \p a was
		applied. This is obvious since the image \c v' of \p v by the composited rotation satisfies: \code
		v'= (a*b) * v = a * (b*v) \endcode

		Note that a*b usually differs from b*a.

		\attention For efficiency reasons, the resulting Quaternion is not normalized. Use normalize() in
		case of numerical drift with small rotation composition. */
		friend Quaternion operator*(const Quaternion& a, const Quaternion& b)
		{
			return Quaternion(a.q[3]*b.q[0] + b.q[3]*a.q[0] + a.q[1]*b.q[2] - a.q[2]*b.q[1],
				a.q[3]*b.q[1] + b.q[3]*a.q[1] + a.q[2]*b.q[0] - a.q[0]*b.q[2],
				a.q[3]*b.q[2] + b.q[3]*a.q[2] + a.q[0]*b.q[1] - a.q[1]*b.q[0],
				a.q[3]*b.q[3] - b.q[0]*a.q[0] - a.q[1]*b.q[1] - a.q[2]*b.q[2]);
		}

		/*! Quaternion rotation is composed with \p q.

		See operator*(), since this is equivalent to \c this = \c this * \p q.

		\note For efficiency reasons, the resulting Quaternion is not normalized.
		You may normalize() it after each application in case of numerical drift. */
		Quaternion& operator*=(const Quaternion &q)
		{
			*this = (*this)*q;
			return *this;
		}

		/*! Returns the image of \p v by the rotation \p q.

		Same as q.rotate(v). See rotate() and inverseRotate(). */
		friend Vec operator*(const Quaternion& q, const Vec& v)
		{
			return q.rotate(v);
		}

		Vec rotate(const Vec& v) const;
		Vec inverseRotate(const Vec& v) const;
		//@}


		/*! @name Inversion */
		//@{
		/*! Returns the inverse Quaternion (inverse rotation).

		Result has a negated axis() direction and the same angle(). A composition (see operator*()) of a
		Quaternion and its inverse() results in an identity function.

		Use invert() to actually modify the Quaternion. */
		Quaternion inverse() const { return Quaternion(-q[0], -q[1], -q[2], q[3]); }

		/*! Inverses the Quaternion (same rotation angle(), but negated axis()).

		See also inverse(). */
		void invert() { q[0] = -q[0]; q[1] = -q[1]; q[2] = -q[2]; }

		/*! Negates all the coefficients of the Quaternion.

		This results in an other representation of the \e same rotation (opposite rotation angle, but with
		a negated axis direction: the two cancel out). However, note that the results of axis() and
		angle() are unchanged after a call to this method since angle() always returns a value in [0,pi].

		This method is mainly useful for Quaternion interpolation, so that the spherical
		interpolation takes the shortest path on the unit sphere. See slerp() for details. */
		void negate() { invert(); q[3] = -q[3]; }

		/*! Normalizes the Quaternion coefficients.

		This method should not need to be called since we only deal with unit Quaternions. This is however
		useful to prevent numerical drifts, especially with small rotational increments. See also
		normalized(). */
		double normalize()
		{
			const double norm = sqrt(q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]);
			for (int i=0; i<4; ++i)
				q[i] /= norm;
			return norm;
		}

		/*! Returns a normalized version of the Quaternion.

		See also normalize(). */
		Quaternion normalized() const
		{
			double Q[4];
			const double norm = sqrt(q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]);
			for (int i=0; i<4; ++i)
				Q[i] = q[i] / norm;
			return Quaternion(Q[0], Q[1], Q[2], Q[3]);
		}
		//@}


		/*! @name Associated matrix */
		//@{
		const GLdouble* matrix() const;
		void getMatrix(GLdouble m[4][4]) const;
		void getMatrix(GLdouble m[16]) const;

		void getRotationMatrix(float m[3][3]) const;

		const GLdouble* inverseMatrix() const;
		void getInverseMatrix(GLdouble m[4][4]) const;
		void getInverseMatrix(GLdouble m[16]) const;

		void getInverseRotationMatrix(float m[3][3]) const;
		//@}


		/*! @name Slerp interpolation */
		//@{
		static Quaternion slerp(const Quaternion& a, const Quaternion& b, float t, bool allowFlip=true);
		static Quaternion squad(const Quaternion& a, const Quaternion& tgA, const Quaternion& tgB, const Quaternion& b, float t);
		/*! Returns the "dot" product of \p a and \p b: a[0]*b[0] + a[1]*b[1] + a[2]*b[2] + a[3]*b[3]. */
		static double dot(const Quaternion& a, const Quaternion& b) { return a[0]*b[0] + a[1]*b[1] + a[2]*b[2] + a[3]*b[3]; }

		Quaternion log();
		Quaternion exp();
		static Quaternion lnDif(const Quaternion& a, const Quaternion& b);
		static Quaternion squadTangent(const Quaternion& before, const Quaternion& center, const Quaternion& after);
		//@}

		/*! @name Random Quaternion */
		//@{
		static Quaternion randomQuaternion();
		//@}

		/*! @name XML representation */
		//@{
		explicit Quaternion(const QDomElement& element);
		QDomElement domElement(const QString& name, QDomDocument& document) const;
		void initFromDOMElement(const QDomElement& element);
		//@}

#ifdef DOXYGEN
		/*! @name Output stream */
		//@{
		/*! Output stream operator. Enables debugging code like:
		\code
		Quaternion rot(...);
		cout << "Rotation=" << rot << endl;
		\endcode */
		std::ostream& operator<<(std::ostream& o, const qglviewer::Vec&);
		//@}
#endif

	private:
		/*! The internal data representation is private, use operator[] to access values. */
		double q[4];
	};

} // namespace

std::ostream& operator<<(std::ostream& o, const qglviewer::Quaternion&);

#endif // QGLVIEWER_QUATERNION_H