/usr/include/QGLViewer/camera.h is in libqglviewer-dev-common 2.3.4-4ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 | /****************************************************************************
Copyright (C) 2002-2008 Gilles Debunne. All rights reserved.
This file is part of the QGLViewer library version 2.3.4.
http://www.libqglviewer.com - contact@libqglviewer.com
This file may be used under the terms of the GNU General Public License
versions 2.0 or 3.0 as published by the Free Software Foundation and
appearing in the LICENSE file included in the packaging of this file.
In addition, as a special exception, Gilles Debunne gives you certain
additional rights, described in the file GPL_EXCEPTION in this package.
libQGLViewer uses dual licensing. Commercial/proprietary software must
purchase a libQGLViewer Commercial License.
This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*****************************************************************************/
#ifndef QGLVIEWER_CAMERA_H
#define QGLVIEWER_CAMERA_H
#include "manipulatedCameraFrame.h"
#include "keyFrameInterpolator.h"
namespace qglviewer {
/*! \brief A perspective or orthographic camera.
\class Camera camera.h QGLViewer/camera.h
A Camera defines some intrinsic parameters (fieldOfView(), position(), viewDirection(),
upVector()...) and useful positioning tools that ease its placement (showEntireScene(),
fitSphere(), lookAt()...). It exports its associated OpenGL projection and modelview matrices and
can interactively be modified using the mouse.
<h3>Mouse manipulation</h3>
The position() and orientation() of the Camera are defined by a ManipulatedCameraFrame (retrieved
using frame()). These methods are just convenient wrappers to the equivalent Frame methods. This
also means that the Camera frame() can be attached to a Frame::referenceFrame() which enables
complex Camera setups.
Different displacements can be performed using the mouse. The list of possible actions is defined
by the QGLViewer::MouseAction enum. Use QGLViewer::setMouseBinding() to attach a specific action
to an arbitrary mouse button-state key binding. These actions are detailed in the <a
href="../mouse.html">mouse page</a>.
The default button binding are: QGLViewer::ROTATE (left), QGLViewer::ZOOM (middle) and
QGLViewer::TRANSLATE (right). With this configuration, the Camera \e observes a scene and rotates
around its revolveAroundPoint(). You can switch between this mode and a fly mode using the
QGLViewer::CAMERA_MODE (see QGLViewer::toggleCameraMode()) keyboard shortcut (default is 'Space').
<h3>Other functionalities</h3>
The type() of the Camera can be Camera::ORTHOGRAPHIC or Camera::PERSPECTIVE (see Type()).
fieldOfView() is meaningless with Camera::ORTHOGRAPHIC.
The near and far planes of the Camera are fitted to the scene and determined from
QGLViewer::sceneRadius(), QGLViewer::sceneCenter() and zClippingCoefficient() by the zNear() and
zFar() methods. Reasonable values on the scene extends hence have to be provided to the QGLViewer
in order for the Camera to correctly display the scene. High level positioning methods also use
this information (showEntireScene(), centerScene()...).
A Camera holds KeyFrameInterpolator that can be used to save Camera positions and paths. You can
interactively addKeyFrameToPath() to a given path using the default \c Alt+F[1-12] shortcuts. Use
playPath() to make the Camera follow the path (default shortcut is F[1-12]). See the <a
href="../keyboard.html">keyboard page</a> for details on key customization.
Use cameraCoordinatesOf() and worldCoordinatesOf() to convert to and from the Camera frame()
coordinate system. projectedCoordinatesOf() and unprojectedCoordinatesOf() will convert from
screen to 3D coordinates. convertClickToLine() is very useful for analytical object selection.
Stereo display is possible on machines with quad buffer capabilities (with Camera::PERSPECTIVE
type() only). Test the <a href="../examples/stereoViewer.html">stereoViewer example</a> to check.
A Camera can also be used outside of a QGLViewer or even without OpenGL for its coordinate system
conversion capabilities. Note however that some of them explicitly rely on the presence of a
Z-buffer. \nosubgrouping */
class QGLVIEWER_EXPORT Camera : public QObject
{
#ifndef DOXYGEN
friend class ::QGLViewer;
#endif
Q_OBJECT
public:
Camera();
virtual ~Camera();
Camera(const Camera& camera);
Camera& operator=(const Camera& camera);
/*! Enumerates the two possible types of Camera.
See type() and setType(). This type mainly defines different Camera projection matrix (see
loadProjectionMatrix()). Many other methods (pointUnderPixel(), convertClickToLine(),
projectedCoordinatesOf(), pixelGLRatio()...) take this Type into account. */
enum Type { PERSPECTIVE, ORTHOGRAPHIC };
/*! @name Position and orientation */
//@{
public:
/*! Returns the Camera position (the eye), defined in the world coordinate system.
Use setPosition() to set the Camera position. Other convenient methods are showEntireScene() or
fitSphere(). Actually returns \c frame()->position().
This position corresponds to the projection center of a Camera::PERSPECTIVE Camera. It is not
located in the image plane, which is at a zNear() distance ahead. */
Vec position() const { return frame()->position(); };
/*! Returns the normalized up vector of the Camera, defined in the world coordinate system.
Set using setUpVector() or setOrientation(). It is orthogonal to viewDirection() and to
rightVector().
It corresponds to the Y axis of the associated frame() (actually returns
frame()->inverseTransformOf(Vec(0.0, 1.0, 0.0)) ). */
Vec upVector() const
{
return frame()->inverseTransformOf(Vec(0.0, 1.0, 0.0));
}
/*! Returns the normalized view direction of the Camera, defined in the world coordinate system.
Change this value using setViewDirection(), lookAt() or setOrientation(). It is orthogonal to
upVector() and to rightVector().
This corresponds to the negative Z axis of the frame() ( frame()->inverseTransformOf(Vec(0.0,
0.0, -1.0)) ). */
Vec viewDirection() const { return frame()->inverseTransformOf(Vec(0.0, 0.0, -1.0)); };
/*! Returns the normalized right vector of the Camera, defined in the world coordinate system.
This vector lies in the Camera horizontal plane, directed along the X axis (orthogonal to
upVector() and to viewDirection()). Set using setUpVector(), lookAt() or setOrientation().
Simply returns frame()->inverseTransformOf(Vec(1.0, 0.0, 0.0)). */
Vec rightVector() const
{
return frame()->inverseTransformOf(Vec(1.0, 0.0, 0.0));
}
/*! Returns the Camera orientation, defined in the world coordinate system.
Actually returns \c frame()->orientation(). Use setOrientation(), setUpVector() or lookAt() to
set the Camera orientation. */
Quaternion orientation() const { return frame()->orientation(); };
void setFromModelViewMatrix(const GLdouble* const modelViewMatrix);
void setFromProjectionMatrix(const float matrix[12]);
public slots:
/*! Sets the Camera position() (the eye), defined in the world coordinate system. */
void setPosition(const Vec& pos) { frame()->setPosition(pos); };
void setOrientation(const Quaternion& q);
void setOrientation(float theta, float phi);
void setUpVector(const Vec& up, bool noMove=true);
void setViewDirection(const Vec& direction);
//@}
/*! @name Positioning tools */
//@{
public slots:
void lookAt(const Vec& target);
void showEntireScene();
void fitSphere(const Vec& center, float radius);
void fitBoundingBox(const Vec& min, const Vec& max);
void fitScreenRegion(const QRect& rectangle);
void centerScene();
void interpolateToZoomOnPixel(const QPoint& pixel);
void interpolateToFitScene();
void interpolateTo(const Frame& fr, float duration);
//@}
/*! @name Frustum */
//@{
public:
/*! Returns the Camera::Type of the Camera.
Set by setType(). Mainly used by loadProjectionMatrix().
A Camera::PERSPECTIVE Camera uses a classical projection mainly defined by its fieldOfView().
With a Camera::ORTHOGRAPHIC type(), the fieldOfView() is meaningless and the width and height of
the Camera frustum are inferred from the distance to the revolveAroundPoint() using
getOrthoWidthHeight().
Both types use zNear() and zFar() (to define their clipping planes) and aspectRatio() (for
frustum shape). */
Type type() const { return type_; };
/*! Returns the vertical field of view of the Camera (in radians).
Value is set using setFieldOfView(). Default value is pi/4 radians. This value is meaningless if
the Camera type() is Camera::ORTHOGRAPHIC.
The field of view corresponds the one used in \c gluPerspective (see manual). It sets the Y
(vertical) aperture of the Camera. The X (horizontal) angle is inferred from the window aspect
ratio (see aspectRatio() and horizontalFieldOfView()).
Use setFOVToFitScene() to adapt the fieldOfView() to a given scene. */
float fieldOfView() const { return fieldOfView_; };
/*! Returns the horizontal field of view of the Camera (in radians).
Value is set using setHorizontalFieldOfView() or setFieldOfView(). These values
are always linked by:
\code
horizontalFieldOfView() = 2.0 * atan ( tan(fieldOfView()/2.0) * aspectRatio() ).
\endcode */
float horizontalFieldOfView() const { return 2.0 * atan ( tan(fieldOfView()/2.0) * aspectRatio() ); };
/*! Returns the Camera aspect ratio defined by screenWidth() / screenHeight().
When the Camera is attached to a QGLViewer, these values and hence the aspectRatio() are
automatically fitted to the viewer's window aspect ratio using setScreenWidthAndHeight(). */
float aspectRatio() const { return static_cast<float>(screenWidth_)/static_cast<float>(screenHeight_); };
/*! Returns the width (in pixels) of the Camera screen.
Set using setScreenWidthAndHeight(). This value is automatically fitted to the QGLViewer's
window dimensions when the Camera is attached to a QGLViewer. See also QGLWidget::width() */
int screenWidth() const { return screenWidth_; };
/*! Returns the height (in pixels) of the Camera screen.
Set using setScreenWidthAndHeight(). This value is automatically fitted to the QGLViewer's
window dimensions when the Camera is attached to a QGLViewer. See also QGLWidget::height() */
int screenHeight() const { return screenHeight_; };
void getViewport(GLint viewport[4]) const;
float pixelGLRatio(const Vec& position) const;
/*! Returns the coefficient which is used to set zNear() when the Camera is inside the sphere
defined by sceneCenter() and zClippingCoefficient() * sceneRadius().
In that case, the zNear() value is set to zNearCoefficient() * zClippingCoefficient() *
sceneRadius(). See the zNear() documentation for details.
Default value is 0.005, which is appropriate for most applications. In case you need a high
dynamic ZBuffer precision, you can increase this value (~0.1). A lower value will prevent
clipping of very close objects at the expense of a worst Z precision.
Only meaningful when Camera type is Camera::PERSPECTIVE. */
float zNearCoefficient() const { return zNearCoef_; };
/*! Returns the coefficient used to position the near and far clipping planes.
The near (resp. far) clipping plane is positioned at a distance equal to zClippingCoefficient() *
sceneRadius() in front of (resp. behind) the sceneCenter(). This garantees an optimal use of
the z-buffer range and minimizes aliasing. See the zNear() and zFar() documentations.
Default value is square root of 3.0 (so that a cube of size sceneRadius() is not clipped).
However, since the sceneRadius() is used for other purposes (see showEntireScene(), flySpeed(),
...) and you may want to change this value to define more precisely the location of the clipping
planes. See also zNearCoefficient().
For a total control on clipping planes' positions, an other option is to overload the zNear()
and zFar() methods. See the <a href="../examples/standardCamera.html">standardCamera example</a>.
\attention When QGLViewer::cameraPathAreEdited(), this value is set to 5.0 so that the Camera
paths are not clipped. The previous zClippingCoefficient() value is restored back when you leave
this mode. */
float zClippingCoefficient() const { return zClippingCoef_; }
virtual float zNear() const;
virtual float zFar() const;
virtual void getOrthoWidthHeight(GLdouble& halfWidth, GLdouble& halfHeight) const;
void getFrustumPlanesCoefficients(GLdouble coef[6][4]) const;
public slots:
void setType(Type type);
/*! Sets the vertical fieldOfView() of the Camera (in radians).
Note that focusDistance() is set to sceneRadius() / tan(fieldOfView()/2) by this method. */
void setFieldOfView(float fov) { fieldOfView_ = fov; setFocusDistance(sceneRadius() / tan(fov/2.0)); };
/*! Sets the horizontalFieldOfView() of the Camera (in radians).
horizontalFieldOfView() and fieldOfView() are linked by the aspectRatio(). This method actually
calls setFieldOfView(( 2.0 * atan (tan(hfov / 2.0) / aspectRatio()) )) so that a call to
horizontalFieldOfView() returns the expected value. */
void setHorizontalFieldOfView(float hfov) { setFieldOfView( 2.0 * atan (tan(hfov / 2.0) / aspectRatio()) ); };
void setFOVToFitScene();
/*! Defines the Camera aspectRatio().
This value is actually inferred from the screenWidth() / screenHeight() ratio. You should use
setScreenWidthAndHeight() instead.
This method might however be convenient when the Camera is not associated with a QGLViewer. It
actually sets the screenHeight() to 100 and the screenWidth() accordingly. See also
setFOVToFitScene().
\note If you absolutely need an aspectRatio() that does not correspond to your viewer's window
dimensions, overload loadProjectionMatrix() or multiply the created GL_PROJECTION matrix by a
scaled diagonal matrix in your QGLViewer::draw() method. */
void setAspectRatio(float aspect) { setScreenWidthAndHeight(int(100.0*aspect), 100); };
void setScreenWidthAndHeight(int width, int height);
/*! Sets the zNearCoefficient() value. */
void setZNearCoefficient(float coef) { zNearCoef_ = coef; };
/*! Sets the zClippingCoefficient() value. */
void setZClippingCoefficient(float coef) { zClippingCoef_ = coef; }
//@}
/*! @name Scene radius and center */
//@{
public:
/*! Returns the radius of the scene observed by the Camera.
You need to provide such an approximation of the scene dimensions so that the Camera can adapt
its zNear() and zFar() values. See the sceneCenter() documentation.
See also setSceneBoundingBox().
Note that QGLViewer::sceneRadius() (resp. QGLViewer::setSceneRadius()) simply call this method
(resp. setSceneRadius()) on its associated QGLViewer::camera(). */
float sceneRadius() const { return sceneRadius_; };
/*! Returns the position of the scene center, defined in the world coordinate system.
The scene observed by the Camera should be roughly centered on this position, and included in a
sceneRadius() sphere. This approximate description of the scene permits a zNear() and zFar()
clipping planes definition, and allows convenient positioning methods such as showEntireScene().
Default value is (0,0,0) (world origin). Use setSceneCenter() to change it. See also
setSceneBoundingBox().
Note that QGLViewer::sceneCenter() (resp. QGLViewer::setSceneCenter()) simply call this method
(resp. setSceneCenter()) on its associated QGLViewer::camera(). */
Vec sceneCenter() const { return sceneCenter_; };
float distanceToSceneCenter() const;
public slots:
void setSceneRadius(float radius);
void setSceneCenter(const Vec& center);
bool setSceneCenterFromPixel(const QPoint& pixel);
void setSceneBoundingBox(const Vec& min, const Vec& max);
//@}
/*! @name Revolve Around Point */
//@{
public slots:
void setRevolveAroundPoint(const Vec& rap);
bool setRevolveAroundPointFromPixel(const QPoint& pixel);
public:
/*! The point the Camera revolves around with the QGLViewer::ROTATE mouse binding. Defined in world coordinate system.
Default value is the sceneCenter().
\attention setSceneCenter() changes this value. */
Vec revolveAroundPoint() const { return frame()->revolveAroundPoint(); };
//@}
/*! @name Associated frame */
//@{
public:
/*! Returns the ManipulatedCameraFrame attached to the Camera.
This ManipulatedCameraFrame defines its position() and orientation() and can translate mouse
events into Camera displacement. Set using setFrame(). */
ManipulatedCameraFrame* frame() const { return frame_; };
public slots:
void setFrame(ManipulatedCameraFrame* const mcf);
//@}
/*! @name KeyFramed paths */
//@{
public:
KeyFrameInterpolator* keyFrameInterpolator(int i) const;
public slots:
void setKeyFrameInterpolator(int i, KeyFrameInterpolator* const kfi);
virtual void addKeyFrameToPath(int i);
virtual void playPath(int i);
virtual void deletePath(int i);
virtual void resetPath(int i);
virtual void drawAllPaths();
//@}
/*! @name OpenGL matrices */
//@{
public:
virtual void loadProjectionMatrix(bool reset=true) const;
virtual void loadModelViewMatrix(bool reset=true) const;
void computeProjectionMatrix() const;
void computeModelViewMatrix() const;
virtual void loadProjectionMatrixStereo(bool leftBuffer=true) const;
virtual void loadModelViewMatrixStereo(bool leftBuffer=true) const;
void getProjectionMatrix(GLdouble m[16]) const;
void getModelViewMatrix(GLdouble m[16]) const;
void getModelViewProjectionMatrix(GLdouble m[16]) const;
#ifndef DOXYGEN
// Required for windows which otherwise silently fills
void getProjectionMatrix(GLfloat m[16]) const;
void getModelViewMatrix(GLfloat m[16]) const;
#endif
//@}
/*! @name Drawing */
//@{
#ifndef DOXYGEN
static void drawCamera(float scale=1.0, float aspectRatio=1.33, float fieldOfView=M_PI/4.0);
#endif
virtual void draw(bool drawFarPlane=true, float scale=1.0) const;
//@}
/*! @name World to Camera coordinate systems conversions */
//@{
public:
/*! Returns the Camera frame coordinates of a point \p src defined in world coordinates.
worldCoordinatesOf() performs the inverse transformation.
Note that the point coordinates are simply converted in a different coordinate system. They are
not projected on screen. Use projectedCoordinatesOf() for that. */
Vec cameraCoordinatesOf(const Vec& src) const { return frame()->coordinatesOf(src); };
/*! Returns the world coordinates of the point whose position \p src is defined in the Camera
coordinate system.
cameraCoordinatesOf() performs the inverse transformation. */
Vec worldCoordinatesOf(const Vec& src) const { return frame()->inverseCoordinatesOf(src); };
void getCameraCoordinatesOf(const float src[3], float res[3]) const;
void getWorldCoordinatesOf(const float src[3], float res[3]) const;
//@}
/*! @name 2D screen to 3D world coordinate systems conversions */
//@{
public:
Vec projectedCoordinatesOf(const Vec& src, const Frame* frame=NULL) const;
Vec unprojectedCoordinatesOf(const Vec& src, const Frame* frame=NULL) const;
void getProjectedCoordinatesOf(const float src[3], float res[3], const Frame* frame=NULL) const;
void getUnprojectedCoordinatesOf(const float src[3], float res[3], const Frame* frame=NULL) const;
void convertClickToLine(const QPoint& pixel, Vec& orig, Vec& dir) const;
Vec pointUnderPixel(const QPoint& pixel, bool& found) const;
//@}
/*! @name Fly speed */
//@{
public:
/*! Returns the fly speed of the Camera.
Simply returns frame()->flySpeed(). See the ManipulatedCameraFrame::flySpeed() documentation.
This value is only meaningful when the MouseAction bindings is QGLViewer::MOVE_FORWARD or
QGLViewer::MOVE_BACKWARD.
Set to 0.5% of the sceneRadius() by setSceneRadius(). See also setFlySpeed(). */
float flySpeed() const { return frame()->flySpeed(); };
public slots:
/*! Sets the Camera flySpeed().
\attention This value is modified by setSceneRadius(). */
void setFlySpeed(float speed) { frame()->setFlySpeed(speed); };
//@}
/*! @name Stereo parameters */
//@{
public:
/*! Returns the user's inter-ocular distance (in meters). Default value is 0.062m, which fits most people.
loadProjectionMatrixStereo() uses this value to define the Camera offset and frustum. See
setIODistance(). */
float IODistance() const { return IODistance_; };
/*! Returns the physical distance between the user's eyes and the screen (in meters).
Default value is 0.5m.
Used by loadModelViewMatrixStereo() and loadProjectionMatrixStereo() for stereo display. Value
is set using setPhysicalDistanceToScreen().
physicalDistanceToScreen() and focusDistance() represent the same distance. The first one is
expressed in physical real world units, while the latter is expressed in OpenGL virtual world
units. Use their ratio to convert distances between these worlds.
Use the following code to detect a reality center configuration (using its screen aspect ratio)
and to automatically set physical distances accordingly:
\code
QDesktopWidget screen;
if (fabs((float)screen.width() / (float)screen.height()) > 2.0)
{
camera()->setPhysicalDistanceToScreen(4.0);
camera()->setPhysicalScreenWidth(10.0);
}
\endcode */
float physicalDistanceToScreen() const { return physicalDistanceToScreen_; };
/*! Returns the physical screen width, in meters. Default value is 0.4m (average monitor).
Used for stereo display only (see loadModelViewMatrixStereo() and loadProjectionMatrixStereo()).
Set using setPhysicalScreenWidth().
See physicalDistanceToScreen() for reality center automatic configuration. */
float physicalScreenWidth() const { return physicalScreenWidth_; };
/*! Returns the focus distance used by stereo display, expressed in OpenGL units.
This is the distance in the virtual world between the Camera and the plane where the horizontal
stereo parallax is null (the stereo left and right images are superimposed).
This distance is the virtual world equivalent of the real-world physicalDistanceToScreen().
\attention This value is modified by QGLViewer::setSceneRadius(), setSceneRadius() and
setFieldOfView(). When one of these values is modified, focusDistance() is set to sceneRadius()
/ tan(fieldOfView()/2), which provides good results. */
float focusDistance() const { return focusDistance_; };
public slots:
/*! Sets the IODistance(). */
void setIODistance(float distance) { IODistance_ = distance; };
/*! Sets the physicalDistanceToScreen(). */
void setPhysicalDistanceToScreen(float distance) { physicalDistanceToScreen_ = distance; };
/*! Sets the physical screen (monitor or projected wall) width (in meters). */
void setPhysicalScreenWidth(float width) { physicalScreenWidth_ = width; };
/*! Sets the focusDistance(), in OpenGL scene units. */
void setFocusDistance(float distance) { focusDistance_ = distance; };
//@}
/*! @name XML representation */
//@{
public:
virtual QDomElement domElement(const QString& name, QDomDocument& document) const;
public slots:
virtual void initFromDOMElement(const QDomElement& element);
//@}
private:
// F r a m e
ManipulatedCameraFrame* frame_;
// C a m e r a p a r a m e t e r s
int screenWidth_, screenHeight_; // size of the window, in pixels
float fieldOfView_; // in radians
Vec sceneCenter_;
float sceneRadius_; // OpenGL units
float zNearCoef_;
float zClippingCoef_;
float orthoCoef_;
Type type_; // PERSPECTIVE or ORTHOGRAPHIC
mutable GLdouble modelViewMatrix_[16]; // Buffered model view matrix.
mutable GLdouble projectionMatrix_[16]; // Buffered projection matrix.
// S t e r e o p a r a m e t e r s
float IODistance_; // inter-ocular distance, in meters
float focusDistance_; // in scene units
float physicalDistanceToScreen_; // in meters
float physicalScreenWidth_; // in meters
// P o i n t s o f V i e w s a n d K e y F r a m e s
QMap<int, KeyFrameInterpolator*> kfi_;
KeyFrameInterpolator* interpolationKfi_;
};
} // namespace qglviewer
#endif // QGLVIEWER_CAMERA_H
|