/usr/include/opencascade/gp_Vec.hxx is in libopencascade-foundation-dev 6.5.0.dfsg-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 | // This file is generated by WOK (CPPExt).
// Please do not edit this file; modify original file instead.
// The copyright and license terms as defined for the original file apply to
// this header file considered to be the "object code" form of the original source.
#ifndef _gp_Vec_HeaderFile
#define _gp_Vec_HeaderFile
#ifndef _Standard_HeaderFile
#include <Standard.hxx>
#endif
#ifndef _Standard_Macro_HeaderFile
#include <Standard_Macro.hxx>
#endif
#ifndef _gp_XYZ_HeaderFile
#include <gp_XYZ.hxx>
#endif
#ifndef _Standard_Storable_HeaderFile
#include <Standard_Storable.hxx>
#endif
#ifndef _Standard_Real_HeaderFile
#include <Standard_Real.hxx>
#endif
#ifndef _Standard_Integer_HeaderFile
#include <Standard_Integer.hxx>
#endif
#ifndef _Standard_Boolean_HeaderFile
#include <Standard_Boolean.hxx>
#endif
#ifndef _Standard_PrimitiveTypes_HeaderFile
#include <Standard_PrimitiveTypes.hxx>
#endif
class Standard_ConstructionError;
class Standard_DomainError;
class Standard_OutOfRange;
class gp_VectorWithNullMagnitude;
class gp_Dir;
class gp_XYZ;
class gp_Pnt;
class gp_Ax1;
class gp_Ax2;
class gp_Trsf;
Standard_EXPORT const Handle(Standard_Type)& STANDARD_TYPE(gp_Vec);
//! Defines a non-persistent vector in 3D space. <br>
class gp_Vec {
public:
void* operator new(size_t,void* anAddress)
{
return anAddress;
}
void* operator new(size_t size)
{
return Standard::Allocate(size);
}
void operator delete(void *anAddress)
{
if (anAddress) Standard::Free((Standard_Address&)anAddress);
}
//! Creates a zero vector. <br>
gp_Vec();
//! Creates a unitary vector from a direction V. <br>
gp_Vec(const gp_Dir& V);
//! Creates a vector with a triplet of coordinates. <br>
gp_Vec(const gp_XYZ& Coord);
//! Creates a point with its three cartesian coordinates. <br>
gp_Vec(const Standard_Real Xv,const Standard_Real Yv,const Standard_Real Zv);
//! Creates a vector from two points. The length of the vector <br>
//! is the distance between P1 and P2 <br>
gp_Vec(const gp_Pnt& P1,const gp_Pnt& P2);
//! Changes the coordinate of range Index <br>
//! Index = 1 => X is modified <br>
//! Index = 2 => Y is modified <br>
//! Index = 3 => Z is modified <br>//! Raised if Index != {1, 2, 3}. <br>
void SetCoord(const Standard_Integer Index,const Standard_Real Xi) ;
//! For this vector, assigns <br>
//! - the values Xv, Yv and Zv to its three coordinates. <br>
void SetCoord(const Standard_Real Xv,const Standard_Real Yv,const Standard_Real Zv) ;
//! Assigns the given value to the X coordinate of this vector. <br>
void SetX(const Standard_Real X) ;
//! Assigns the given value to the X coordinate of this vector. <br>
void SetY(const Standard_Real Y) ;
//! Assigns the given value to the X coordinate of this vector. <br>
void SetZ(const Standard_Real Z) ;
//! Assigns the three coordinates of Coord to this vector. <br>
void SetXYZ(const gp_XYZ& Coord) ;
//! Returns the coordinate of range Index : <br>
//! Index = 1 => X is returned <br>
//! Index = 2 => Y is returned <br>
//! Index = 3 => Z is returned <br>//! Raised if Index != {1, 2, 3}. <br>
Standard_Real Coord(const Standard_Integer Index) const;
//! For this vector returns its three coordinates Xv, Yv, and Zvinline <br>
void Coord(Standard_Real& Xv,Standard_Real& Yv,Standard_Real& Zv) const;
//! For this vector, returns its X coordinate. <br>
Standard_Real X() const;
//! For this vector, returns its Y coordinate. <br>
Standard_Real Y() const;
//! For this vector, returns its Z coordinate. <br>
Standard_Real Z() const;
//! For this vector, returns <br>
//! - its three coordinates as a number triple <br>
const gp_XYZ& XYZ() const;
//! Returns True if the two vectors have the same magnitude value <br>
//! and the same direction. The precision values are LinearTolerance <br>
//! for the magnitude and AngularTolerance for the direction. <br>
Standard_EXPORT Standard_Boolean IsEqual(const gp_Vec& Other,const Standard_Real LinearTolerance,const Standard_Real AngularTolerance) const;
//! Returns True if abs(<me>.Angle(Other) - PI/2.) <= AngularTolerance <br>
//! Raises VectorWithNullMagnitude if <me>.Magnitude() <= Resolution or <br>
//! Other.Magnitude() <= Resolution from gp <br>
Standard_Boolean IsNormal(const gp_Vec& Other,const Standard_Real AngularTolerance) const;
//! Returns True if PI - <me>.Angle(Other) <= AngularTolerance <br>
//! Raises VectorWithNullMagnitude if <me>.Magnitude() <= Resolution or <br>
//! Other.Magnitude() <= Resolution from gp <br>
Standard_Boolean IsOpposite(const gp_Vec& Other,const Standard_Real AngularTolerance) const;
//! Returns True if Angle(<me>, Other) <= AngularTolerance or <br>
//! PI - Angle(<me>, Other) <= AngularTolerance <br>
//! This definition means that two parallel vectors cannot define <br>
//! a plane but two vectors with opposite directions are considered <br>
//! as parallel. Raises VectorWithNullMagnitude if <me>.Magnitude() <= Resolution or <br>
//! Other.Magnitude() <= Resolution from gp <br>
Standard_Boolean IsParallel(const gp_Vec& Other,const Standard_Real AngularTolerance) const;
//! Computes the angular value between <me> and <Other> <br>
//! Returns the angle value between 0 and PI in radian. <br>
//! Raises VectorWithNullMagnitude if <me>.Magnitude() <= Resolution from gp or <br>
//! Other.Magnitude() <= Resolution because the angular value is <br>
//! indefinite if one of the vectors has a null magnitude. <br>
Standard_Real Angle(const gp_Vec& Other) const;
//! Computes the angle, in radians, between this vector and <br>
//! vector Other. The result is a value between -Pi and Pi. <br>
//! For this, VRef defines the positive sense of rotation: the <br>
//! angular value is positive, if the cross product this ^ Other <br>
//! has the same orientation as VRef relative to the plane <br>
//! defined by the vectors this and Other. Otherwise, the <br>
//! angular value is negative. <br>
//! Exceptions <br>
//! gp_VectorWithNullMagnitude if the magnitude of this <br>
//! vector, the vector Other, or the vector VRef is less than or <br>
//! equal to gp::Resolution(). <br>
//! Standard_DomainError if this vector, the vector Other, <br>
//! and the vector VRef are coplanar, unless this vector and <br>
//! the vector Other are parallel. <br>
Standard_Real AngleWithRef(const gp_Vec& Other,const gp_Vec& VRef) const;
//! Computes the magnitude of this vector. <br>
Standard_Real Magnitude() const;
//! Computes the square magnitude of this vector. <br>//! Adds two vectors <br>
Standard_Real SquareMagnitude() const;
void Add(const gp_Vec& Other) ;
void operator +=(const gp_Vec& Other)
{
Add(Other);
}
//! Adds two vectors <br>//! Subtracts two vectors <br>
gp_Vec Added(const gp_Vec& Other) const;
gp_Vec operator +(const gp_Vec& Other) const
{
return Added(Other);
}
void Subtract(const gp_Vec& Right) ;
void operator -=(const gp_Vec& Right)
{
Subtract(Right);
}
//! Subtracts two vectors <br>//! Multiplies a vector by a scalar <br>
gp_Vec Subtracted(const gp_Vec& Right) const;
gp_Vec operator -(const gp_Vec& Right) const
{
return Subtracted(Right);
}
void Multiply(const Standard_Real Scalar) ;
void operator *=(const Standard_Real Scalar)
{
Multiply(Scalar);
}
//! Multiplies a vector by a scalar <br>//! Divides a vector by a scalar <br>
gp_Vec Multiplied(const Standard_Real Scalar) const;
gp_Vec operator *(const Standard_Real Scalar) const
{
return Multiplied(Scalar);
}
void Divide(const Standard_Real Scalar) ;
void operator /=(const Standard_Real Scalar)
{
Divide(Scalar);
}
//! Divides a vector by a scalar <br>//! computes the cross product between two vectors <br>
gp_Vec Divided(const Standard_Real Scalar) const;
gp_Vec operator /(const Standard_Real Scalar) const
{
return Divided(Scalar);
}
void Cross(const gp_Vec& Right) ;
void operator ^=(const gp_Vec& Right)
{
Cross(Right);
}
//! computes the cross product between two vectors <br>
gp_Vec Crossed(const gp_Vec& Right) const;
gp_Vec operator ^(const gp_Vec& Right) const
{
return Crossed(Right);
}
//! Computes the magnitude of the cross <br>
//! product between <me> and Right. <br>
//! Returns || <me> ^ Right || <br>
Standard_Real CrossMagnitude(const gp_Vec& Right) const;
//! Computes the square magnitude of <br>
//! the cross product between <me> and Right. <br>
//! Returns || <me> ^ Right ||**2 <br>//! Computes the triple vector product. <br>
//! <me> ^ (V1 ^ V2) <br>
Standard_Real CrossSquareMagnitude(const gp_Vec& Right) const;
void CrossCross(const gp_Vec& V1,const gp_Vec& V2) ;
//! Computes the triple vector product. <br>
//! <me> ^ (V1 ^ V2) <br>
gp_Vec CrossCrossed(const gp_Vec& V1,const gp_Vec& V2) const;
//! computes the scalar product <br>
Standard_Real Dot(const gp_Vec& Other) const;
Standard_Real operator *(const gp_Vec& Other) const
{
return Dot(Other);
}
//! Computes the triple scalar product <me> * (V1 ^ V2). <br>//! normalizes a vector <br>
//! Raises an exception if the magnitude of the vector is <br>
//! lower or equal to Resolution from gp. <br>
Standard_Real DotCross(const gp_Vec& V1,const gp_Vec& V2) const;
void Normalize() ;
//! normalizes a vector <br>
//! Raises an exception if the magnitude of the vector is <br>
//! lower or equal to Resolution from gp. <br>//! Reverses the direction of a vector <br>
gp_Vec Normalized() const;
void Reverse() ;
//! Reverses the direction of a vector <br>
gp_Vec Reversed() const;
gp_Vec operator -() const
{
return Reversed();
}
//! <me> is setted to the following linear form : <br>
//! A1 * V1 + A2 * V2 + A3 * V3 + V4 <br>
void SetLinearForm(const Standard_Real A1,const gp_Vec& V1,const Standard_Real A2,const gp_Vec& V2,const Standard_Real A3,const gp_Vec& V3,const gp_Vec& V4) ;
//! <me> is setted to the following linear form : <br>
//! A1 * V1 + A2 * V2 + A3 * V3 <br>
void SetLinearForm(const Standard_Real A1,const gp_Vec& V1,const Standard_Real A2,const gp_Vec& V2,const Standard_Real A3,const gp_Vec& V3) ;
//! <me> is setted to the following linear form : <br>
//! A1 * V1 + A2 * V2 + V3 <br>
void SetLinearForm(const Standard_Real A1,const gp_Vec& V1,const Standard_Real A2,const gp_Vec& V2,const gp_Vec& V3) ;
//! <me> is setted to the following linear form : <br>
//! A1 * V1 + A2 * V2 <br>
void SetLinearForm(const Standard_Real A1,const gp_Vec& V1,const Standard_Real A2,const gp_Vec& V2) ;
//! <me> is setted to the following linear form : A1 * V1 + V2 <br>
void SetLinearForm(const Standard_Real A1,const gp_Vec& V1,const gp_Vec& V2) ;
//! <me> is setted to the following linear form : V1 + V2 <br>
void SetLinearForm(const gp_Vec& V1,const gp_Vec& V2) ;
Standard_EXPORT void Mirror(const gp_Vec& V) ;
//! Performs the symmetrical transformation of a vector <br>
//! with respect to the vector V which is the center of <br>
//! the symmetry. <br>
Standard_EXPORT gp_Vec Mirrored(const gp_Vec& V) const;
Standard_EXPORT void Mirror(const gp_Ax1& A1) ;
//! Performs the symmetrical transformation of a vector <br>
//! with respect to an axis placement which is the axis <br>
//! of the symmetry. <br>
Standard_EXPORT gp_Vec Mirrored(const gp_Ax1& A1) const;
Standard_EXPORT void Mirror(const gp_Ax2& A2) ;
//! Performs the symmetrical transformation of a vector <br>
//! with respect to a plane. The axis placement A2 locates <br>
//! the plane of the symmetry : (Location, XDirection, YDirection). <br>
Standard_EXPORT gp_Vec Mirrored(const gp_Ax2& A2) const;
void Rotate(const gp_Ax1& A1,const Standard_Real Ang) ;
//! Rotates a vector. A1 is the axis of the rotation. <br>
//! Ang is the angular value of the rotation in radians. <br>
gp_Vec Rotated(const gp_Ax1& A1,const Standard_Real Ang) const;
void Scale(const Standard_Real S) ;
//! Scales a vector. S is the scaling value. <br>//! Transforms a vector with the transformation T. <br>
gp_Vec Scaled(const Standard_Real S) const;
Standard_EXPORT void Transform(const gp_Trsf& T) ;
//! Transforms a vector with the transformation T. <br>
gp_Vec Transformed(const gp_Trsf& T) const;
const gp_XYZ& _CSFDB_Getgp_Veccoord() const { return coord; }
protected:
private:
gp_XYZ coord;
};
#include <gp_Vec.lxx>
// other Inline functions and methods (like "C++: function call" methods)
#endif
|