/usr/include/opencascade/math_Uzawa.hxx is in libopencascade-foundation-dev 6.5.0.dfsg-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 | // This file is generated by WOK (CPPExt).
// Please do not edit this file; modify original file instead.
// The copyright and license terms as defined for the original file apply to
// this header file considered to be the "object code" form of the original source.
#ifndef _math_Uzawa_HeaderFile
#define _math_Uzawa_HeaderFile
#ifndef _Standard_HeaderFile
#include <Standard.hxx>
#endif
#ifndef _Standard_Macro_HeaderFile
#include <Standard_Macro.hxx>
#endif
#ifndef _math_Vector_HeaderFile
#include <math_Vector.hxx>
#endif
#ifndef _math_Matrix_HeaderFile
#include <math_Matrix.hxx>
#endif
#ifndef _Standard_Integer_HeaderFile
#include <Standard_Integer.hxx>
#endif
#ifndef _Standard_Boolean_HeaderFile
#include <Standard_Boolean.hxx>
#endif
#ifndef _Standard_Real_HeaderFile
#include <Standard_Real.hxx>
#endif
#ifndef _Standard_OStream_HeaderFile
#include <Standard_OStream.hxx>
#endif
class StdFail_NotDone;
class Standard_ConstructionError;
class math_Matrix;
class math_Vector;
//! This class implements a system resolution C*X = B with <br>
//! an approach solution X0. There are no conditions on the <br>
//! number of equations. The algorithm used is the Uzawa <br>
//! algorithm. It is possible to have equal or inequal (<) <br>
//! equations to solve. The resolution is done with a <br>
//! minimization of Norm(X-X0). <br>
//! If there are only equal equations, the resolution is directly <br>
//! done and is similar to Gauss resolution with an optimisation <br>
//! because the matrix is a symmetric matrix. <br>
//! (The resolution is done with Crout algorithm) <br>
class math_Uzawa {
public:
void* operator new(size_t,void* anAddress)
{
return anAddress;
}
void* operator new(size_t size)
{
return Standard::Allocate(size);
}
void operator delete(void *anAddress)
{
if (anAddress) Standard::Free((Standard_Address&)anAddress);
}
//! Given an input matrix Cont, two input vectors Secont <br>
//! and StartingPoint, it solves Cont*X = Secont (only <br>
//! = equations) with a minimization of Norme(X-X0). <br>
//! The maximun iterations number allowed is fixed to <br>
//! NbIterations. <br>
//! The tolerance EpsLic is fixed for the dual variable <br>
//! convergence. The tolerance EpsLix is used for the <br>
//! convergence of X. <br>
//! Exception ConstuctionError is raised if the line number <br>
//! of Cont is different from the length of Secont. <br>
Standard_EXPORT math_Uzawa(const math_Matrix& Cont,const math_Vector& Secont,const math_Vector& StartingPoint,const Standard_Real EpsLix = 1.0e-06,const Standard_Real EpsLic = 1.0e-06,const Standard_Integer NbIterations = 500);
//! Given an input matrix Cont, two input vectors Secont <br>
//! and StartingPoint, it solves Cont*X = Secont (the Nce <br>
//! first equations are equal equations and the Nci last <br>
//! equations are inequalities <) with a minimization <br>
//! of Norme(X-X0). <br>
//! The maximun iterations number allowed is fixed to <br>
//! NbIterations. <br>
//! The tolerance EpsLic is fixed for the dual variable <br>
//! convergence. The tolerance EpsLix is used for the <br>
//! convergence of X. <br>
//! There are no conditions on Nce and Nci. <br>
//! Exception ConstuctionError is raised if the line number <br>
//! of Cont is different from the length of Secont and from <br>
//! Nce + Nci. <br>
Standard_EXPORT math_Uzawa(const math_Matrix& Cont,const math_Vector& Secont,const math_Vector& StartingPoint,const Standard_Integer Nci,const Standard_Integer Nce,const Standard_Real EpsLix = 1.0e-06,const Standard_Real EpsLic = 1.0e-06,const Standard_Integer NbIterations = 500);
//! Returns true if the computations are successful, otherwise returns false. <br>
Standard_Boolean IsDone() const;
//! Returns the vector solution of the system above. <br>
//! An exception is raised if NotDone. <br>
const math_Vector& Value() const;
//! Returns the initial error Cont*StartingPoint-Secont. <br>
//! An exception is raised if NotDone. <br>
const math_Vector& InitialError() const;
//! returns the duale variables V of the systeme. <br>
Standard_EXPORT void Duale(math_Vector& V) const;
//! Returns the difference between X solution and the <br>
//! StartingPoint. <br>
//! An exception is raised if NotDone. <br>
const math_Vector& Error() const;
//! returns the number of iterations really done. <br>
//! An exception is raised if NotDone. <br>
Standard_Integer NbIterations() const;
//! returns the inverse matrix of (C * Transposed(C)). <br>
//! This result is needed for the computation of the gradient <br>
//! when approximating a curve. <br>
const math_Matrix& InverseCont() const;
//! Prints information on the current state of the object. <br>
Standard_EXPORT void Dump(Standard_OStream& o) const;
protected:
//! Is used internally by the two constructors above. <br>
Standard_EXPORT void Perform(const math_Matrix& Cont,const math_Vector& Secont,const math_Vector& StartingPoint,const Standard_Integer Nci,const Standard_Integer Nce,const Standard_Real EpsLix = 1.0e-06,const Standard_Real EpsLic = 1.0e-06,const Standard_Integer NbIterations = 500) ;
private:
math_Vector Resul;
math_Vector Erruza;
math_Vector Errinit;
math_Vector Vardua;
math_Matrix CTCinv;
Standard_Integer NbIter;
Standard_Boolean Done;
};
#include <math_Uzawa.lxx>
// other Inline functions and methods (like "C++: function call" methods)
#endif
|