/usr/include/opencascade/math_NewtonFunctionSetRoot.hxx is in libopencascade-foundation-dev 6.5.0.dfsg-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 | // This file is generated by WOK (CPPExt).
// Please do not edit this file; modify original file instead.
// The copyright and license terms as defined for the original file apply to
// this header file considered to be the "object code" form of the original source.
#ifndef _math_NewtonFunctionSetRoot_HeaderFile
#define _math_NewtonFunctionSetRoot_HeaderFile
#ifndef _Standard_HeaderFile
#include <Standard.hxx>
#endif
#ifndef _Standard_Macro_HeaderFile
#include <Standard_Macro.hxx>
#endif
#ifndef _Standard_Boolean_HeaderFile
#include <Standard_Boolean.hxx>
#endif
#ifndef _Standard_Integer_HeaderFile
#include <Standard_Integer.hxx>
#endif
#ifndef _math_Vector_HeaderFile
#include <math_Vector.hxx>
#endif
#ifndef _Standard_Real_HeaderFile
#include <Standard_Real.hxx>
#endif
#ifndef _math_IntegerVector_HeaderFile
#include <math_IntegerVector.hxx>
#endif
#ifndef _math_Matrix_HeaderFile
#include <math_Matrix.hxx>
#endif
#ifndef _Standard_OStream_HeaderFile
#include <Standard_OStream.hxx>
#endif
class StdFail_NotDone;
class Standard_DimensionError;
class math_FunctionSetWithDerivatives;
class math_Vector;
class math_Matrix;
//! This class computes the root of a set of N functions of N variables, <br>
//! knowing an initial guess at the solution and using the <br>
//! Newton Raphson algorithm. Knowledge of all the partial <br>
//! derivatives (Jacobian) is required. <br>
class math_NewtonFunctionSetRoot {
public:
void* operator new(size_t,void* anAddress)
{
return anAddress;
}
void* operator new(size_t size)
{
return Standard::Allocate(size);
}
void operator delete(void *anAddress)
{
if (anAddress) Standard::Free((Standard_Address&)anAddress);
}
//! This constructor should be used in a sub-class to initialize <br>
//! correctly all the fields of this class. <br>
//! The range (1, F.NbVariables()) must be especially respected for <br>
//! all vectors and matrix declarations. <br>
Standard_EXPORT math_NewtonFunctionSetRoot(math_FunctionSetWithDerivatives& F,const math_Vector& XTol,const Standard_Real FTol,const Standard_Integer NbIterations = 100);
//! This constructor should be used in a sub-class to initialize <br>
//! correctly all the fields of this class. <br>
//! The range (1, F.NbVariables()) must be especially respected for <br>
//! all vectors and matrix declarations. <br>
//! The method SetTolerance must be called before performing the <br>
//! algorithm. <br>
Standard_EXPORT math_NewtonFunctionSetRoot(math_FunctionSetWithDerivatives& F,const Standard_Real FTol,const Standard_Integer NbIterations = 100);
//! The Newton method is done to improve the root of the function F <br>
//! from the initial guess StartingPoint. <br>
//! The tolerance required on the root is given by Tolerance. <br>
//! The solution is found when : <br>
//! abs(Xj - Xj-1)(i) <= XTol(i) and abs(Fi) <= FTol for all i; <br>
//! The maximum number of iterations allowed is given by NbIterations. <br>
Standard_EXPORT math_NewtonFunctionSetRoot(math_FunctionSetWithDerivatives& F,const math_Vector& StartingPoint,const math_Vector& XTol,const Standard_Real FTol,const Standard_Integer NbIterations = 100);
//! The Newton method is done to improve the root of the function F <br>
//! from the initial guess StartingPoint. <br>
//! The tolerance required on the root is given by Tolerance. <br>
//! The solution is found when : <br>
//! abs(Xj - Xj-1)(i) <= XTol(i) and abs(Fi) <= FTol for all i; <br>
//! The maximum number of iterations allowed is given by NbIterations. <br>
Standard_EXPORT math_NewtonFunctionSetRoot(math_FunctionSetWithDerivatives& F,const math_Vector& StartingPoint,const math_Vector& InfBound,const math_Vector& SupBound,const math_Vector& XTol,const Standard_Real FTol,const Standard_Integer NbIterations = 100);
Standard_EXPORT virtual void Delete() ;
Standard_EXPORT virtual ~math_NewtonFunctionSetRoot(){Delete();}
//! Initializes the tolerance values for the unknowns. <br>
Standard_EXPORT void SetTolerance(const math_Vector& XTol) ;
//! Improves the root of function F from the initial guess <br>
//! StartingPoint. infBound and supBound may be given, to constrain the solution. <br>
//! Warning <br>
//! This method must be called when the solution is not computed by the constructors. <br>
Standard_EXPORT void Perform(math_FunctionSetWithDerivatives& F,const math_Vector& StartingPoint,const math_Vector& InfBound,const math_Vector& SupBound) ;
//! This method is called at the end of each iteration to check if the <br>
//! solution is found. <br>
//! Vectors DeltaX, Fvalues and Jacobian Matrix are consistent with the <br>
//! possible solution Vector Sol and can be inspected to decide whether <br>
//! the solution is reached or not. <br>
Standard_EXPORT virtual Standard_Boolean IsSolutionReached(math_FunctionSetWithDerivatives& F) ;
//! Returns true if the computations are successful, otherwise returns false. <br>
Standard_Boolean IsDone() const;
//! Returns the value of the root of function F. <br>
//! Exceptions <br>
//! StdFail_NotDone if the algorithm fails (and IsDone returns false). <br>
const math_Vector& Root() const;
//! outputs the root vector in Root. <br>
//! Exception NotDone is raised if the root was not found. <br>
//! Exception DimensionError is raised if the range of Root is <br>
//! not equal to the range of the StartingPoint. <br>
void Root(math_Vector& Root) const;
//! Outputs the state number associated with the solution <br>
//! vector root. <br>
Standard_Integer StateNumber() const;
//! Returns the matrix value of the derivative at the root. <br>
//! Exception NotDone is raised if the root was not found. <br>
const math_Matrix& Derivative() const;
//! Outputs the matrix value of the derivative at the root in <br>
//! Der. <br>
//! Exception NotDone is raised if the root was not found. <br>
//! Exception DimensionError is raised if the range of Der is <br>
//! not equal to the range of the StartingPoint. <br>
void Derivative(math_Matrix& Der) const;
//! Returns the vector value of the error done on the <br>
//! functions at the root. <br>
//! Exception NotDone is raised if the root was not found. <br>
const math_Vector& FunctionSetErrors() const;
//! Outputs the vector value of the error done on the <br>
//! functions at the root in Err. <br>
//! Exception NotDone is raised if the root was not found. <br>
//! Exception DimensionError is raised if the range of Err is <br>
//! not equal to the range of the StartingPoint. <br>
void FunctionSetErrors(math_Vector& Err) const;
//! Returns the number of iterations really done <br>
//! during the computation of the Root. <br>
//! Exception NotDone is raised if the root was not found. <br>
Standard_Integer NbIterations() const;
//! Prints information on the current state of the object. <br>
//! Is used to redefine the operator <<. <br>
Standard_EXPORT void Dump(Standard_OStream& o) const;
protected:
math_Vector TolX;
Standard_Real TolF;
math_IntegerVector Indx;
math_Vector Scratch;
math_Vector Sol;
math_Vector DeltaX;
math_Vector FValues;
math_Matrix Jacobian;
private:
Standard_Boolean Done;
Standard_Integer State;
Standard_Integer Iter;
Standard_Integer Itermax;
};
#include <math_NewtonFunctionSetRoot.lxx>
// other Inline functions and methods (like "C++: function call" methods)
#endif
|