This file is indexed.

/usr/include/QGLViewer/frame.h is in libqglviewer-dev-common 2.3.4-4ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
/****************************************************************************

 Copyright (C) 2002-2008 Gilles Debunne. All rights reserved.

 This file is part of the QGLViewer library version 2.3.4.

 http://www.libqglviewer.com - contact@libqglviewer.com

 This file may be used under the terms of the GNU General Public License 
 versions 2.0 or 3.0 as published by the Free Software Foundation and
 appearing in the LICENSE file included in the packaging of this file.
 In addition, as a special exception, Gilles Debunne gives you certain 
 additional rights, described in the file GPL_EXCEPTION in this package.

 libQGLViewer uses dual licensing. Commercial/proprietary software must
 purchase a libQGLViewer Commercial License.

 This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
 WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

*****************************************************************************/

#ifndef QGLVIEWER_FRAME_H
#define QGLVIEWER_FRAME_H

#if QT_VERSION >= 0x040000
# include <QObject>
# include <QString>
#else
# include <qobject.h>
# include <qstring.h>
#endif

#include "constraint.h"
// #include "GL/gl.h" is now included in config.h for ease of configuration

namespace qglviewer {
  /*! \brief The Frame class represents a coordinate system, defined by a position and an
  orientation. \class Frame frame.h QGLViewer/frame.h

  A Frame is a 3D coordinate system, represented by a position() and an orientation(). The order of
  these transformations is important: the Frame is first translated \e and \e then rotated around
  the new translated origin.

  A Frame is useful to define the position and orientation of a 3D rigid object, using its matrix()
  method, as shown below:
  \code
  // Builds a Frame at position (0.5,0,0) and oriented such that its Y axis is along the (1,1,1)
  // direction. One could also have used setPosition() and setOrientation().
  Frame fr(Vec(0.5,0,0), Quaternion(Vec(0,1,0), Vec(1,1,1)));
  glPushMatrix();
  glMultMatrixd(fr.matrix());
  // Draw your object here, in the local fr coordinate system.
  glPopMatrix();
  \endcode

  Many functions are provided to transform a 3D point from one coordinate system (Frame) to an
  other: see coordinatesOf(), inverseCoordinatesOf(), coordinatesOfIn(), coordinatesOfFrom()...

  You may also want to transform a 3D vector (such as a normal), which corresponds to applying only
  the rotational part of the frame transformation: see transformOf() and inverseTransformOf(). See
  the <a href="../examples/frameTransform.html">frameTransform example</a> for an illustration.

  The translation() and the rotation() that are encapsulated in a Frame can also be used to
  represent a \e rigid \e transformation of space. Such a transformation can also be interpreted as
  a change of coordinate system, and the coordinate system conversion functions actually allow you
  to use a Frame as a rigid transformation. Use inverseCoordinatesOf() (resp. coordinatesOf()) to
  apply the transformation (resp. its inverse). Note the inversion.

  <h3>Hierarchy of Frames</h3>

  The position and the orientation of a Frame are actually defined with respect to a
  referenceFrame(). The default referenceFrame() is the world coordinate system (represented by a \c
  NULL referenceFrame()). If you setReferenceFrame() to a different Frame, you must then
  differentiate:

  \arg the \e local translation() and rotation(), defined with respect to the referenceFrame(),

  \arg the \e global position() and orientation(), always defined with respect to the world
  coordinate system.

  A Frame is actually defined by its translation() with respect to its referenceFrame(), and then by
  a rotation() of the coordinate system around the new translated origin.

  This terminology for \e local (translation() and rotation()) and \e global (position() and
  orientation()) definitions is used in all the methods' names and should be sufficient to prevent
  ambiguities. These notions are obviously identical when the referenceFrame() is \c NULL, i.e. when
  the Frame is defined in the world coordinate system (the one you are in at the beginning of the
  QGLViewer::draw() method, see the <a href="../introduction.html">introduction page</a>).

  Frames can hence easily be organized in a tree hierarchy, which root is the world coordinate
  system. A loop in the hierarchy would result in an inconsistent (multiple) Frame definition.
  settingAsReferenceFrameWillCreateALoop() checks this and prevents setReferenceFrame() from
  creating such a loop.

  This frame hierarchy is used in methods like coordinatesOfIn(), coordinatesOfFrom()... which allow
  coordinates (or vector) conversions from a Frame to any other one (including the world coordinate
  system).

  However, one must note that this hierarchical representation is internal to the Frame classes.
  When the Frames represent OpenGL coordinates system, one should map this hierarchical
  representation to the OpenGL GL_MODELVIEW matrix stack. See the matrix() documentation for
  details.

  <h3>Constraints</h3>

  An interesting feature of Frames is that their displacements can be constrained. When a Constraint
  is attached to a Frame, it filters the input of translate() and rotate(), and only the resulting
  filtered motion is applied to the Frame. The default constraint() is \c NULL resulting in no
  filtering. Use setConstraint() to attach a Constraint to a frame.

  Constraints are especially usefull for the ManipulatedFrame instances, in order to forbid some
  mouse motions. See the <a href="../examples/constrainedFrame.html">constrainedFrame</a>, <a
  href="../examples/constrainedCamera.html">constrainedCamera</a> and <a
  href="../examples/luxo.html">luxo</a> examples for an illustration.

  Classical constraints are provided for convenience (see LocalConstraint, WorldConstraint and
  CameraConstraint) and new constraints can very easily be implemented.

  <h3>Derived classes</h3>

  The ManipulatedFrame class inherits Frame and implements a mouse motion convertion, so that a
  Frame (and hence an object) can be manipulated in the scene with the mouse.

  \nosubgrouping */
  class QGLVIEWER_EXPORT Frame : public QObject
  {
    Q_OBJECT

  public:
    Frame();

    /*! Virtual destructor. Empty. */
    virtual ~Frame() {};

    Frame(const Frame& frame);
    Frame& operator=(const Frame& frame);

  signals:
    /*! This signal is emitted whenever the position() or the orientation() of the Frame is modified.

    Connect this signal to any object that must be notified:
    \code
    QObject::connect(myFrame, SIGNAL(modified()), myObject, SLOT(update()));
    \endcode
    Use the QGLViewer::QGLViewerPool() to connect the signal to all the viewers.

    \note If your Frame is part of a Frame hierarchy (see referenceFrame()), a modification of one
    of the parents of this Frame will \e not emit this signal. Use code like this to change this
    behavior (you can do this recursively for all the referenceFrame() until the \c NULL world root
    frame is encountered):
    \code
    // Emits the Frame modified() signal when its referenceFrame() is modified().
    connect(myFrame->referenceFrame(), SIGNAL(modified()), myFrame, SIGNAL(modified()));
    \endcode

    \attention Connecting this signal to a QGLWidget::updateGL() slot (or a method that calls it)
    will prevent you from modifying the Frame \e inside your QGLViewer::draw() method as it would
    result in an infinite loop. However, QGLViewer::draw() should not modify the scene.

    \note For efficiency reasons, this signal is emitted even if the Frame is not actually modified, for
    instance with translate(Vec(0,0,0)) or setPosition(position()). */
    void modified();

    /*! This signal is emitted when the Frame is interpolated by a KeyFrameInterpolator.

    See the KeyFrameInterpolator documentation for details.

    If a KeyFrameInterpolator is used to successively interpolate several Frames in your scene,
    connect the KeyFrameInterpolator::interpolated() signal instead (identical, but independent of
    the interpolated Frame). */
    void interpolated();

  public:
    /*! @name World coordinates position and orientation */
    //@{
    Frame(const Vec& position, const Quaternion& orientation);

    void setPosition(const Vec& position);
    void setPosition(float x, float y, float z);
    void setPositionWithConstraint(Vec& position);

    void setOrientation(const Quaternion& orientation);
    void setOrientation(double q0, double q1, double q2, double q3);
    void setOrientationWithConstraint(Quaternion& orientation);

    void setPositionAndOrientation(const Vec& position, const Quaternion& orientation);
    void setPositionAndOrientationWithConstraint(Vec& position, Quaternion& orientation);

    /*! Returns the position of the Frame, defined in the world coordinate system. See also
      orientation(), setPosition() and translation(). */
    Vec position() const { return inverseCoordinatesOf(Vec(0.0,0.0,0.0)); };
    Quaternion orientation() const;

    void getPosition(float& x, float& y, float& z) const;
    void getOrientation(double& q0, double& q1, double& q2, double& q3) const;
  //@}


    public:
    /*! @name Local translation and rotation w/r reference Frame */
    //@{
    /*! Sets the translation() of the frame, locally defined with respect to the referenceFrame().
      Emits the modified() signal.

    Use setPosition() to define the world coordinates position(). Use
    setTranslationWithConstraint() to take into account the potential constraint() of the Frame. */
    void setTranslation(const Vec& translation) { t_ = translation; emit modified(); };
    void setTranslation(float x, float y, float z);
    void setTranslationWithConstraint(Vec& translation);

    /*! Set the current rotation Quaternion. See rotation() and the different Quaternion
    constructors. Emits the modified() signal. See also setTranslation() and
    setRotationWithConstraint(). */

    /*! Sets the rotation() of the Frame, locally defined with respect to the referenceFrame().
      Emits the modified() signal.

     Use setOrientation() to define the world coordinates orientation(). The potential
     constraint() of the Frame is not taken into account, use setRotationWithConstraint()
     instead. */
    void setRotation(const Quaternion& rotation) { q_ = rotation; emit modified(); };
    void setRotation(double q0, double q1, double q2, double q3);
    void setRotationWithConstraint(Quaternion& rotation);

    void setTranslationAndRotation(const Vec& translation, const Quaternion& rotation);
    void setTranslationAndRotationWithConstraint(Vec& translation, Quaternion& rotation);

    /*! Returns the Frame translation, defined with respect to the referenceFrame().

    Use position() to get the result in the world coordinates. These two values are identical
    when the referenceFrame() is \c NULL (default).

    See also setTranslation() and setTranslationWithConstraint(). */
    Vec translation() const { return t_; };
    /*! Returns the Frame rotation, defined with respect to the referenceFrame().

    Use orientation() to get the result in the world coordinates. These two values are identical
    when the referenceFrame() is \c NULL (default).

    See also setRotation() and setRotationWithConstraint(). */

    /*! Returns the current Quaternion orientation. See setRotation(). */
    Quaternion rotation() const { return q_; };

    void getTranslation(float& x, float& y, float& z) const;
    void getRotation(double& q0, double& q1, double& q2, double& q3) const;
    //@}

    public:
    /*! @name Frame hierarchy */
    //@{
    /*! Returns the reference Frame, in which coordinates system the Frame is defined.

    The translation() and rotation() of the Frame are defined with respect to the referenceFrame()
    coordinate system. A \c NULL referenceFrame() (default value) means that the Frame is defined in
    the world coordinate system.

    Use position() and orientation() to recursively convert values along the referenceFrame() chain
    and to get values expressed in the world coordinate system. The values match when the
    referenceFrame() is \c NULL.

    Use setReferenceFrame() to set this value and create a Frame hierarchy. Convenient functions
    allow you to convert 3D coordinates from one Frame to an other: see coordinatesOf(),
    localCoordinatesOf(), coordinatesOfIn() and their inverse functions.

    Vectors can also be converted using transformOf(), transformOfIn, localTransformOf() and their
    inverse functions. */
    const Frame* referenceFrame() const { return referenceFrame_; };
    void setReferenceFrame(const Frame* const refFrame);
    bool settingAsReferenceFrameWillCreateALoop(const Frame* const frame);
    //@}


    /*! @name Frame modification */
    //@{
    void translate(Vec& t);
    void translate(const Vec& t);
    // Some compilers complain about "overloading cannot distinguish from previous declaration"
    // Simply comment out the following method and its associated implementation
    void translate(float x, float y, float z);
    void translate(float& x, float& y, float& z);

    void rotate(Quaternion& q);
    void rotate(const Quaternion& q);
    // Some compilers complain about "overloading cannot distinguish from previous declaration"
    // Simply comment out the following method and its associated implementation
    void rotate(double q0, double q1, double q2, double q3);
    void rotate(double& q0, double& q1, double& q2, double& q3);

    void rotateAroundPoint(Quaternion& rotation, const Vec& point);
    void rotateAroundPoint(const Quaternion& rotation, const Vec& point);

    void alignWithFrame(const Frame* const frame, bool move=false, float threshold=0.85f);
    void projectOnLine(const Vec& origin, const Vec& direction);
    //@}


    /*! @name Coordinate system transformation of 3D coordinates */
    //@{
    Vec coordinatesOf(const Vec& src) const;
    Vec inverseCoordinatesOf(const Vec& src) const;
    Vec localCoordinatesOf(const Vec& src) const;
    Vec localInverseCoordinatesOf(const Vec& src) const;
    Vec coordinatesOfIn(const Vec& src, const Frame* const in) const;
    Vec coordinatesOfFrom(const Vec& src, const Frame* const from) const;

    void getCoordinatesOf(const float src[3], float res[3]) const;
    void getInverseCoordinatesOf(const float src[3], float res[3]) const;
    void getLocalCoordinatesOf(const float src[3], float res[3]) const;
    void getLocalInverseCoordinatesOf(const float src[3], float res[3]) const;
    void getCoordinatesOfIn(const float src[3], float res[3], const Frame* const in) const;
    void getCoordinatesOfFrom(const float src[3], float res[3], const Frame* const from) const;
    //@}

    /*! @name Coordinate system transformation of vectors */
    // A frame is as a new coordinate system, defined with respect to a reference frame (the world
    // coordinate system by default, see the "Composition of frame" section).

    // The transformOf() (resp. inverseTransformOf()) functions transform a 3D vector from (resp.
    // to) the world coordinates system. This section defines the 3D vector transformation
    // functions. See the Coordinate system transformation of 3D points above for the transformation
    // of 3D points. The difference between the two sets of functions is simple: for vectors, only
    // the rotational part of the transformations is taken into account, while translation is also
    // considered for 3D points.

    // The length of the resulting transformed vector is identical to the one of the source vector
    // for all the described functions.

    // When local is prepended to the names of the functions, the functions simply transform from
    // (and to) the reference frame.

    // When In (resp. From) is appended to the names, the functions transform from (resp. To) the
    // frame that is given as an argument. The frame does not need to be in the same branch or the
    // hierarchical tree, and can be \c NULL (the world coordinates system).

    // Combining any of these functions with its inverse (in any order) leads to the identity.
    //@{
    Vec transformOf(const Vec& src) const;
    Vec inverseTransformOf(const Vec& src) const;
    Vec localTransformOf(const Vec& src) const;
    Vec localInverseTransformOf(const Vec& src) const;
    Vec transformOfIn(const Vec& src, const Frame* const in) const;
    Vec transformOfFrom(const Vec& src, const Frame* const from) const;

    void getTransformOf(const float src[3], float res[3]) const;
    void getInverseTransformOf(const float src[3], float res[3]) const;
    void getLocalTransformOf(const float src[3], float res[3]) const;
    void getLocalInverseTransformOf(const float src[3], float res[3]) const;
    void getTransformOfIn(const float src[3], float res[3], const Frame* const in) const;
    void getTransformOfFrom(const float src[3], float res[3], const Frame* const from) const;
    //@}


    /*! @name Constraint on the displacement */
    //@{
    /*! Returns the current constraint applied to the Frame.

    A \c NULL value (default) means that no Constraint is used to filter Frame translation and
    rotation. See the Constraint class documentation for details.

    You may have to use a \c dynamic_cast to convert the result to a Constraint derived class. */
    Constraint* constraint() const { return constraint_; }
    /*! Sets the constraint() attached to the Frame.

    A \c NULL value means no constraint. The previous constraint() should be deleted by the calling
    method if needed. */
    void setConstraint(Constraint* const constraint) { constraint_ = constraint; }
    //@}

    /*! @name Associated matrices */
    //@{
  public:
    const GLdouble* matrix() const;
    void getMatrix(GLdouble m[4][4]) const;
    void getMatrix(GLdouble m[16]) const;

    const GLdouble* worldMatrix() const;
    void getWorldMatrix(GLdouble m[4][4]) const;
    void getWorldMatrix(GLdouble m[16]) const;

    void setFromMatrix(const GLdouble m[4][4]);
    void setFromMatrix(const GLdouble m[16]);
    //@}

    /*! @name Inversion of the transformation */
    //@{
    Frame inverse() const;
    /*! Returns the inverse() of the Frame world transformation.

    The orientation() of the new Frame is the Quaternion::inverse() of the original orientation.
    Its position() is the negated and inverse rotated image of the original position.

    The result Frame has a \c NULL referenceFrame() and a \c NULL constraint().

    Use inverse() for a local (i.e. with respect to referenceFrame()) transformation inverse. */
    Frame worldInverse() const { return Frame(-(orientation().inverseRotate(position())), orientation().inverse()); }
    //@}

    /*! @name XML representation */
    //@{
  public:
    virtual QDomElement domElement(const QString& name, QDomDocument& document) const;
  public slots:
    virtual void initFromDOMElement(const QDomElement& element);
    //@}

  private:
    // P o s i t i o n   a n d   o r i e n t a t i o n
    Vec t_;
    Quaternion q_;

    // C o n s t r a i n t s
    Constraint* constraint_;

    // F r a m e   c o m p o s i t i o n
    const Frame* referenceFrame_;
  };

} // namespace qglviewer

#endif // QGLVIEWER_FRAME_H